aboutsummaryrefslogtreecommitdiff
path: root/ks_flash.c
diff options
context:
space:
mode:
Diffstat (limited to 'ks_flash.c')
-rw-r--r--ks_flash.c2042
1 files changed, 1836 insertions, 206 deletions
diff --git a/ks_flash.c b/ks_flash.c
index 9ba342a..f784539 100644
--- a/ks_flash.c
+++ b/ks_flash.c
@@ -33,315 +33,1945 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
-#define HAL_OK LIBHAL_OK
+#include <stddef.h>
+#include <string.h>
+#include <assert.h>
+
#include "hal.h"
#include "hal_internal.h"
-#undef HAL_OK
+
+#include "last_gasp_pin_internal.h"
#define HAL_OK CMIS_HAL_OK
#include "stm-keystore.h"
-#include "masterkey.h"
#undef HAL_OK
-#include <string.h>
+/*
+ * Known block states.
+ *
+ * C does not guarantee any particular representation for enums, so
+ * including enums directly in the block header isn't safe. Instead,
+ * we use an access method which casts when reading from the header.
+ * Writing to the header isn't a problem, because C does guarantee
+ * that enum is compatible with *some* integer type, it just doesn't
+ * specify which one.
+ */
+
+typedef enum {
+ BLOCK_TYPE_ERASED = 0xFF, /* Pristine erased block (candidate for reuse) */
+ BLOCK_TYPE_ZEROED = 0x00, /* Zeroed block (recently used) */
+ BLOCK_TYPE_KEY = 0x55, /* Block contains key material */
+ BLOCK_TYPE_ATTR = 0x66, /* Block contains key attributes (overflow from key block) */
+ BLOCK_TYPE_PIN = 0xAA, /* Block contains PINs */
+ BLOCK_TYPE_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */
+} flash_block_type_t;
+
+/*
+ * Block status.
+ */
+
+typedef enum {
+ BLOCK_STATUS_LIVE = 0x66, /* This is a live flash block */
+ BLOCK_STATUS_TOMBSTONE = 0x44, /* This is a tombstone left behind during an update */
+ BLOCK_STATUS_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */
+} flash_block_status_t;
+
+/*
+ * Common header for all flash block types.
+ * A few of these fields are deliberately omitted from the CRC.
+ */
+
+typedef struct {
+ uint8_t block_type;
+ uint8_t block_status;
+ uint8_t total_chunks;
+ uint8_t this_chunk;
+ hal_crc32_t crc;
+} flash_block_header_t;
+
+/*
+ * Key block. Tail end of "der" field (after der_len) used for attributes.
+ */
+
+typedef struct {
+ flash_block_header_t header;
+ hal_uuid_t name;
+ hal_key_type_t type;
+ hal_curve_name_t curve;
+ hal_key_flags_t flags;
+ size_t der_len;
+ unsigned attributes_len;
+ uint8_t der[]; /* Must be last field -- C99 "flexible array member" */
+} flash_key_block_t;
+
+#define SIZEOF_FLASH_KEY_BLOCK_DER \
+ (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_key_block_t, der))
+
+/*
+ * Key attribute overflow block (attributes which don't fit in der field of key block).
+ */
+
+typedef struct {
+ flash_block_header_t header;
+ hal_uuid_t name;
+ unsigned attributes_len;
+ uint8_t attributes[]; /* Must be last field -- C99 "flexible array member" */
+} flash_attributes_block_t;
+
+#define SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES \
+ (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_attributes_block_t, attributes))
+
+/*
+ * PIN block. Also includes space for backing up the KEK when
+ * HAL_MKM_FLASH_BACKUP_KLUDGE is enabled.
+ */
+
+typedef struct {
+ flash_block_header_t header;
+ hal_ks_pin_t wheel_pin;
+ hal_ks_pin_t so_pin;
+ hal_ks_pin_t user_pin;
+#if HAL_MKM_FLASH_BACKUP_KLUDGE
+ uint32_t kek_set;
+ uint8_t kek[KEK_LENGTH];
+#endif
+} flash_pin_block_t;
+
+#define FLASH_KEK_SET 0x33333333
+
+/*
+ * One flash block.
+ */
+typedef union {
+ uint8_t bytes[KEYSTORE_SUBSECTOR_SIZE];
+ flash_block_header_t header;
+ flash_key_block_t key;
+ flash_attributes_block_t attr;
+ flash_pin_block_t pin;
+} flash_block_t;
-#define PAGE_SIZE_MASK (KEYSTORE_PAGE_SIZE - 1)
+/*
+ * In-memory cache.
+ */
+
+typedef struct {
+ unsigned blockno;
+ uint32_t lru;
+ flash_block_t block;
+} cache_block_t;
+
+/*
+ * In-memory database.
+ *
+ * The top-level structure is a static variable; the arrays are allocated at runtime
+ * using hal_allocate_static_memory() because they can get kind of large.
+ */
+
+#ifndef KS_FLASH_CACHE_SIZE
+#define KS_FLASH_CACHE_SIZE 4
+#endif
+
+#define NUM_FLASH_BLOCKS KEYSTORE_NUM_SUBSECTORS
+
+typedef struct {
+ hal_ks_t ks; /* Must be first (C "subclassing") */
+ hal_ks_index_t ksi;
+ hal_ks_pin_t wheel_pin;
+ hal_ks_pin_t so_pin;
+ hal_ks_pin_t user_pin;
+ uint32_t cache_lru;
+ cache_block_t *cache;
+} db_t;
/*
- * Use a one-element array here so that references can be pointer-based
- * as in the other implementations, to ease re-merge at some later date.
+ * PIN block gets the all-zeros UUID, which will never be returned by
+ * the UUID generation code (by definition -- it's not a version 4 UUID).
*/
-static hal_ks_keydb_t db[1];
+const static hal_uuid_t pin_uuid = {{0}};
-#define FLASH_SECTOR_1_OFFSET (0 * KEYSTORE_SECTOR_SIZE)
-#define FLASH_SECTOR_2_OFFSET (1 * KEYSTORE_SECTOR_SIZE)
+/*
+ * The in-memory database structure itself is small, but the arrays it
+ * points to are large enough that they come from SDRAM allocated at
+ * startup.
+ */
-uint32_t _active_sector_offset()
+static db_t db;
+
+/*
+ * Type safe casts.
+ */
+
+static inline flash_block_type_t block_get_type(const flash_block_t * const block)
{
- /* XXX Load status bytes from both sectors and decide which is current. */
- #warning Have not implemented two flash sectors yet
- return FLASH_SECTOR_1_OFFSET;
+ assert(block != NULL);
+ return (flash_block_type_t) block->header.block_type;
}
-uint32_t _get_key_offset(uint32_t num)
+static inline flash_block_status_t block_get_status(const flash_block_t * const block)
{
- /* Reserve first two pages for flash sector state, PINs and future additions.
- * The three PINs alone currently occupy 3 * (64 + 16 + 4) bytes (252).
- */
- uint32_t offset = KEYSTORE_PAGE_SIZE * 2;
- uint32_t key_size = sizeof(*db->keys);
- uint32_t bytes_per_key = KEYSTORE_PAGE_SIZE * ((key_size / KEYSTORE_PAGE_SIZE) + 1);
- offset += num * bytes_per_key;
- return offset;
+ assert(block != NULL);
+ return (flash_block_status_t) block->header.block_status;
}
-const hal_ks_keydb_t *hal_ks_get_keydb(void)
+/*
+ * Pick unused or least-recently-used slot in our in-memory cache.
+ *
+ * Updating lru values is caller's problem: if caller is using a cache
+ * slot as a temporary buffer and there's no point in caching the
+ * result, leave the lru values alone and the right thing will happen.
+ */
+
+static inline flash_block_t *cache_pick_lru(void)
{
- uint32_t offset, i, idx = 0, active_sector_offset;
- hal_ks_key_t *key;
- uint8_t page_buf[KEYSTORE_PAGE_SIZE];
+ uint32_t best_delta = 0;
+ int best_index = 0;
- memset(db, 0, sizeof(*db));
+ for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
- if (keystore_check_id() != 1) return NULL;
+ if (db.cache[i].blockno == ~0)
+ return &db.cache[i].block;
- active_sector_offset = _active_sector_offset();
+ const uint32_t delta = db.cache_lru - db.cache[i].lru;
+ if (delta > best_delta) {
+ best_delta = delta;
+ best_index = i;
+ }
- /* The PINs are in the second page of the sector. */
- offset = active_sector_offset + KEYSTORE_PAGE_SIZE;
- if (keystore_read_data(offset, page_buf, sizeof(page_buf)) != 1) return NULL;
- offset = 0;
- memcpy(&db->wheel_pin, page_buf + offset, sizeof(db->wheel_pin));
- offset += sizeof(db->wheel_pin);
- memcpy(&db->so_pin, page_buf + offset, sizeof(db->so_pin));
- offset += sizeof(db->so_pin);
- memcpy(&db->user_pin, page_buf + offset, sizeof(db->user_pin));
+ }
- for (i = 0; i < sizeof(db->keys) / sizeof(*db->keys); i++) {
- offset = _get_key_offset(i);
- if (offset > KEYSTORE_SECTOR_SIZE) {
- idx++;
- continue;
- }
+ db.cache[best_index].blockno = ~0;
+ return &db.cache[best_index].block;
+}
- offset += active_sector_offset;
+/*
+ * Find a block in our in-memory cache; return block or NULL if not present.
