aboutsummaryrefslogtreecommitdiff
path: root/rpc_pkey.c
diff options
context:
space:
mode:
Diffstat (limited to 'rpc_pkey.c')
-rw-r--r--rpc_pkey.c736
1 files changed, 736 insertions, 0 deletions
diff --git a/rpc_pkey.c b/rpc_pkey.c
new file mode 100644
index 0000000..8fece44
--- /dev/null
+++ b/rpc_pkey.c
@@ -0,0 +1,736 @@
+/*
+ * rpc_pkey.c
+ * ----------
+ * Remote procedure call server-side public key implementation.
+ *
+ * Authors: Rob Austein
+ * Copyright (c) 2015, NORDUnet A/S All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ * - Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * - Neither the name of the NORDUnet nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+ * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+ * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+ * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <string.h>
+#include <assert.h>
+
+#include "hal.h"
+#include "hal_internal.h"
+
+typedef struct {
+ hal_rpc_client_handle_t client_handle;
+ hal_rpc_session_handle_t session_handle;
+ hal_rpc_pkey_handle_t pkey_handle;
+ hal_key_type_t type;
+ hal_curve_name_t curve;
+ hal_key_flags_t flags;
+ uint8_t name[HAL_RPC_PKEY_NAME_MAX];
+ size_t name_len;
+ int ks_hint;
+ /*
+ * This might be where we'd stash a (hal_core_t *) pointing to a
+ * core which has already been loaded with the key, if we were
+ * trying to be clever about using multiple signing cores. Moot
+ * point (ie, no way we could possibly test such a thing) as long as
+ * the FPGA is too small to hold more than one modexp core and ECDSA
+ * is entirely software, so skip it for now, but the implied
+ * semantics are interesting: a pkey handle starts to resemble an
+ * initialized signing core, and once all the cores are in use, one
+ * can't load another key without closing an existing pkey handle.
+ */
+} pkey_slot_t;
+
+#ifndef HAL_STATIC_PKEY_STATE_BLOCKS
+#define HAL_STATIC_PKEY_STATE_BLOCKS 0
+#endif
+
+#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
+static pkey_slot_t pkey_handle[HAL_STATIC_PKEY_STATE_BLOCKS];
+#endif
+
+/*
+ * Handle allocation is simple: we look for an unused (name_len == 0)
+ * slot in the table, and, assuming we find one, construct a composite
+ * handle consisting of the index into the table and a counter whose
+ * sole purpose is to keep the same handle from reoccurring anytime
+ * soon, to help identify use-after-free bugs in calling code.
+ */
+
+static inline pkey_slot_t *alloc_slot(void)
+{
+#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
+ static uint16_t next_glop = 0;
+ uint32_t glop = ++next_glop << 16;
+ next_glop %= 0xFFFF;
+
+ for (int i = 0; i < sizeof(pkey_handle)/sizeof(*pkey_handle); i++) {
+ if (pkey_handle[i].name_len > 0)
+ continue;
+ pkey_handle[i].pkey_handle.handle = i | glop;
+ pkey_handle[i].ks_hint = -1;
+ return &pkey_handle[i];
+ }
+#endif
+
+ return NULL;
+}
+
+/*
+ * Check a caller-supplied handle. Must be in range, in use, and have
+ * the right glop. Returns slot pointer on success, NULL otherwise.
+ */
+
+static inline pkey_slot_t *find_handle(const hal_rpc_pkey_handle_t handle)
+{
+#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
+ const int i = (int) (handle.handle & 0xFFFF);
+
+ if (i < sizeof(pkey_handle)/sizeof(*pkey_handle) && pkey_handle[i].pkey_handle.handle == handle.handle)
+ return &pkey_handle[i];
+#endif
+
+ return NULL;
+}
+
+/*
+ * Construct a PKCS #1 DigestInfo object. This requires some (very
+ * basic) ASN.1 encoding, which we perform inline.
