aboutsummaryrefslogtreecommitdiff
path: root/ks_flash.c
diff options
context:
space:
mode:
Diffstat (limited to 'ks_flash.c')
-rw-r--r--ks_flash.c2213
1 files changed, 0 insertions, 2213 deletions
diff --git a/ks_flash.c b/ks_flash.c
deleted file mode 100644
index 8aadc37..0000000
--- a/ks_flash.c
+++ /dev/null
@@ -1,2213 +0,0 @@
-/*
- * ks_flash.c
- * ----------
- * Keystore implementation in flash memory.
- *
- * Authors: Rob Austein, Fredrik Thulin
- * Copyright (c) 2015-2016, NORDUnet A/S All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- * - Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- *
- * - Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * - Neither the name of the NORDUnet nor the names of its contributors may
- * be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
- * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
- * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
- * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-/*
- * This keystore driver operates over bare flash, versus over a flash file
- * system or flash translation layer. The block size is large enough to
- * hold an AES-keywrapped 4096-bit RSA key. Any remaining space in the key
- * block may be used to store attributes (opaque TLV blobs). If the
- * attributes overflow the key block, additional blocks may be added, but
- * no attribute may exceed the block size.
- */
-
-#include <stddef.h>
-#include <string.h>
-#include <assert.h>
-
-#include "hal.h"
-#include "hal_internal.h"
-
-#include "last_gasp_pin_internal.h"
-
-#define HAL_OK CMIS_HAL_OK
-#include "stm-keystore.h"
-#undef HAL_OK
-
-/*
- * Known block states.
- *
- * C does not guarantee any particular representation for enums, so
- * including enums directly in the block header isn't safe. Instead,
- * we use an access method which casts when reading from the header.
- * Writing to the header isn't a problem, because C does guarantee
- * that enum is compatible with *some* integer type, it just doesn't
- * specify which one.
- */
-
-typedef enum {
- BLOCK_TYPE_ERASED = 0xFF, /* Pristine erased block (candidate for reuse) */
- BLOCK_TYPE_ZEROED = 0x00, /* Zeroed block (recently used) */
- BLOCK_TYPE_KEY = 0x55, /* Block contains key material */
- BLOCK_TYPE_ATTR = 0x66, /* Block contains key attributes (overflow from key block) */
- BLOCK_TYPE_PIN = 0xAA, /* Block contains PINs */
- BLOCK_TYPE_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */
-} flash_block_type_t;
-
-/*
- * Block status.
- */
-
-typedef enum {
- BLOCK_STATUS_LIVE = 0x66, /* This is a live flash block */
- BLOCK_STATUS_TOMBSTONE = 0x44, /* This is a tombstone left behind during an update */
- BLOCK_STATUS_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */
-} flash_block_status_t;
-
-/*
- * Common header for all flash block types.
- * A few of these fields are deliberately omitted from the CRC.
- */
-
-typedef struct {
- uint8_t block_type;
- uint8_t block_status;
- uint8_t total_chunks;
- uint8_t this_chunk;
- hal_crc32_t crc;
-} flash_block_header_t;
-
-/*
- * Key block. Tail end of "der" field (after der_len) used for attributes.
- */
-
-typedef struct {
- flash_block_header_t header;
- hal_uuid_t name;
- hal_key_type_t type;
- hal_curve_name_t curve;
- hal_key_flags_t flags;
- size_t der_len;
- unsigned attributes_len;
- uint8_t der[]; /* Must be last field -- C99 "flexible array member" */
-} flash_key_block_t;
-
-#define SIZEOF_FLASH_KEY_BLOCK_DER \
- (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_key_block_t, der))
-
-/*
- * Key attribute overflow block (attributes which don't fit in der field of key block).
- */
-
-typedef struct {
- flash_block_header_t header;
- hal_uuid_t name;
- unsigned attributes_len;
- uint8_t attributes[]; /* Must be last field -- C99 "flexible array member" */
-} flash_attributes_block_t;
-
-#define SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES \
- (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_attributes_block_t, attributes))
-
-/*
- * PIN block. Also includes space for backing up the KEK when
- * HAL_MKM_FLASH_BACKUP_KLUDGE is enabled.
- */
-
-typedef struct {
- flash_block_header_t header;
- hal_ks_pin_t wheel_pin;
- hal_ks_pin_t so_pin;
- hal_ks_pin_t user_pin;
-#if HAL_MKM_FLASH_BACKUP_KLUDGE
- uint32_t kek_set;
- uint8_t kek[KEK_LENGTH];
-#endif
-} flash_pin_block_t;
-
-#define FLASH_KEK_SET 0x33333333
-
-/*
- * One flash block.