+ */
- if (keystore_read_data(offset, page_buf, sizeof(page_buf)) != 1) return NULL;
+static inline flash_block_t *cache_find_block(const unsigned blockno)
+{
+ for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
+ if (db.cache[i].blockno == blockno)
+ return &db.cache[i].block;
+ return NULL;
+}
- key = (hal_ks_key_t *) page_buf;
- if (key->in_use == 0xff) {
- /* unprogrammed data */
- idx++;
- continue;
- }
+/*
+ * Mark a block in our in-memory cache as being in current use.
+ */
- if (key->in_use == 1) {
- uint8_t *dst = (uint8_t *) &db->keys[idx];
- uint32_t to_read = sizeof(*db->keys);
-
- /* We already have the first page in page_buf. Put it into place. */
- memcpy(dst, page_buf, sizeof(page_buf));
- to_read -= sizeof(page_buf);
- dst += sizeof(page_buf);
-
- /* Read as many more full pages as possible */
- if (keystore_read_data (offset + KEYSTORE_PAGE_SIZE, dst, to_read & ~PAGE_SIZE_MASK) != 1) return NULL;
- dst += to_read & ~PAGE_SIZE_MASK;
- to_read &= PAGE_SIZE_MASK;
-
- if (to_read) {
- /* Partial last page. We can only read full pages so load it into page_buf. */
- if (keystore_read_data(offset + sizeof(*db->keys) - to_read, page_buf, sizeof(page_buf)) != 1) return NULL;
- memcpy(dst, page_buf, to_read);
- }
- }
- idx++;
+static inline void cache_mark_used(const flash_block_t * const block, const unsigned blockno)
+{
+ for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
+ if (&db.cache[i].block == block) {
+ db.cache[i].blockno = blockno;
+ db.cache[i].lru = ++db.cache_lru;
+ return;
}
+ }
+}
- return db;
+/*
+ * Release a block from the in-memory cache.
+ */
+
+static inline void cache_release(const flash_block_t * const block)
+{
+ if (block != NULL)
+ cache_mark_used(block, ~0);
}
-hal_error_t _write_data_to_flash(const uint32_t offset, const uint8_t *data, const size_t len)
+/*
+ * Generate CRC-32 for a block.
+ *
+ * This function needs to understand the structure of
+ * flash_block_header_t, so that it can skip over fields that
+ * shouldn't be included in the CRC.
+ */
+
+static hal_crc32_t calculate_block_crc(const flash_block_t * const block)
{
- uint8_t page_buf[KEYSTORE_PAGE_SIZE];
- uint32_t to_write = len;
+ assert(block != NULL);
- if (keystore_write_data(offset, data, to_write & ~PAGE_SIZE_MASK) != 1) {
- return HAL_ERROR_KEYSTORE_ACCESS;
- }
- to_write &= PAGE_SIZE_MASK;
- if (to_write) {
- /* Use page_buf to write the remaining bytes, since we must write a full page each time. */
- memset(page_buf, 0xff, sizeof(page_buf));
- memcpy(page_buf, data + len - to_write, to_write);
- if (keystore_write_data((offset + len) & ~PAGE_SIZE_MASK, page_buf, sizeof(page_buf)) != 1) {
- return HAL_ERROR_KEYSTORE_ACCESS;
- }
- }
+ hal_crc32_t crc = hal_crc32_init();
+
+ crc = hal_crc32_update(crc, &block->header.block_type,
+ sizeof(block->header.block_type));
+
+ crc = hal_crc32_update(crc, &block->header.total_chunks,
+ sizeof(block->header.total_chunks));
+
+ crc = hal_crc32_update(crc, &block->header.this_chunk,
+ sizeof(block->header.this_chunk));
+
+ crc = hal_crc32_update(crc, block->bytes + sizeof(flash_block_header_t),
+ sizeof(*block) - sizeof(flash_block_header_t));
+
+ return hal_crc32_finalize(crc);
+}
+
+/*
+ * Calculate block offset.
+ */
+
+static inline uint32_t block_offset(const unsigned blockno)
+{
+ return blockno * KEYSTORE_SUBSECTOR_SIZE;
+}
+
+/*
+ * Read a flash block.
+ *
+ * Flash read on the Alpha is slow enough that it pays to check the
+ * first page before reading the rest of the block.
+ */
+
+static hal_error_t block_read(const unsigned blockno, flash_block_t *block)
+{
+ if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ /* Sigh, magic numeric return codes */
+ if (keystore_read_data(block_offset(blockno),
+ block->bytes,
+ KEYSTORE_PAGE_SIZE) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+
+ switch (block_get_type(block)) {
+ case BLOCK_TYPE_ERASED:
+ case BLOCK_TYPE_ZEROED:
+ return HAL_OK;
+ case BLOCK_TYPE_KEY:
+ case BLOCK_TYPE_PIN:
+ case BLOCK_TYPE_ATTR:
+ break;
+ default:
+ return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE;
+ }
+
+ switch (block_get_status(block)) {
+ case BLOCK_STATUS_LIVE:
+ case BLOCK_STATUS_TOMBSTONE:
+ break;
+ default:
+ return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE;
+ }
+
+ /* Sigh, magic numeric return codes */
+ if (keystore_read_data(block_offset(blockno) + KEYSTORE_PAGE_SIZE,
+ block->bytes + KEYSTORE_PAGE_SIZE,
+ sizeof(*block) - KEYSTORE_PAGE_SIZE) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+
+ if (calculate_block_crc(block) != block->header.crc)
+ return HAL_ERROR_KEYSTORE_BAD_CRC;
+
+ return HAL_OK;
+}
+
+/*
+ * Read a block using the cache. Marking the block as used is left
+ * for the caller, so we can avoid blowing out the cache when we
+ * perform a ks_match() operation.
+ */
+
+static hal_error_t block_read_cached(const unsigned blockno, flash_block_t **block)
+{
+ if (block == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ if ((*block = cache_find_block(blockno)) != NULL)
+ return HAL_OK;
+
+ if ((*block = cache_pick_lru()) == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ return block_read(blockno, *block);
+}
+
+/*
+ * Convert a live block into a tombstone. Caller is responsible for
+ * making sure that the block being converted is valid; since we don't
+ * need to update the CRC for this, we just modify the first page.
+ */
+
+static hal_error_t block_deprecate(const unsigned blockno)
+{
+ if (blockno >= NUM_FLASH_BLOCKS)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ uint8_t page[KEYSTORE_PAGE_SIZE];
+ flash_block_header_t *header = (void *) page;
+ uint32_t offset = block_offset(blockno);
+
+ /* Sigh, magic numeric return codes */
+ if (keystore_read_data(offset, page, sizeof(page)) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+
+ header->block_status = BLOCK_STATUS_TOMBSTONE;
+
+ /* Sigh, magic numeric return codes */
+ if (keystore_write_data(offset, page, sizeof(page)) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+
+ return HAL_OK;
+}
+
+/*
+ * Zero (not erase) a flash block. Just need to zero the first page.
+ */
+
+static hal_error_t block_zero(const unsigned blockno)
+{
+ if (blockno >= NUM_FLASH_BLOCKS)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ uint8_t page[KEYSTORE_PAGE_SIZE] = {0};
+
+ /* Sigh, magic numeric return codes */
+ if (keystore_write_data(block_offset(blockno), page, sizeof(page)) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+
+ return HAL_OK;
+}
+
+/*
+ * Erase a flash block. Also see block_erase_maybe(), below.
+ */
+
+static hal_error_t block_erase(const unsigned blockno)
+{
+ if (blockno >= NUM_FLASH_BLOCKS)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ /* Sigh, magic numeric return codes */
+ if (keystore_erase_subsectors(blockno, blockno) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+
+ return HAL_OK;
+}
+
+/*
+ * Erase a flash block if it hasn't already been erased.
+ * May not be necessary, trying to avoid unnecessary wear.
+ *
+ * Unclear whether there's any sane reason why this needs to be
+ * constant time, given how slow erasure is. But side channel attacks
+ * can be tricky things, and it's theoretically possible that we could
+ * leak information about, eg, key length, so we do constant time.