+ */
+
+static hal_error_t pkcs1_construct_digestinfo(const hal_rpc_hash_handle_t handle,
+ uint8_t *digest_info, size_t *digest_info_len, const size_t digest_info_max)
+{
+ assert(digest_info != NULL && digest_info_len != NULL);
+
+ hal_digest_algorithm_t alg;
+ size_t len, alg_len;
+ hal_error_t err;
+
+ if ((err = hal_rpc_hash_get_algorithm(handle, &alg)) != HAL_OK ||
+ (err = hal_rpc_hash_get_digest_length(alg, &len)) != HAL_OK ||
+ (err = hal_rpc_hash_get_digest_algorithm_id(alg, NULL, &alg_len, 0)) != HAL_OK)
+ return err;
+
+ *digest_info_len = len + alg_len + 4;
+
+ if (*digest_info_len >= digest_info_max)
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+ assert(*digest_info_len < 130);
+
+ uint8_t *d = digest_info;
+
+ *d++ = 0x30; /* SEQUENCE */
+ *d++ = (uint8_t) (*digest_info_len - 2);
+
+ if ((err = hal_rpc_hash_get_digest_algorithm_id(alg, d, NULL, alg_len)) != HAL_OK)
+ return err;
+ d += alg_len;
+
+ *d++ = 0x04; /* OCTET STRING */
+ *d++ = (uint8_t) len;
+
+ assert(digest_info + *digest_info_len == d + len);
+
+ return hal_rpc_hash_finalize(handle, d, len);
+}
+
+/*
+ * Pad an octet string with PKCS #1.5 padding for use with RSA.
+ *
+ * For the moment, this only handles type 01 encryption blocks, thus
+ * is only suitable for use with signature and verification. If and
+ * when we add support for encryption and decryption, this function
+ * should be extended to take an argument specifying the block type
+ * and include support for generating type 02 encryption blocks.
+ * Other than the block type code, the only difference is the padding
+ * value: for type 01 it's constant (0xFF), for type 02 it should be
+ * non-zero random bytes from the CSPRNG.
+ *
+ * We use memmove() instead of memcpy() so that the caller can
+ * construct the data to be padded in the same buffer.
+ */
+
+static hal_error_t pkcs1_5_pad(const uint8_t * const data, const size_t data_len,
+ uint8_t *block, const size_t block_len)
+{
+ assert(data != NULL && block != NULL);
+
+ /*
+ * Congregation will now please turn to RFC 2313 8.1 as we
+ * construct a PKCS #1.5 type 01 encryption block.
+ */
+
+ if (data_len > block_len - 11)
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+ memmove(block + block_len - data_len, data, data_len);
+
+ block[0] = 0x00;
+ block[1] = 0x01;
+
+ /* This is where we'd use non-zero random bytes if constructing a type 02 block. */
+ memset(block + 2, 0xFF, block_len - 3 - data_len);
+
+ block[block_len - data_len - 1] = 0x00;
+
+ return HAL_OK;
+}
+
+/*
+ * Receive key from application, store it with supplied name, return a key handle.
+ */
+
+static hal_error_t load(const hal_rpc_client_handle_t client,
+ const hal_rpc_session_handle_t session,
+ hal_rpc_pkey_handle_t *pkey,
+ const hal_key_type_t type,
+ const hal_curve_name_t curve,
+ const uint8_t * const name, const size_t name_len,
+ const uint8_t * const der, const size_t der_len,
+ const hal_key_flags_t flags)
+{
+ pkey_slot_t *slot;
+ hal_error_t err;
+
+ assert(sizeof(slot->name) >= name_len && pkey != NULL);
+
+ if ((slot = alloc_slot()) == NULL)
+ return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
+
+ if ((err = hal_ks_store(type, curve, flags, name, name_len, der, der_len, &slot->ks_hint)) != HAL_OK)
+ return err;
+
+ memcpy(slot->name, name, name_len);
+ slot->client_handle = client;
+ slot->session_handle = session;
+ slot->type = type;
+ slot->curve = curve;
+ slot->flags = flags;
+ slot->name_len = name_len;
+
+ *pkey = slot->pkey_handle;
+ return HAL_OK;
+}
+
+/*
+ * Look up a key given its name, return a key handle.