- */
-
-typedef union {
- uint8_t bytes[KEYSTORE_SUBSECTOR_SIZE];
- flash_block_header_t header;
- flash_key_block_t key;
- flash_attributes_block_t attr;
- flash_pin_block_t pin;
-} flash_block_t;
-
-/*
- * In-memory cache.
- */
-
-typedef struct {
- unsigned blockno;
- uint32_t lru;
- flash_block_t block;
-} cache_block_t;
-
-/*
- * In-memory database.
- *
- * The top-level structure is a static variable; the arrays are allocated at runtime
- * using hal_allocate_static_memory() because they can get kind of large.
- */
-
-#ifndef KS_FLASH_CACHE_SIZE
-#define KS_FLASH_CACHE_SIZE 4
-#endif
-
-#define NUM_FLASH_BLOCKS KEYSTORE_NUM_SUBSECTORS
-
-typedef struct {
- hal_ks_t ks; /* Must be first (C "subclassing") */
- hal_ks_index_t ksi;
- hal_ks_pin_t wheel_pin;
- hal_ks_pin_t so_pin;
- hal_ks_pin_t user_pin;
- uint32_t cache_lru;
- cache_block_t *cache;
-} db_t;
-
-/*
- * PIN block gets the all-zeros UUID, which will never be returned by
- * the UUID generation code (by definition -- it's not a version 4 UUID).
- */
-
-const static hal_uuid_t pin_uuid = {{0}};
-
-/*
- * The in-memory database structure itself is small, but the arrays it
- * points to are large enough that they come from SDRAM allocated at
- * startup.
- */
-
-static db_t db;
-
-/*
- * Type safe casts.
- */
-
-static inline flash_block_type_t block_get_type(const flash_block_t * const block)
-{
- assert(block != NULL);
- return (flash_block_type_t) block->header.block_type;
-}
-
-static inline flash_block_status_t block_get_status(const flash_block_t * const block)
-{
- assert(block != NULL);
- return (flash_block_status_t) block->header.block_status;
-}
-
-/*
- * Pick unused or least-recently-used slot in our in-memory cache.
- *
- * Updating lru values is caller's problem: if caller is using a cache
- * slot as a temporary buffer and there's no point in caching the
- * result, leave the lru values alone and the right thing will happen.
- */
-
-static inline flash_block_t *cache_pick_lru(void)
-{
- uint32_t best_delta = 0;
- int best_index = 0;
-
- for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
-
- if (db.cache[i].blockno == ~0)
- return &db.cache[i].block;
-
- const uint32_t delta = db.cache_lru - db.cache[i].lru;
- if (delta > best_delta) {
- best_delta = delta;
- best_index = i;
- }
-
- }
-
- db.cache[best_index].blockno = ~0;
- return &db.cache[best_index].block;
-}
-
-/*
- * Find a block in our in-memory cache; return block or NULL if not present.
- */
-
-static inline flash_block_t *cache_find_block(const unsigned blockno)
-{
- for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
- if (db.cache[i].blockno == blockno)
- return &db.cache[i].block;
- return NULL;
-}
-
-/*
- * Mark a block in our in-memory cache as being in current use.
- */
-
-static inline void cache_mark_used(const flash_block_t * const block, const unsigned blockno)
-{
- for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
- if (&db.cache[i].block == block) {
- db.cache[i].blockno = blockno;
- db.cache[i].lru = ++db.cache_lru;
- return;
- }
- }
-}
-
-/*
- * Release a block from the in-memory cache.
- */
-
-static inline void cache_release(const flash_block_t * const block)
-{
- if (block != NULL)
- cache_mark_used(block, ~0);
-}
-
-/*
- * Generate CRC-32 for a block.
- *
- * This function needs to understand the structure of
- * flash_block_header_t, so that it can skip over fields that
- * shouldn't be included in the CRC.
- */
-
-static hal_crc32_t calculate_block_crc(const flash_block_t * const block)
-{
- assert(block != NULL);
-
- hal_crc32_t crc = hal_crc32_init();
-
- crc = hal_crc32_update(crc, &block->header.block_type,
- sizeof(block->header.block_type));
-
- crc = hal_crc32_update(crc, &block->header.total_chunks,
- sizeof(block->header.total_chunks));
-
- crc = hal_crc32_update(crc, &block->header.this_chunk,
- sizeof(block->header.this_chunk));
-
- crc = hal_crc32_update(crc, block->bytes + sizeof(flash_block_header_t),
- sizeof(*block) - sizeof(flash_block_header_t));
-
- return hal_crc32_finalize(crc);
-}
-
-/*
- * Calculate offset of the block in the flash address space.
- */
-
-static inline uint32_t block_offset(const unsigned blockno)
-{
- return blockno * KEYSTORE_SUBSECTOR_SIZE;
-}
-
-/*
- * Read a flash block.