+ */
+
+static hal_error_t block_erase_maybe(const unsigned blockno)
+{
+ if (blockno >= NUM_FLASH_BLOCKS)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ uint8_t mask = 0xFF;
+
+ for (uint32_t a = block_offset(blockno); a < block_offset(blockno + 1); a += KEYSTORE_PAGE_SIZE) {
+ uint8_t page[KEYSTORE_PAGE_SIZE];
+ if (keystore_read_data(a, page, sizeof(page)) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+ for (int i = 0; i < KEYSTORE_PAGE_SIZE; i++)
+ mask &= page[i];
+ }
+
+ return mask == 0xFF ? HAL_OK : block_erase(blockno);
+}
+
+/*
+ * Write a flash block, calculating CRC when appropriate.
+ */
+
+static hal_error_t block_write(const unsigned blockno, flash_block_t *block)
+{
+ if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ hal_error_t err = block_erase_maybe(blockno);
+
+ if (err != HAL_OK)
+ return err;
+
+ switch (block_get_type(block)) {
+ case BLOCK_TYPE_KEY:
+ case BLOCK_TYPE_PIN:
+ case BLOCK_TYPE_ATTR:
+ block->header.crc = calculate_block_crc(block);
+ break;
+ default:
+ break;
+ }
+
+ /* Sigh, magic numeric return codes */
+ if (keystore_write_data(block_offset(blockno), block->bytes, sizeof(*block)) != 1)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+
+ return HAL_OK;
+}
+
+/*
+ * Update one flash block, including zombie jamboree.
+ */
+
+static hal_error_t block_update(const unsigned b1, flash_block_t *block,
+ const hal_uuid_t * const uuid, const unsigned chunk, int *hint)
+{
+ if (block == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ if (db.ksi.used == db.ksi.size)
+ return HAL_ERROR_NO_KEY_INDEX_SLOTS;
+
+ cache_release(block);
- return LIBHAL_OK;
+ hal_error_t err;
+ unsigned b2;
+
+ if ((err = block_deprecate(b1)) != HAL_OK ||
+ (err = hal_ks_index_replace(&db.ksi, uuid, chunk, &b2, hint)) != HAL_OK ||
+ (err = block_write(b2, block)) != HAL_OK ||
+ (err = block_zero(b1)) != HAL_OK)
+ return err;
+
+ cache_mark_used(block, b2);
+
+ return block_erase_maybe(db.ksi.index[db.ksi.used]);
}
/*
- * Write the full DB to flash, PINs and all.
+ * Forward reference.
*/
-hal_error_t _write_db_to_flash(const uint32_t sector_offset)
+
+static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block);
+
+/*
+ * Initialize keystore. This includes various tricky bits, some of
+ * which attempt to preserve the free list ordering across reboots, to
+ * improve our simplistic attempt at wear leveling, others attempt to
+ * recover from unclean shutdown.
+ */
+
+static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
+{
+ if (mem == NULL || *mem == NULL || len == NULL || size > *len)
+ return NULL;
+ void *ret = *mem;
+ *mem += size;
+ *len -= size;
+ return ret;
+}
+
+static hal_error_t ks_init(const hal_ks_driver_t * const driver, const int alloc)
{
- hal_error_t status;
- uint8_t page_buf[KEYSTORE_PAGE_SIZE];
- uint32_t i, offset;
+ /*
+ * Initialize the in-memory database.
+ */
+
+ if (alloc) {
+
+ size_t len = (sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS +
+ sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS +
+ sizeof(*db.cache) * KS_FLASH_CACHE_SIZE);
+
+ uint8_t *mem = hal_allocate_static_memory(len);
+
+ if (mem == NULL)
+ return HAL_ERROR_ALLOCATION_FAILURE;
+
+ memset(&db, 0, sizeof(db));
+ memset(mem, 0, len);
+
+ db.ksi.index = gnaw(&mem, &len, sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS);
+ db.ksi.names = gnaw(&mem, &len, sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS);
+ db.cache = gnaw(&mem, &len, sizeof(*db.cache) * KS_FLASH_CACHE_SIZE);
+ db.ksi.size = NUM_FLASH_BLOCKS;
+ }
+
+ else {
+ memset(&db.wheel_pin, 0, sizeof(db.wheel_pin));
+ memset(&db.so_pin, 0, sizeof(db.so_pin));
+ memset(&db.user_pin, 0, sizeof(db.user_pin));
+ }
+
+ db.ksi.used = 0;
+
+ if (db.ksi.index == NULL || db.ksi.names == NULL || db.cache == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
+ db.cache[i].blockno = ~0;
+
+ /*
+ * Scan existing content of flash to figure out what we've got.
+ * This gets a bit involved due to the need to recover from things
+ * like power failures at inconvenient times.
+ */
+
+ flash_block_type_t block_types[NUM_FLASH_BLOCKS];
+ flash_block_status_t block_status[NUM_FLASH_BLOCKS];
+ flash_block_t *block = cache_pick_lru();
+ int first_erased = -1;
+ hal_error_t err;
+ uint16_t n = 0;
+
+ if (block == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
+
+ /*
+ * Read one block. If the CRC is bad or the block type is
+ * unknown, it's old data we don't understand, something we were
+ * writing when we crashed, or bad flash; in any of these cases,
+ * we want the block to ends up near the end of the free list.
+ */
+
+ err = block_read(i, block);
+
+ if (err == HAL_ERROR_KEYSTORE_BAD_CRC || err == HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE)
+ block_types[i] = BLOCK_TYPE_UNKNOWN;
+
+ else if (err == HAL_OK)
+ block_types[i] = block_get_type(block);
+
+ else
+ return err;
- if (sizeof(db->wheel_pin) + sizeof(db->so_pin) + sizeof(db->user_pin) > sizeof(page_buf)) {
- return HAL_ERROR_BAD_ARGUMENTS;
+ switch (block_types[i]) {
+ case BLOCK_TYPE_KEY:
+ case BLOCK_TYPE_PIN:
+ case BLOCK_TYPE_ATTR:
+ block_status[i] = block_get_status(block);
+ break;
+ default:
+ block_status[i] = BLOCK_STATUS_UNKNOWN;
}
- /* Put the three PINs into page_buf */
- offset = 0;
- memcpy(page_buf + offset, &db->wheel_pin, sizeof(db->wheel_pin));
- offset += sizeof(db->wheel_pin);
- memcpy(page_buf + offset, &db->so_pin, sizeof(db->so_pin));
- offset += sizeof(db->so_pin);
- memcpy(page_buf + offset, &db->user_pin, sizeof(db->user_pin));
-
- /* Write PINs into the second of the two reserved pages at the start of the sector. */
- offset = sector_offset + KEYSTORE_PAGE_SIZE;
- if ((status = _write_data_to_flash(offset, page_buf, sizeof(page_buf))) != LIBHAL_OK) {
- return status;
+ /*
+ * First erased block we see is head of the free list.
+ */
+
+ if (block_types[i] == BLOCK_TYPE_ERASED && first_erased < 0)
+ first_erased = i;
+
+ /*
+ * If it's a valid data block, include it in the index. We remove
+ * tombstones (if any) below, for now it's easiest to include them
+ * in the index, so we can look them up by name if we must.
+ */
+
+ const hal_uuid_t *uuid = NULL;
+
+ switch (block_types[i]) {
+ case BLOCK_TYPE_KEY: uuid = &block->key.name; break;
+ case BLOCK_TYPE_ATTR: uuid = &block->attr.name; break;
+ case BLOCK_TYPE_PIN: uuid = &pin_uuid; break;
+ default: /* Keep GCC happy */ break;
}
- for (i = 0; i < sizeof(db->keys) / sizeof(*db->keys); i++) {
- offset = _get_key_offset(i);
- if (offset > KEYSTORE_SECTOR_SIZE) {
- return HAL_ERROR_BAD_ARGUMENTS;
- }
+ if (uuid != NULL) {
+ db.ksi.names[i].name = *uuid;
+ db.ksi.names[i].chunk = block->header.this_chunk;
+ db.ksi.index[n++] = i;
+ }
+ }
+
+ db.ksi.used = n;
+
+ assert(db.ksi.used <= db.ksi.size);
+
+ /*
+ * At this point we've built the (unsorted) index from all the valid
+ * blocks. Now we need to insert free and unrecognized blocks into
+ * the free list in our preferred order. It's possible that there's
+ * a better way to do this than linear scan, but this is just
+ * integer comparisons in a fairly small data set, so it's probably
+ * not worth trying to optimize.
+ */
+
+ if (n < db.ksi.size)
+ for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
+ if (block_types[i] == BLOCK_TYPE_ERASED)
+ db.ksi.index[n++] = i;
+
+ if (n < db.ksi.size)
+ for (int i = first_erased; i < NUM_FLASH_BLOCKS; i++)
+ if (block_types[i] == BLOCK_TYPE_ZEROED)
+ db.ksi.index[n++] = i;
+
+ if (n < db.ksi.size)
+ for (int i = 0; i < first_erased; i++)
+ if (block_types[i] == BLOCK_TYPE_ZEROED)
+ db.ksi.index[n++] = i;
+
+ if (n < db.ksi.size)
+ for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
+ if (block_types[i] == BLOCK_TYPE_UNKNOWN)
+ db.ksi.index[n++] = i;
+
+ assert(n == db.ksi.size);
+
+ /*
+ * Initialize the index.