+ */
+
+static hal_error_t find(const hal_rpc_client_handle_t client,
+ const hal_rpc_session_handle_t session,
+ hal_rpc_pkey_handle_t *pkey,
+ const hal_key_type_t type,
+ const uint8_t * const name, const size_t name_len)
+{
+ pkey_slot_t *slot;
+ hal_error_t err;
+
+ assert(sizeof(slot->name) >= name_len && pkey != NULL);
+
+ if ((slot = alloc_slot()) == NULL)
+ return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
+
+ if ((err = hal_ks_fetch(type, name, name_len, &slot->curve, &slot->flags, NULL, NULL, 0, &slot->ks_hint)) != HAL_OK)
+ return err;
+
+ memcpy(slot->name, name, name_len);
+ slot->client_handle = client;
+ slot->session_handle = session;
+ slot->type = type;
+ slot->name_len = name_len;
+
+ *pkey = slot->pkey_handle;
+ return HAL_OK;
+}
+
+/*
+ * Generate a new RSA key with supplied name, return a key handle.
+ */
+
+static hal_error_t generate_rsa(const hal_rpc_client_handle_t client,
+ const hal_rpc_session_handle_t session,
+ hal_rpc_pkey_handle_t *pkey,
+ const uint8_t * const name, const size_t name_len,
+ const unsigned key_length,
+ const uint8_t * const public_exponent, const size_t public_exponent_len,
+ const hal_key_flags_t flags)
+{
+ pkey_slot_t *slot;
+ hal_error_t err;
+
+ assert(sizeof(slot->name) >= name_len && pkey != NULL && (key_length & 7) == 0);
+
+ if ((slot = alloc_slot()) == NULL)
+ return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
+
+ uint8_t keybuf[hal_rsa_key_t_size];
+ hal_rsa_key_t *key = NULL;
+
+ if ((err = hal_rsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), key_length / 8,
+ public_exponent, public_exponent_len)) != HAL_OK)
+ return err;
+
+ uint8_t der[hal_rsa_key_to_der_len(key)];
+ size_t der_len;
+
+ if ((err = hal_rsa_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
+ err = hal_ks_store(HAL_KEY_TYPE_RSA_PRIVATE, HAL_CURVE_NONE, flags,
+ name, name_len, der, der_len, &slot->ks_hint);
+
+ memset(keybuf, 0, sizeof(keybuf));
+ memset(der, 0, sizeof(der));
+
+ if (err != HAL_OK)
+ return err;
+
+ memcpy(slot->name, name, name_len);
+ slot->client_handle = client;
+ slot->session_handle = session;
+ slot->type = HAL_KEY_TYPE_RSA_PRIVATE;
+ slot->curve = HAL_CURVE_NONE;
+ slot->flags = flags;
+ slot->name_len = name_len;
+
+ *pkey = slot->pkey_handle;
+ return HAL_OK;
+}
+
+/*
+ * Generate a new EC key with supplied name, return a key handle.
+ * At the moment, EC key == ECDSA key, but this is subject to change.
+ */
+
+static hal_error_t generate_ec(const hal_rpc_client_handle_t client,
+ const hal_rpc_session_handle_t session,
+ hal_rpc_pkey_handle_t *pkey,
+ const uint8_t * const name, const size_t name_len,
+ const hal_curve_name_t curve,
+ const hal_key_flags_t flags)
+{
+ pkey_slot_t *slot;
+ hal_error_t err;
+
+ assert(sizeof(slot->name) >= name_len && pkey != NULL);
+
+ if ((slot = alloc_slot()) == NULL)
+ return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
+
+ uint8_t keybuf[hal_ecdsa_key_t_size];
+ hal_ecdsa_key_t *key = NULL;
+
+ if ((err = hal_ecdsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), curve)) != HAL_OK)
+ return err;
+
+ uint8_t der[hal_ecdsa_key_to_der_len(key)];
+ size_t der_len;
+
+ if ((err = hal_ecdsa_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
+ err = hal_ks_store(HAL_KEY_TYPE_EC_PRIVATE, curve, flags,
+ name, name_len, der, der_len, &slot->ks_hint);
+
+ memset(keybuf, 0, sizeof(keybuf));
+ memset(der, 0, sizeof(der));
+
+ if (err != HAL_OK)
+ return err;
+
+ memcpy(slot->name, name, name_len);
+ slot->client_handle = client;
+ slot->session_handle = session;
+ slot->type = HAL_KEY_TYPE_EC_PRIVATE;
+ slot->curve = curve;
+ slot->flags = flags;
+ slot->name_len = name_len;
+
+ *pkey = slot->pkey_handle;
+ return HAL_OK;
+}
+
+/*
+ * Discard key handle, leaving key intact.