+ */
+
+ if ((err = hal_ks_index_setup(&db.ksi)) != HAL_OK)
+ return err;
+
+ /*
+ * We might want to call hal_ks_index_fsck() here, if we can figure
+ * out some safe set of recovery actions we can take.
+ */
+
+ /*
+ * Deal with tombstones. These are blocks left behind when
+ * something bad (like a power failure) happened while we updating.
+ * The sequence of operations while updating is designed so that,
+ * barring a bug or a hardware failure, we should never lose data.
+ *
+ * For any tombstone we find, we start by looking for all the blocks
+ * with a matching UUID, then see what valid sequences we can
+ * construct from what we found.
+ *
+ * If we can construct a valid sequence of live blocks, the complete
+ * update was written out, and we just need to zero the tombstones.
+ *
+ * Otherwise, if we can construct a complete sequence of tombstone
+ * blocks, the update failed before it was completely written, so we
+ * have to zero the incomplete sequence of live blocks then restore
+ * from the tombstones.
+ *
+ * Otherwise, if the live and tombstone blocks taken together form a
+ * valid sequence, the update failed while deprecating the old live
+ * blocks, and the update itself was not written, so we need to
+ * restore the tombstones and leave the live blocks alone.
+ *
+ * If none of the above applies, we don't understand what happened,
+ * which is a symptom of either a bug or a hardware failure more
+ * serious than simple loss of power or reboot at an inconvenient
+ * time, so we error out to avoid accidental loss of data.
+ */
+
+ for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
+
+ if (block_status[i] != BLOCK_STATUS_TOMBSTONE)
+ continue;
+
+ hal_uuid_t name = db.ksi.names[i].name;
+ unsigned n_blocks;
+ int where = -1;
+
+ if ((err = hal_ks_index_find_range(&db.ksi, &name, 0, &n_blocks, NULL, &where, 0)) != HAL_OK)
+ return err;
+
+ while (where > 0 && !hal_uuid_cmp(&name, &db.ksi.names[db.ksi.index[where - 1]].name)) {
+ where--;
+ n_blocks++;
+ }
+
+ int live_ok = 1, tomb_ok = 1, join_ok = 1;
+ unsigned n_live = 0, n_tomb = 0;
+ unsigned i_live = 0, i_tomb = 0;
+
+ for (int j = 0; j < n_blocks; j++) {
+ unsigned b = db.ksi.index[where + j];
+ switch (block_status[b]) {
+ case BLOCK_STATUS_LIVE: n_live++; break;
+ case BLOCK_STATUS_TOMBSTONE: n_tomb++; break;
+ default: return HAL_ERROR_IMPOSSIBLE;
+ }
+ }
+
+ uint16_t live_blocks[n_live], tomb_blocks[n_tomb];
+
+ for (int j = 0; j < n_blocks; j++) {
+ unsigned b = db.ksi.index[where + j];
- offset += sector_offset;
+ if ((err = block_read(b, block)) != HAL_OK)
+ return err;
- if ((status =_write_data_to_flash(offset, (uint8_t *) &db->keys[i], sizeof(*db->keys))) != LIBHAL_OK) {
- return status;
+ join_ok &= block->header.this_chunk == j && block->header.total_chunks == n_blocks;
+
+ switch (block_status[b]) {
+ case BLOCK_STATUS_LIVE:
+ live_blocks[i_live] = b;
+ live_ok &= block->header.this_chunk == i_live++ && block->header.total_chunks == n_live;
+ break;
+ case BLOCK_STATUS_TOMBSTONE:
+ tomb_blocks[i_tomb] = b;
+ tomb_ok &= block->header.this_chunk == i_tomb++ && block->header.total_chunks == n_tomb;
+ break;
+ default:
+ return HAL_ERROR_IMPOSSIBLE;
+ }
+ }
+
+ if (!live_ok && !tomb_ok && !join_ok)
+ return HAL_ERROR_KEYSTORE_LOST_DATA;
+
+ if (live_ok) {
+ for (int j = 0; j < n_tomb; j++) {
+ const unsigned b = tomb_blocks[j];
+ if ((err = block_zero(b)) != HAL_OK)
+ return err;
+ block_types[b] = BLOCK_TYPE_ZEROED;
+ block_status[b] = BLOCK_STATUS_UNKNOWN;
+ }
+ }
+
+ else if (tomb_ok) {
+ for (int j = 0; j < n_live; j++) {
+ const unsigned b = live_blocks[j];
+ if ((err = block_zero(b)) != HAL_OK)
+ return err;
+ block_types[b] = BLOCK_TYPE_ZEROED;
+ block_status[b] = BLOCK_STATUS_UNKNOWN;
+ }
+ }
+
+ if (live_ok) {
+ memcpy(&db.ksi.index[where], live_blocks, n_live * sizeof(*db.ksi.index));
+ memmove(&db.ksi.index[where + n_live], &db.ksi.index[where + n_blocks],
+ (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index));
+ memcpy(&db.ksi.index[db.ksi.size - n_tomb], tomb_blocks, n_tomb * sizeof(*db.ksi.index));
+ db.ksi.used -= n_tomb;
+ n_blocks = n_live;
+ }
+
+ else if (tomb_ok) {
+ memcpy(&db.ksi.index[where], tomb_blocks, n_tomb * sizeof(*db.ksi.index));
+ memmove(&db.ksi.index[where + n_tomb], &db.ksi.index[where + n_blocks],
+ (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index));
+ memcpy(&db.ksi.index[db.ksi.size - n_live], live_blocks, n_live * sizeof(*db.ksi.index));
+ db.ksi.used -= n_live;
+ n_blocks = n_tomb;
+ }
+
+ for (int j = 0; j < n_blocks; j++) {
+ int hint = where + j;
+ unsigned b1 = db.ksi.index[hint], b2;
+ if (block_status[b1] != BLOCK_STATUS_TOMBSTONE)
+ continue;
+ if ((err = block_read(b1, block)) != HAL_OK)
+ return err;
+ block->header.block_status = BLOCK_STATUS_LIVE;
+ if ((err = hal_ks_index_replace(&db.ksi, &name, j, &b2, &hint)) != HAL_OK ||
+ (err = block_write(b2, block)) != HAL_OK)
+ return err;
+ block_types[b1] = BLOCK_TYPE_ZEROED;
+ block_status[b1] = BLOCK_STATUS_UNKNOWN;
+ block_status[b2] = BLOCK_STATUS_LIVE;
+ }
+ }
+
+ err = fetch_pin_block(NULL, &block);
+
+ if (err == HAL_OK) {
+ db.wheel_pin = block->pin.wheel_pin;
+ db.so_pin = block->pin.so_pin;
+ db.user_pin = block->pin.user_pin;
+ }
+
+ else if (err != HAL_ERROR_KEY_NOT_FOUND)
+ return err;
+
+ else {
+ /*
+ * We found no PIN block, so create one, with the user and so PINs
+ * cleared and the wheel PIN set to the last-gasp value. The
+ * last-gasp WHEEL PIN is a terrible answer, but we need some kind
+ * of bootstrapping mechanism when all else fails. If you have a
+ * better suggestion, we'd love to hear it.
+ */
+
+ unsigned b;
+
+ memset(block, 0xFF, sizeof(*block));
+
+ block->header.block_type = BLOCK_TYPE_PIN;
+ block->header.block_status = BLOCK_STATUS_LIVE;
+ block->header.total_chunks = 1;
+ block->header.this_chunk = 0;
+
+ block->pin.wheel_pin = db.wheel_pin = hal_last_gasp_pin;
+ block->pin.so_pin = db.so_pin;
+ block->pin.user_pin = db.user_pin;
+
+ if ((err = hal_ks_index_add(&db.ksi, &pin_uuid, 0, &b, NULL)) != HAL_OK)
+ return err;
+
+ cache_mark_used(block, b);
+
+ err = block_write(b, block);
+
+ cache_release(block);
+
+ if (err != HAL_OK)
+ return err;
+ }
+
+ /*
+ * Erase first block on free list if it's not already erased.
+ */
+
+ if (db.ksi.used < db.ksi.size &&
+ (err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK)
+ return err;
+
+ /*
+ * And we're finally done.
+ */
+
+ db.ks.driver = driver;
+
+ return HAL_OK;
+}
+
+static hal_error_t ks_shutdown(const hal_ks_driver_t * const driver)
+{
+ if (db.ks.driver != driver)
+ return HAL_ERROR_KEYSTORE_ACCESS;
+ return HAL_OK;
+}
+
+static hal_error_t ks_open(const hal_ks_driver_t * const driver,
+ hal_ks_t **ks)
+{
+ if (driver != hal_ks_token_driver || ks == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ *ks = &db.ks;
+ return HAL_OK;
+}
+
+static hal_error_t ks_close(hal_ks_t *ks)
+{
+ if (ks != NULL && ks != &db.ks)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ return HAL_OK;
+}
+
+static inline int acceptable_key_type(const hal_key_type_t type)
+{
+ switch (type) {
+ case HAL_KEY_TYPE_RSA_PRIVATE:
+ case HAL_KEY_TYPE_EC_PRIVATE:
+ case HAL_KEY_TYPE_RSA_PUBLIC:
+ case HAL_KEY_TYPE_EC_PUBLIC:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+static hal_error_t ks_store(hal_ks_t *ks,
+ hal_pkey_slot_t *slot,
+ const uint8_t * const der, const size_t der_len)
+{
+ if (ks != &db.ks || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ flash_block_t *block = cache_pick_lru();
+ flash_key_block_t *k = &block->key;
+ uint8_t kek[KEK_LENGTH];
+ size_t kek_len;
+ hal_error_t err;
+ unsigned b;
+
+ if (block == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ if ((err = hal_ks_index_add(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
+ return err;
+
+ cache_mark_used(block, b);
+
+ memset(block, 0xFF, sizeof(*block));
+
+ block->header.block_type = BLOCK_TYPE_KEY;
+ block->header.block_status = BLOCK_STATUS_LIVE;
+ block->header.total_chunks = 1;
+ block->header.this_chunk = 0;
+
+ k->name = slot->name;
+ k->type = slot->type;
+ k->curve = slot->curve;
+ k->flags = slot->flags;
+ k->der_len = SIZEOF_FLASH_KEY_BLOCK_DER;
+ k->attributes_len = 0;
+
+ if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
+ err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k->der, &k->der_len);
+
+ memset(kek, 0, sizeof(kek));
+
+ if (err == HAL_OK &&
+ (err = block_write(b, block)) == HAL_OK)
+ return HAL_OK;
+
+ memset(block, 0, sizeof(*block));
+ cache_release(block);
+ (void) hal_ks_index_delete(&db.ksi, &slot->name, 0, NULL, &slot->hint);
+ return err;
+}
+
+static hal_error_t ks_fetch(hal_ks_t *ks,
+ hal_pkey_slot_t *slot,
+ uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ if (ks != &db.ks || slot == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ flash_block_t *block;
+ hal_error_t err;
+ unsigned b;
+
+ if ((err = hal_ks_index_find(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK ||
+ (err = block_read_cached(b, &block)) != HAL_OK)
+ return err;
+
+ if (block_get_type(block) != BLOCK_TYPE_KEY)
+ return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
+
+ cache_mark_used(block, b);
+
+ flash_key_block_t *k = &block->key;
+
+ slot->type = k->type;
+ slot->curve = k->curve;
+ slot->flags = k->flags;
+
+ if (der == NULL && der_len != NULL)
+ *der_len = k->der_len;
+
+ if (der != NULL) {
+
+ uint8_t kek[KEK_LENGTH];
+ size_t kek_len, der_len_;
+ hal_error_t err;
+
+ if (der_len == NULL)
+ der_len = &der_len_;
+
+ *der_len = der_max;
+
+ if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
+ err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);
+
+ memset(kek, 0, sizeof(kek));
+
+ if (err != HAL_OK)
+ return err;
+ }
+
+ return HAL_OK;
+}
+
+static hal_error_t ks_delete(hal_ks_t *ks,
+ hal_pkey_slot_t *slot)
+{
+ if (ks != &db.ks || slot == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ hal_error_t err;
+ unsigned n;
+
+ if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, 0, &n, NULL, &slot->hint)) != HAL_OK)
+ return err;
+
+ unsigned b[n];
+
+ if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, n, NULL, b, &slot->hint)) != HAL_OK)
+ return err;
+
+ for (int i = 0; i < n; i++)
+ cache_release(cache_find_block(b[i]));
+
+ for (int i = 0; i < n; i++)
+ if ((err = block_zero(b[i])) != HAL_OK)
+ return err;
+
+ return block_erase_maybe(db.ksi.index[db.ksi.used]);
+}
+
+static inline hal_error_t locate_attributes(flash_block_t *block, const unsigned chunk,
+ uint8_t **bytes, size_t *bytes_len,
+ unsigned **attrs_len)
+{
+ if (block == NULL || bytes == NULL || bytes_len == NULL || attrs_len == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ if (chunk == 0) {
+ if (block_get_type(block) != BLOCK_TYPE_KEY)
+ return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
+ *attrs_len = &block->key.attributes_len;
+ *bytes = block->key.der + block->key.der_len;
+ *bytes_len = SIZEOF_FLASH_KEY_BLOCK_DER - block->key.der_len;
+ }
+
+ else {
+ if (block_get_type(block) != BLOCK_TYPE_ATTR)
+ return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
+ *attrs_len = &block->attr.attributes_len;
+ *bytes = block->attr.attributes;
+ *bytes_len = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES;
+ }
+
+ return HAL_OK;
+}
+
+static hal_error_t ks_match(hal_ks_t *ks,
+ const hal_client_handle_t client,
+ const hal_session_handle_t session,
+ const hal_key_type_t type,
+ const hal_curve_name_t curve,
+ const hal_key_flags_t flags,
+ const hal_pkey_attribute_t *attributes,
+ const unsigned attributes_len,
+ hal_uuid_t *result,
+ unsigned *result_len,
+ const unsigned result_max,
+ const hal_uuid_t * const previous_uuid)
+{
+ if (ks == NULL || (attributes == NULL && attributes_len > 0) ||
+ result == NULL || result_len == NULL || previous_uuid == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ uint8_t need_attr[attributes_len > 0 ? attributes_len : 1];
+ flash_block_t *block;
+ int possible = 0;
+ hal_error_t err;
+ int i = -1;
+
+ *result_len = 0;
+
+ err = hal_ks_index_find(&db.ksi, previous_uuid, 0, NULL, &i);
+
+ if (err == HAL_ERROR_KEY_NOT_FOUND)
+ i--;
+ else if (err != HAL_OK)
+ return err;
+
+ while (*result_len < result_max && ++i < db.ksi.used) {
+
+ unsigned b = db.ksi.index[i];
+
+ if (db.ksi.names[b].chunk == 0)
+ possible = 1;
+
+ if (!possible)
+ continue;
+
+ if ((err = block_read_cached(b, &block)) != HAL_OK)
+ return err;
+
+ if (db.ksi.names[b].chunk == 0) {
+ memset(need_attr, 1, sizeof(need_attr));
+ possible = ((type == HAL_KEY_TYPE_NONE || type == block->key.type) &&
+ (curve == HAL_CURVE_NONE || curve == block->key.curve));
+ }
+
+ if (!possible)
+ continue;
+
+ if (attributes_len > 0) {
+ uint8_t *bytes = NULL;
+ size_t bytes_len = 0;
+ unsigned *attrs_len;
+
+ if ((err = locate_attributes(block, db.ksi.names[b].chunk,
+ &bytes, &bytes_len, &attrs_len)) != HAL_OK)
+ return err;
+
+ if (*attrs_len > 0) {
+ hal_pkey_attribute_t attrs[*attrs_len];
+
+ if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
+ return err;
+
+ for (int j = 0; possible && j < attributes_len; j++) {
+
+ if (!need_attr[j])
+ continue;
+
+ for (hal_pkey_attribute_t *a = attrs; a < attrs + *attrs_len; a++) {
+ if (a->type != attributes[j].type)
+ continue;
+ need_attr[j] = 0;
+ possible = (a->length == attributes[j].length &&
+ !memcmp(a->value, attributes[j].value, a->length));
+ break;
+ }
}
+ }
}
- return LIBHAL_OK;
+ if (!possible)
+ continue;
+
+ if (attributes_len > 0 && memchr(need_attr, 1, sizeof(need_attr)) != NULL)
+ continue;
+
+ result[*result_len] = db.ksi.names[b].name;
+ ++*result_len;
+ possible = 0;
+ }
+
+ return HAL_OK;
}
-hal_error_t hal_ks_set_keydb(const hal_ks_key_t * const key,
- const int loc,
- const int updating)
+/*
+ * This controls whether we include a separate code path for the
+ * common case where we can handle attribute setting via a single
+ * block update. It's a lot simpler when it works, but it's yet
+ * another code path, and enabling it leaves the slower full-blown
+ * algorithm less tested.
+ */
+
+#ifndef KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH
+#define KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH 0
+#endif
+
+/*
+ * ks_set_attributes() is much too long. Probably needs to be broken
+ * up into a collection of inline functions, even if most of them end
+ * up being called exactly once.