+ */
+
+static hal_error_t close(const hal_rpc_pkey_handle_t pkey)
+{
+ pkey_slot_t *slot;
+
+ if ((slot = find_handle(pkey)) == NULL)
+ return HAL_ERROR_KEY_NOT_FOUND;
+
+ memset(slot, 0, sizeof(*slot));
+
+ return HAL_OK;
+}
+
+/*
+ * Delete a key from the store, given its key handle.
+ */
+
+static hal_error_t delete(const hal_rpc_pkey_handle_t pkey)
+{
+ pkey_slot_t *slot = find_handle(pkey);
+
+ if (slot == NULL)
+ return HAL_ERROR_KEY_NOT_FOUND;
+
+ hal_error_t err = hal_ks_delete(slot->type, slot->name, slot->name_len, &slot->ks_hint);
+
+ if (err == HAL_OK || err == HAL_ERROR_KEY_NOT_FOUND)
+ memset(slot, 0, sizeof(*slot));
+
+ return err;
+}
+
+/*
+ * Get type of key associated with handle.
+ */
+
+static hal_error_t get_key_type(const hal_rpc_pkey_handle_t pkey,
+ hal_key_type_t *type)
+{
+ if (type == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ pkey_slot_t *slot = find_handle(pkey);
+
+ if (slot == NULL)
+ return HAL_ERROR_KEY_NOT_FOUND;
+
+ *type = slot->type;
+
+ return HAL_OK;
+}
+
+/*
+ * Get flags of key associated with handle.
+ */
+
+static hal_error_t get_key_flags(const hal_rpc_pkey_handle_t pkey,
+ hal_key_flags_t *flags)
+{
+ if (flags == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ pkey_slot_t *slot = find_handle(pkey);
+
+ if (slot == NULL)
+ return HAL_ERROR_KEY_NOT_FOUND;
+
+ *flags = slot->flags;
+
+ return HAL_OK;
+}
+
+/*
+ * Get length of public key associated with handle.
+ */
+
+static size_t get_public_key_len(const hal_rpc_pkey_handle_t pkey)
+{
+ return 0;
+}
+
+/*
+ * Get public key associated with handle.
+ */
+
+static hal_error_t get_public_key(const hal_rpc_pkey_handle_t pkey,
+ uint8_t *der, size_t *der_len, const size_t der_len_max)
+{
+ /*
+ * Still missing some of the public key format ASN.1 stuff, apparently. Feh.
+ */
+ return HAL_ERROR_IMPOSSIBLE;
+#warning get_public_key() not implemented
+}
+
+/*
+ * Sign something using private key associated with handle.
+ *
+ * RSA has enough quirks that it's simplest to split this out into
+ * algorithm-specific functions.