+ */
+
+static hal_error_t ks_set_attributes(hal_ks_t *ks,
+ hal_pkey_slot_t *slot,
+ const hal_pkey_attribute_t *attributes,
+ const unsigned attributes_len)
{
- hal_error_t status;
- uint32_t offset, active_sector_offset;
- hal_ks_key_t *tmp_key;
- uint8_t page_buf[KEYSTORE_PAGE_SIZE];
+ if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0)
+ return HAL_ERROR_BAD_ARGUMENTS;
- if (key == NULL || loc < 0 || loc >= sizeof(db->keys)/sizeof(*db->keys) || (!key->in_use != !updating))
- return HAL_ERROR_BAD_ARGUMENTS;
+ /*
+ * Perform initial scan of the object to figure out the total
+ * attribute count and a few other parameters.
+ *
+ * If enabled, try to do everything as as a single-block update. If
+ * single block update fails, we MUST clear the modified block from
+ * the cache before doing anything else.
+ */
- offset = _get_key_offset(loc);
- if (offset > KEYSTORE_SECTOR_SIZE) return HAL_ERROR_BAD_ARGUMENTS;
+ unsigned updated_attributes_len = attributes_len;
+ flash_block_t *block;
+ unsigned chunk = 0;
+ hal_error_t err;
+ unsigned b;
+
+ do {
+ int hint = slot->hint + chunk;
+
+ if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
+ (err = block_read_cached(b, &block)) != HAL_OK)
+ return err;
+
+ if (block->header.this_chunk != chunk)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ cache_mark_used(block, b);
+
+ if (chunk == 0)
+ slot->hint = hint;
+
+ uint8_t *bytes = NULL;
+ size_t bytes_len = 0;
+ unsigned *attrs_len;
+
+ if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
+ return err;
+
+ updated_attributes_len += *attrs_len;
+
+#if KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH
+
+ hal_pkey_attribute_t attrs[*attrs_len + attributes_len];
+ size_t total;
+
+ if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK)
+ return err;
+
+ for (int i = 0; err == HAL_OK && i < attributes_len; i++)
+ if (attributes[i].length == HAL_PKEY_ATTRIBUTE_NIL)
+ err = hal_ks_attribute_delete(bytes, bytes_len, attrs, attrs_len, &total,
+ attributes[i].type);
+ else
+ err = hal_ks_attribute_insert(bytes, bytes_len, attrs, attrs_len, &total,
+ attributes[i].type,
+ attributes[i].value,
+ attributes[i].length);
+
+ if (err != HAL_OK)
+ cache_release(block);
+
+ if (err == HAL_ERROR_RESULT_TOO_LONG)
+ continue;
+
+ if (err != HAL_OK)
+ return err;
+
+ return block_update(b, block, &slot->name, chunk, &hint);
+
+#endif /* KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH */
+
+ } while (++chunk < block->header.total_chunks);
+
+ /*
+ * If we get here, we're on the slow path, which requires rewriting
+ * all the chunks in this object but which can also add or remove
+ * chunks from this object. We need to keep track of all the old
+ * chunks so we can zero them at the end, and because we can't zero
+ * them until we've written out the new chunks, we need enough free
+ * blocks to hold all the new chunks.
+ *
+ * Calculating all of this is extremely tedious, but flash writes
+ * are so much more expensive than anything else we do here that
+ * it's almost certainly worth it.
+ *
+ * We don't need the attribute values to compute the sizes, just the
+ * attribute sizes, so we scan all the existing blocks, build up a
+ * structure with the current attribute types and sizes, modify that
+ * according to our arguments, and compute the needed size. Once we
+ * have that, we can start rewriting existing blocks. We put all
+ * the new stuff at the end, which simplifies this slightly.
+ *
+ * In theory, this process never requires us to have more than two
+ * blocks in memory at the same time (source and destination when
+ * copying across chunk boundaries), but having enough cache buffers
+ * to keep the whole set in memory will almost certainly make this
+ * run faster.
+ */
+
+ hal_pkey_attribute_t updated_attributes[updated_attributes_len];
+ const unsigned total_chunks_old = block->header.total_chunks;
+ size_t bytes_available = 0;
- active_sector_offset = _active_sector_offset();
+ updated_attributes_len = 0;
- offset += active_sector_offset;
+ /*
+ * Phase 0.1: Walk the old chunks to populate updated_attributes[].
+ * This also initializes bytes_available, since we can only get that
+ * by reading old chunk zero.
+ */
- if (keystore_check_id() != 1) return HAL_ERROR_KEYSTORE_ACCESS;
+ for (chunk = 0; chunk < total_chunks_old; chunk++) {
+ int hint = slot->hint + chunk;
- /* Check if there is a key occupying this slot in the flash already.
- * Don't trust the in-memory representation since it would mean data
- * corruption in flash if it had been altered.
- */
- if (keystore_read_data(offset, page_buf, sizeof(page_buf)) != 1) {
- return HAL_ERROR_KEYSTORE_ACCESS;
+ if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
+ (err = block_read_cached(b, &block)) != HAL_OK)
+ return err;
+
+ if (block->header.this_chunk != chunk)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ cache_mark_used(block, b);
+
+ uint8_t *bytes = NULL;
+ size_t bytes_len = 0;
+ unsigned *attrs_len;
+
+ if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
+ return err;
+
+ hal_pkey_attribute_t attrs[*attrs_len];
+ size_t total;
+
+ if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK)
+ return err;
+
+ if (chunk == 0)
+ bytes_available = bytes_len;
+
+ for (int i = 0; i < *attrs_len; i++) {
+
+ if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes))
+ return HAL_ERROR_IMPOSSIBLE;
+
+ updated_attributes[updated_attributes_len].type = attrs[i].type;
+ updated_attributes[updated_attributes_len].length = attrs[i].length;
+ updated_attributes[updated_attributes_len].value = NULL;
+ updated_attributes_len++;
}
- tmp_key = (hal_ks_key_t *) page_buf;
+ }
+
+ /*
+ * Phase 0.2: Merge new attributes into updated_attributes[].
+ */
+
+ for (int i = 0; i < attributes_len; i++) {
+
+ for (int j = 0; j < updated_attributes_len; j++)
+ if (updated_attributes[j].type == attributes[i].type)
+ updated_attributes[j].length = HAL_PKEY_ATTRIBUTE_NIL;
+
+ if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes))
+ return HAL_ERROR_IMPOSSIBLE;
+
+ updated_attributes[updated_attributes_len].type = attributes[i].type;
+ updated_attributes[updated_attributes_len].length = attributes[i].length;
+ updated_attributes[updated_attributes_len].value = attributes[i].value;
+ updated_attributes_len++;
+ }
+
+ /*
+ * Phase 0.3: Prune trailing deletion actions: we don't need them to
+ * maintain synchronization with existing attributes, and doing so
+ * simplifies logic for updating the final new chunk.
+ */
+
+ while (updated_attributes_len > 0 &&
+ updated_attributes[updated_attributes_len - 1].length == HAL_PKEY_ATTRIBUTE_NIL)
+ --updated_attributes_len;
+
+ /*
+ * Phase 0.4: Figure out how many chunks all this will occupy.
+ */
+
+ chunk = 0;
+
+ for (int i = 0; i < updated_attributes_len; i++) {
- db->keys[loc] = *key;
- db->keys[loc].in_use = 1;
+ if (updated_attributes[i].length == HAL_PKEY_ATTRIBUTE_NIL)
+ continue;
- if (tmp_key->in_use == 0xff) {
- /* Key slot was unused in flash. Write the new key there. */
- if ((status = _write_data_to_flash(offset, (uint8_t *) key, sizeof(*db->keys))) != LIBHAL_OK) {
- return status;
+ const size_t needed = hal_ks_attribute_header_size + updated_attributes[i].length;
+
+ if (needed > bytes_available) {
+ bytes_available = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES;
+ chunk++;
+ }
+
+ if (needed > bytes_available)
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+ bytes_available -= needed;
+ }
+
+ const unsigned total_chunks_new = chunk + 1;
+
+ /*
+ * If there aren't enough free blocks, give up now, before changing anything.
+ */
+
+ if (db.ksi.used + total_chunks_new > db.ksi.size)
+ return HAL_ERROR_NO_KEY_INDEX_SLOTS;
+
+ /*
+ * Phase 1: Deprecate all the old chunks, remember where they were.
+ */
+
+ unsigned old_blocks[total_chunks_old];
+
+ for (chunk = 0; chunk < total_chunks_old; chunk++) {
+ int hint = slot->hint + chunk;
+ if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
+ (err = block_deprecate(b)) != HAL_OK)
+ return err;
+ old_blocks[chunk] = b;
+ }
+
+ /*
+ * Phase 2: Write new chunks, copying attributes from old chunks or
+ * from attributes[], as needed.
+ */
+
+ {
+ hal_pkey_attribute_t old_attrs[updated_attributes_len], new_attrs[updated_attributes_len];
+ unsigned *old_attrs_len = NULL, *new_attrs_len = NULL;
+ flash_block_t *old_block = NULL, *new_block = NULL;
+ uint8_t *old_bytes = NULL, *new_bytes = NULL;
+ size_t old_bytes_len = 0, new_bytes_len = 0;
+ unsigned old_chunk = 0, new_chunk = 0;
+ size_t old_total = 0, new_total = 0;
+
+ int updated_attributes_i = 0, old_attrs_i = 0;
+
+ uint32_t new_attr_type;
+ size_t new_attr_length;
+ const uint8_t *new_attr_value;
+
+ while (updated_attributes_i < updated_attributes_len) {
+
+ if (old_chunk >= total_chunks_old || new_chunk >= total_chunks_new)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ /*
+ * If we've gotten as far as new data that comes from
+ * attributes[], we have it in hand and can just copy it.
+ */
+
+ if (updated_attributes_len - updated_attributes_i <= attributes_len) {
+ new_attr_type = updated_attributes[updated_attributes_i].type;
+ new_attr_length = updated_attributes[updated_attributes_i].length;
+ new_attr_value = updated_attributes[updated_attributes_i].value;
+ }
+
+ /*
+ * Otherwise, we have to read it from an old block, which may in
+ * turn require reading in the next old block.
+ */
+
+ else {
+
+ if (old_block == NULL) {
+
+ if ((err = block_read_cached(old_blocks[old_chunk], &old_block)) != HAL_OK)
+ return err;
+
+ if (old_block->header.this_chunk != old_chunk)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ if ((err = locate_attributes(old_block, old_chunk,
+ &old_bytes, &old_bytes_len, &old_attrs_len)) != HAL_OK ||
+ (err = hal_ks_attribute_scan(old_bytes, old_bytes_len,
+ old_attrs, *old_attrs_len, &old_total)) != HAL_OK)
+ return err;
+
+ old_attrs_i = 0;
+ }
+
+ if (old_attrs_i >= *old_attrs_len) {
+ old_chunk++;
+ old_block = NULL;
+ continue;
}
- } else {
- /* TODO: Erase and write the database to the inactive sector, and then toggle active sector. */
- if (keystore_erase_sectors(active_sector_offset / KEYSTORE_SECTOR_SIZE,
- active_sector_offset / KEYSTORE_SECTOR_SIZE) != 1) {
- return HAL_ERROR_KEYSTORE_ACCESS;
+
+ new_attr_type = old_attrs[old_attrs_i].type;
+ new_attr_length = old_attrs[old_attrs_i].length;
+ new_attr_value = old_attrs[old_attrs_i].value;
+
+ if (new_attr_type != updated_attributes[updated_attributes_i].type)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ old_attrs_i++;
+ }
+
+ /*
+ * Unless this is a deletion, we should have something to write.
+ */
+
+ if (new_attr_length != HAL_PKEY_ATTRIBUTE_NIL && new_attr_value == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ /*
+ * Initialize the new block if necessary. If it's the new chunk
+ * zero, we need to copy all the non-attribute data from the old
+ * chunk zero; otherwise, it's a new empty attribute block.
+ */
+
+ if (new_block == NULL) {
+
+ new_block = cache_pick_lru();
+ memset(new_block, 0xFF, sizeof(*new_block));
+
+ if (new_chunk == 0) {
+ flash_block_t *tmp_block;
+ if ((err = block_read_cached(old_blocks[0], &tmp_block)) != HAL_OK)
+ return err;
+ if (tmp_block->header.this_chunk != 0)
+ return HAL_ERROR_IMPOSSIBLE;
+ new_block->header.block_type = BLOCK_TYPE_KEY;
+ new_block->key.name = slot->name;
+ new_block->key.type = tmp_block->key.type;
+ new_block->key.curve = tmp_block->key.curve;
+ new_block->key.flags = tmp_block->key.flags;
+ new_block->key.der_len = tmp_block->key.der_len;
+ new_block->key.attributes_len = 0;
+ memcpy(new_block->key.der, tmp_block->key.der, tmp_block->key.der_len);
}
- if ((status =_write_db_to_flash(active_sector_offset)) != LIBHAL_OK) {
- return status;
+ else {
+ new_block->header.block_type = BLOCK_TYPE_ATTR;
+ new_block->attr.name = slot->name;
+ new_block->attr.attributes_len = 0;
}
+
+ new_block->header.block_status = BLOCK_STATUS_LIVE;
+ new_block->header.total_chunks = total_chunks_new;
+ new_block->header.this_chunk = new_chunk;
+
+ if ((err = locate_attributes(new_block, new_chunk,
+ &new_bytes, &new_bytes_len, &new_attrs_len)) != HAL_OK)
+ return err;
+
+ new_total = 0;
+ }
+
+ /*
+ * After all that setup, we finally get to write the frelling attribute.
+ */
+
+ if (new_attr_length != HAL_PKEY_ATTRIBUTE_NIL)
+ err = hal_ks_attribute_insert(new_bytes, new_bytes_len, new_attrs, new_attrs_len, &new_total,
+ new_attr_type, new_attr_value, new_attr_length);
+
+ /*
+ * Figure out what to do next: immediately loop for next
+ * attribute, write current block, or bail out.
+ */
+
+ switch (err) {
+ case HAL_OK:
+ if (++updated_attributes_i < updated_attributes_len)
+ continue;
+ break;
+ case HAL_ERROR_RESULT_TOO_LONG:
+ if (new_chunk > 0 && new_attrs_len == 0)
+ return err;
+ break;
+ default:
+ return err;
+ }
+
+ /*
+ * If we get here, either the current new block is full or we
+ * finished the last block, so we need to write it out.
+ */
+
+ int hint = slot->hint + new_chunk;
+
+ if (new_chunk < total_chunks_old)
+ err = hal_ks_index_replace(&db.ksi, &slot->name, new_chunk, &b, &hint);
+ else
+ err = hal_ks_index_add( &db.ksi, &slot->name, new_chunk, &b, &hint);
+
+ if (err != HAL_OK || (err = block_write(b, new_block)) != HAL_OK)
+ return err;
+
+ cache_mark_used(new_block, b);
+
+ new_block = NULL;
+ new_chunk++;
}
- return LIBHAL_OK;
+ /*
+ * If number of blocks shrank, we need to clear trailing entries from the index.
+ */
+
+ for (old_chunk = total_chunks_new; old_chunk < total_chunks_old; old_chunk++) {
+ int hint = slot->hint + old_chunk;
+
+ err = hal_ks_index_delete(&db.ksi, &slot->name, old_chunk, NULL, &hint);
+
+ if (err != HAL_OK)
+ return err;
+ }
+
+ }
+
+ /*
+ * Phase 3: Zero the old chunks we deprecated in phase 1.
+ */
+
+ for (chunk = 0; chunk < total_chunks_old; chunk++)
+ if ((err = block_zero(old_blocks[chunk])) != HAL_OK)
+ return err;
+
+ return HAL_OK;
+
+#warning What happens if something goes wrong partway through this awful mess?
+ // We're left in a state with all the old blocks deprecated and
+ // (maybe) some of the new blocks current, need to clean that up.
+ // Would be nice if we could just reuse the keystore initialization
+ // code, but don't quite see how (yet?).
}
-hal_error_t hal_ks_del_keydb(const int loc)
+static hal_error_t ks_get_attributes(hal_ks_t *ks,
+ hal_pkey_slot_t *slot,
+ hal_pkey_attribute_t *attributes,
+ const unsigned attributes_len,
+ uint8_t *attributes_buffer,
+ const size_t attributes_buffer_len)
{
- uint32_t offset;
-
- if (loc < 0 || loc >= sizeof(db->keys)/sizeof(*db->keys))
+ if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0 ||
+ attributes_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
- offset = _get_key_offset(loc);
- if (offset > KEYSTORE_SECTOR_SIZE) {
- return HAL_ERROR_BAD_ARGUMENTS;
+ for (int i = 0; i < attributes_len; i++) {
+ attributes[i].length = 0;
+ attributes[i].value = NULL;
}
- offset += _active_sector_offset();
+ uint8_t *abuf = attributes_buffer;
+ flash_block_t *block = NULL;
+ unsigned chunk = 0;
+ unsigned found = 0;
+ hal_error_t err;
+ unsigned b;
+
+ do {
+ int hint = slot->hint + chunk;
+
+ if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
+ (err = block_read_cached(b, &block)) != HAL_OK)
+ return err;
+
+ if (block->header.this_chunk != chunk)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ if (chunk == 0)
+ slot->hint = hint;
+
+ cache_mark_used(block, b);
- memset(&db->keys[loc], 0, sizeof(*db->keys));
+ uint8_t *bytes = NULL;
+ size_t bytes_len = 0;
+ unsigned *attrs_len;
- /* Setting bits to 0 never requires erasing flash. Just write it. */
- return _write_data_to_flash(offset, (uint8_t *) &db->keys[loc], sizeof(*db->keys));
+ if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
+ return err;
+
+ if (*attrs_len == 0)
+ continue;
+
+ hal_pkey_attribute_t attrs[*attrs_len];
+
+ if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
+ return err;
+
+ for (int i = 0; i < attributes_len; i++) {
+
+ if (attributes[i].length > 0)
+ continue;
+
+ int j = 0;
+ while (j < *attrs_len && attrs[j].type != attributes[i].type)
+ j++;
+ if (j >= *attrs_len)
+ continue;
+ found++;
+
+ attributes[i].length = attrs[j].length;
+
+ if (attributes_buffer_len == 0)
+ continue;
+
+ if (attrs[j].length > attributes_buffer + attributes_buffer_len - abuf)
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+ memcpy(abuf, attrs[j].value, attrs[j].length);
+ attributes[i].value = abuf;
+ abuf += attrs[j].length;
+ }
+
+ } while (found < attributes_len && ++chunk < block->header.total_chunks);
+
+ if (found < attributes_len && attributes_buffer_len > 0)
+ return HAL_ERROR_ATTRIBUTE_NOT_FOUND;
+
+ return HAL_OK;
}
-hal_error_t hal_ks_set_pin(const hal_user_t user,
- const hal_ks_pin_t * const pin)
-{
- uint32_t active_sector_offset;
+const hal_ks_driver_t hal_ks_token_driver[1] = {{
+ .init = ks_init,
+ .shutdown = ks_shutdown,
+ .open = ks_open,
+ .close = ks_close,
+ .store = ks_store,
+ .fetch = ks_fetch,
+ .delete = ks_delete,
+ .match = ks_match,
+ .set_attributes = ks_set_attributes,
+ .get_attributes = ks_get_attributes
+}};
+
+/*
+ * The remaining functions aren't really part of the keystore API per se,
+ * but they all involve non-key data which we keep in the keystore
+ * because it's the flash we've got.