+ */
+
+static hal_error_t sign_rsa(uint8_t *keybuf, const size_t keybuf_len,
+ const uint8_t * const der, const size_t der_len,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * input, size_t input_len,
+ uint8_t * signature, size_t *signature_len, const size_t signature_max)
+{
+ hal_rsa_key_t *key = NULL;
+ hal_error_t err;
+
+ assert(signature != NULL && signature_len != NULL);
+ assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
+
+ if ((err = hal_rsa_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK ||
+ (err = hal_rsa_key_get_modulus(key, NULL, signature_len, 0)) != HAL_OK)
+ return err;
+
+ if (*signature_len > signature_max)
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+ if (input == NULL) {
+ if ((err = pkcs1_construct_digestinfo(hash, signature, &input_len, *signature_len)) != HAL_OK)
+ return err;
+ input = signature;
+ }
+
+ if ((err = pkcs1_5_pad(input, input_len, signature, *signature_len)) != HAL_OK ||
+ (err = hal_rsa_decrypt(NULL, key, signature, *signature_len, signature, *signature_len)) != HAL_OK)
+ return err;
+
+ return HAL_OK;
+}
+
+static hal_error_t sign_ecdsa(uint8_t *keybuf, const size_t keybuf_len,
+ const uint8_t * const der, const size_t der_len,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * input, size_t input_len,
+ uint8_t * signature, size_t *signature_len, const size_t signature_max)
+{
+ hal_ecdsa_key_t *key = NULL;
+ hal_error_t err;
+
+ assert(signature != NULL && signature_len != NULL);
+ assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
+
+ if ((err = hal_ecdsa_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
+ return err;
+
+ if (input == NULL) {
+ hal_digest_algorithm_t alg;
+
+ if ((err = hal_rpc_hash_get_algorithm(hash, &alg)) != HAL_OK ||
+ (err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK)
+ return err;
+
+ if (input_len < signature_max)
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+ if ((err = hal_rpc_hash_finalize(hash, signature, input_len)) != HAL_OK)
+ return err;
+
+ input = signature;
+ }
+
+ if ((err = hal_ecdsa_sign(NULL, key, input, input_len, signature, signature_len, signature_max,
+ HAL_ECDSA_SIGNATURE_FORMAT_PKCS11)) != HAL_OK)
+ return err;
+
+ return HAL_OK;
+}
+
+static hal_error_t sign(const hal_rpc_session_handle_t session,
+ const hal_rpc_pkey_handle_t pkey,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * const input, const size_t input_len,
+ uint8_t * signature, size_t *signature_len, const size_t signature_max)
+{
+ pkey_slot_t *slot = find_handle(pkey);
+
+ if (slot == NULL)
+ return HAL_ERROR_KEY_NOT_FOUND;
+
+ hal_error_t (*signer)(uint8_t *keybuf, const size_t keybuf_len,
+ const uint8_t * const der, const size_t der_len,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * const input, const size_t input_len,
+ uint8_t * signature, size_t *signature_len, const size_t signature_max);
+
+ switch (slot->type) {
+ case HAL_KEY_TYPE_RSA_PRIVATE:
+ signer = sign_rsa;
+ break;
+ case HAL_KEY_TYPE_EC_PRIVATE:
+ signer = sign_ecdsa;
+ break;
+ default:
+ return HAL_ERROR_UNSUPPORTED_KEY;
+ }
+
+ uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
+ uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
+ size_t der_len;
+ hal_error_t err;
+
+ err = hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL, der, &der_len, sizeof(der), &slot->ks_hint);
+
+ if (err == HAL_OK)
+ err = signer(keybuf, sizeof(keybuf), der, der_len, hash, input, input_len, signature, signature_len, signature_max);
+
+ memset(keybuf, 0, sizeof(keybuf));
+ memset(der, 0, sizeof(der));
+
+ return err;
+}
+
+/*
+ * Verify something using private key associated with handle.
+ *
+ * RSA has enough quirks that it's simplest to split this out into
+ * algorithm-specific functions.