+ */
+/*
+ * Fetch PIN. This is always cached, so just returned cached value.
+ */
+
+hal_error_t hal_get_pin(const hal_user_t user,
+ const hal_ks_pin_t **pin)
+{
if (pin == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
- hal_ks_pin_t *p = NULL;
-
switch (user) {
- case HAL_USER_WHEEL: p = &db->wheel_pin; break;
- case HAL_USER_SO: p = &db->so_pin; break;
- case HAL_USER_NORMAL: p = &db->user_pin; break;
- default: return HAL_ERROR_BAD_ARGUMENTS;
+ case HAL_USER_WHEEL: *pin = &db.wheel_pin; break;
+ case HAL_USER_SO: *pin = &db.so_pin; break;
+ case HAL_USER_NORMAL: *pin = &db.user_pin; break;
+ default: return HAL_ERROR_BAD_ARGUMENTS;
}
- memcpy(p, pin, sizeof(*p));
+ return HAL_OK;
+}
+
+/*
+ * Fetch PIN block. hint = 0 because we know that the all-zeros UUID
+ * should always sort to first slot in the index.
+ */
+
+static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block)
+{
+ if (block == NULL)
+ return HAL_ERROR_IMPOSSIBLE;
- active_sector_offset = _active_sector_offset();
+ hal_error_t err;
+ int hint = 0;
+ unsigned b_;
- /* TODO: Could check if the PIN is currently all 0xff, in which case we wouldn't have to
- * erase and re-write the whole DB.
- */
+ if (b == NULL)
+ b = &b_;
- /* TODO: Erase and write the database to the inactive sector, and then toggle active sector. */
- if (keystore_erase_sectors(active_sector_offset / KEYSTORE_SECTOR_SIZE,
- active_sector_offset / KEYSTORE_SECTOR_SIZE) != 1) {
- return HAL_ERROR_KEYSTORE_ACCESS;
- }
- return _write_db_to_flash(active_sector_offset);
+ if ((err = hal_ks_index_find(&db.ksi, &pin_uuid, 0, b, &hint)) != HAL_OK ||
+ (err = block_read_cached(*b, block)) != HAL_OK)
+ return err;
+
+ cache_mark_used(*block, *b);
+
+ if (block_get_type(*block) != BLOCK_TYPE_PIN)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ return HAL_OK;
}
+/*
+ * Update the PIN block. This block should always be present, but we
+ * have to do the zombie jamboree to make sure we write the new PIN
+ * block before destroying the old one. hint = 0 because we know that
+ * the all-zeros UUID should always sort to first slot in the index.
+ */
-hal_error_t hal_ks_get_kek(uint8_t *kek,
- size_t *kek_len,
- const size_t kek_max)
+static hal_error_t update_pin_block(const unsigned b,
+ flash_block_t *block,
+ const flash_pin_block_t * const new_data)
{
- if (kek == NULL || kek_len == NULL || kek_max < bitsToBytes(128))
+ if (block == NULL || new_data == NULL || block_get_type(block) != BLOCK_TYPE_PIN)
+ return HAL_ERROR_IMPOSSIBLE;
+
+ int hint = 0;
+
+ block->pin = *new_data;
+
+ return block_update(b, block, &pin_uuid, 0, &hint);
+}
+
+/*
+ * Change a PIN.
+ */
+
+hal_error_t hal_set_pin(const hal_user_t user,
+ const hal_ks_pin_t * const pin)
+{
+ if (pin == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
- const size_t len = ((kek_max < bitsToBytes(192)) ? bitsToBytes(128) :
- (kek_max < bitsToBytes(256)) ? bitsToBytes(192) :
- bitsToBytes(256));
+ flash_block_t *block;
+ hal_error_t err;
+ unsigned b;
- hal_error_t err = masterkey_volatile_read(kek, len);
- if (err == LIBHAL_OK) {
- *kek_len = len;
- return LIBHAL_OK;
- }
- if (masterkey_flash_read(kek, len) == LIBHAL_OK) {
- *kek_len = len;
- return LIBHAL_OK;
+ if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
+ return err;
+
+ flash_pin_block_t new_data = block->pin;
+ hal_ks_pin_t *dp, *bp;
+
+ switch (user) {
+ case HAL_USER_WHEEL: bp = &new_data.wheel_pin; dp = &db.wheel_pin; break;
+ case HAL_USER_SO: bp = &new_data.so_pin; dp = &db.so_pin; break;
+ case HAL_USER_NORMAL: bp = &new_data.user_pin; dp = &db.user_pin; break;
+ default: return HAL_ERROR_BAD_ARGUMENTS;
}
- /* Both keystores returned an error, probably HAL_ERROR_MASTERKEY_NOT_SET.
- * I could try to be clever and compare the errors, but really the volatile
- * keystore is the important one (you shouldn't store the master key in
- * flash), so return that error.
- */
+ const hal_ks_pin_t old_pin = *dp;
+ *dp = *bp = *pin;
+
+ if ((err = update_pin_block(b, block, &new_data)) != HAL_OK)
+ *dp = old_pin;
+
return err;
}
+#if HAL_MKM_FLASH_BACKUP_KLUDGE
+
+/*
+ * Horrible insecure kludge in lieu of a battery for the MKM.
+ *
+ * API here is a little strange: all calls pass a length parameter,
+ * but any length other than the compiled in constant just returns an
+ * immediate error, there's no notion of buffer max length vs buffer
+ * used length, querying for the size of buffer really needed, or
+ * anything like that.
+ *
+ * We might want to rewrite this some day, if we don't replace it with
+ * a battery first. For now we just preserve the API as we found it
+ * while re-implementing it on top of the new keystore.
+ */
+
+hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len)
+{
+ if (buf != NULL && len != KEK_LENGTH)
+ return HAL_ERROR_MASTERKEY_BAD_LENGTH;
+
+ flash_block_t *block;
+ hal_error_t err;
+ unsigned b;
+
+ if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
+ return err;
+
+ if (block->pin.kek_set != FLASH_KEK_SET)
+ return HAL_ERROR_MASTERKEY_NOT_SET;
+
+ if (buf != NULL)
+ memcpy(buf, block->pin.kek, len);
+
+ return HAL_OK;
+}
+
+hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len)
+{
+ if (buf == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ if (len != KEK_LENGTH)
+ return HAL_ERROR_MASTERKEY_BAD_LENGTH;
+
+ flash_block_t *block;
+ hal_error_t err;
+ unsigned b;
+
+ if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
+ return err;
+
+ flash_pin_block_t new_data = block->pin;
+
+ new_data.kek_set = FLASH_KEK_SET;
+ memcpy(new_data.kek, buf, len);
+
+ return update_pin_block(b, block, &new_data);
+}
+
+hal_error_t hal_mkm_flash_erase(const size_t len)
+{
+ if (len != KEK_LENGTH)
+ return HAL_ERROR_MASTERKEY_BAD_LENGTH;
+
+ flash_block_t *block;
+ hal_error_t err;
+ unsigned b;
+
+ if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
+ return err;
+
+ flash_pin_block_t new_data = block->pin;
+
+ new_data.kek_set = FLASH_KEK_SET;
+ memset(new_data.kek, 0, len);
+
+ return update_pin_block(b, block, &new_data);
+}
+
+#endif /* HAL_MKM_FLASH_BACKUP_KLUDGE */
/*