+ */
+
+static hal_error_t verify_rsa(uint8_t *keybuf, const size_t keybuf_len,
+ const uint8_t * const der, const size_t der_len,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * input, size_t input_len,
+ const uint8_t * const signature, const size_t signature_len)
+{
+ uint8_t expected[signature_len], received[signature_len];
+ hal_rsa_key_t *key = NULL;
+ hal_error_t err;
+
+ assert(signature != NULL && signature_len > 0);
+ assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
+
+ if ((err = hal_rsa_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
+ return err;
+
+ if (input == NULL) {
+ if ((err = pkcs1_construct_digestinfo(hash, expected, &input_len, sizeof(expected))) != HAL_OK)
+ return err;
+ input = expected;
+ }
+
+ if ((err = pkcs1_5_pad(input, input_len, expected, sizeof(expected))) != HAL_OK ||
+ (err = hal_rsa_encrypt(NULL, key, signature, signature_len, received, sizeof(received))) != HAL_OK)
+ return err;
+
+ unsigned diff = 0;
+ for (int i = 0; i < signature_len; i++)
+ diff |= expected[i] ^ received[i];
+
+ if (diff != 0)
+ return HAL_ERROR_INVALID_SIGNATURE;
+
+ return HAL_OK;
+}
+
+static hal_error_t verify_ecdsa(uint8_t *keybuf, const size_t keybuf_len,
+ const uint8_t * const der, const size_t der_len,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * input, size_t input_len,
+ const uint8_t * const signature, const size_t signature_len)
+{
+ uint8_t digest[signature_len];
+ hal_ecdsa_key_t *key = NULL;
+ hal_error_t err;
+
+ assert(signature != NULL && signature_len > 0);
+ assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
+
+ if ((err = hal_ecdsa_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
+ return err;
+
+ if (input == NULL) {
+ hal_digest_algorithm_t alg;
+
+ if ((err = hal_rpc_hash_get_algorithm(hash, &alg)) != HAL_OK ||
+ (err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK ||
+ (err = hal_rpc_hash_finalize(hash, digest, sizeof(digest))) != HAL_OK)
+ return err;
+
+ input = digest;
+ }
+
+ if ((err = hal_ecdsa_verify(NULL, key, input, input_len, signature, signature_len,
+ HAL_ECDSA_SIGNATURE_FORMAT_PKCS11)) != HAL_OK)
+ return err;
+
+ return HAL_OK;
+}
+
+static hal_error_t verify(const hal_rpc_session_handle_t session,
+ const hal_rpc_pkey_handle_t pkey,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * const input, const size_t input_len,
+ const uint8_t * const signature, const size_t signature_len)
+{
+ pkey_slot_t *slot = find_handle(pkey);
+
+ if (slot == NULL)
+ return HAL_ERROR_KEY_NOT_FOUND;
+
+ hal_error_t (*verifier)(uint8_t *keybuf, const size_t keybuf_len,
+ const uint8_t * const der, const size_t der_len,
+ const hal_rpc_hash_handle_t hash,
+ const uint8_t * const input, const size_t input_len,
+ const uint8_t * const signature, const size_t signature_len);
+
+ switch (slot->type) {
+ case HAL_KEY_TYPE_RSA_PRIVATE:
+ case HAL_KEY_TYPE_RSA_PUBLIC:
+ verifier = verify_rsa;
+ break;
+ case HAL_KEY_TYPE_EC_PRIVATE:
+ case HAL_KEY_TYPE_EC_PUBLIC:
+ verifier = verify_ecdsa;
+ break;
+ default:
+ return HAL_ERROR_UNSUPPORTED_KEY;
+ }
+
+ uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
+ uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
+ size_t der_len;
+ hal_error_t err;
+
+ err = hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL, der, &der_len, sizeof(der), &slot->ks_hint);
+
+ if (err == HAL_OK)
+ err = verifier(keybuf, sizeof(keybuf), der, der_len, hash, input, input_len, signature, signature_len);
+
+ memset(keybuf, 0, sizeof(keybuf));
+ memset(der, 0, sizeof(der));
+
+ return err;
+}
+
+
+/*
+ * List keys in the key store.
+ */
+
+static hal_error_t list(hal_rpc_pkey_key_info_t *result,
+ unsigned *result_len,
+ const unsigned result_max)
+{
+ return hal_ks_list(result, result_len, result_max);
+}
+
+const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch = {
+ load, find, generate_rsa, generate_ec, close, delete,
+ get_key_type, get_key_flags, get_public_key_len, get_public_key,
+ sign, verify, list
+};
+
+/*
+ * Local variables:
+ * indent-tabs-mode: nil
+ * End:
+ */