- *
- * Flash read on the Alpha is slow enough that it pays to check the
- * first page before reading the rest of the block.
- */
-
-static hal_error_t block_read(const unsigned blockno, flash_block_t *block)
-{
- if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE)
- return HAL_ERROR_IMPOSSIBLE;
-
- /* Sigh, magic numeric return codes */
- if (keystore_read_data(block_offset(blockno),
- block->bytes,
- KEYSTORE_PAGE_SIZE) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
-
- switch (block_get_type(block)) {
- case BLOCK_TYPE_ERASED:
- case BLOCK_TYPE_ZEROED:
- return HAL_OK;
- case BLOCK_TYPE_KEY:
- case BLOCK_TYPE_PIN:
- case BLOCK_TYPE_ATTR:
- break;
- default:
- return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE;
- }
-
- switch (block_get_status(block)) {
- case BLOCK_STATUS_LIVE:
- case BLOCK_STATUS_TOMBSTONE:
- break;
- default:
- return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE;
- }
-
- /* Sigh, magic numeric return codes */
- if (keystore_read_data(block_offset(blockno) + KEYSTORE_PAGE_SIZE,
- block->bytes + KEYSTORE_PAGE_SIZE,
- sizeof(*block) - KEYSTORE_PAGE_SIZE) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
-
- if (calculate_block_crc(block) != block->header.crc)
- return HAL_ERROR_KEYSTORE_BAD_CRC;
-
- return HAL_OK;
-}
-
-/*
- * Read a block using the cache. Marking the block as used is left
- * for the caller, so we can avoid blowing out the cache when we
- * perform a ks_match() operation.
- */
-
-static hal_error_t block_read_cached(const unsigned blockno, flash_block_t **block)
-{
- if (block == NULL)
- return HAL_ERROR_IMPOSSIBLE;
-
- if ((*block = cache_find_block(blockno)) != NULL)
- return HAL_OK;
-
- if ((*block = cache_pick_lru()) == NULL)
- return HAL_ERROR_IMPOSSIBLE;
-
- return block_read(blockno, *block);
-}
-
-/*
- * Convert a live block into a tombstone. Caller is responsible for
- * making sure that the block being converted is valid; since we don't
- * need to update the CRC for this, we just modify the first page.
- */
-
-static hal_error_t block_deprecate(const unsigned blockno)
-{
- if (blockno >= NUM_FLASH_BLOCKS)
- return HAL_ERROR_IMPOSSIBLE;
-
- uint8_t page[KEYSTORE_PAGE_SIZE];
- flash_block_header_t *header = (void *) page;
- uint32_t offset = block_offset(blockno);
-
- /* Sigh, magic numeric return codes */
- if (keystore_read_data(offset, page, sizeof(page)) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
-
- header->block_status = BLOCK_STATUS_TOMBSTONE;
-
- /* Sigh, magic numeric return codes */
- if (keystore_write_data(offset, page, sizeof(page)) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
-
- return HAL_OK;
-}
-
-/*
- * Zero (not erase) a flash block. Just need to zero the first page.
- */
-
-static hal_error_t block_zero(const unsigned blockno)
-{
- if (blockno >= NUM_FLASH_BLOCKS)
- return HAL_ERROR_IMPOSSIBLE;
-
- uint8_t page[KEYSTORE_PAGE_SIZE] = {0};
-
- /* Sigh, magic numeric return codes */
- if (keystore_write_data(block_offset(blockno), page, sizeof(page)) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
-
- return HAL_OK;
-}
-
-/*
- * Erase a flash block. Also see block_erase_maybe(), below.
- */
-
-static hal_error_t block_erase(const unsigned blockno)
-{
- if (blockno >= NUM_FLASH_BLOCKS)
- return HAL_ERROR_IMPOSSIBLE;
-
- /* Sigh, magic numeric return codes */
- if (keystore_erase_subsector(blockno) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
-
- return HAL_OK;
-}
-
-/*
- * Erase a flash block if it hasn't already been erased.
- * May not be necessary, trying to avoid unnecessary wear.
- *
- * Unclear whether there's any sane reason why this needs to be
- * constant time, given how slow erasure is. But side channel attacks
- * can be tricky things, and it's theoretically possible that we could
- * leak information about, eg, key length, so we do constant time.
- */
-
-static hal_error_t block_erase_maybe(const unsigned blockno)
-{
- if (blockno >= NUM_FLASH_BLOCKS)
- return HAL_ERROR_IMPOSSIBLE;
-
- uint8_t mask = 0xFF;
-
- for (uint32_t a = block_offset(blockno); a < block_offset(blockno + 1); a += KEYSTORE_PAGE_SIZE) {
- uint8_t page[KEYSTORE_PAGE_SIZE];
- if (keystore_read_data(a, page, sizeof(page)) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
- for (int i = 0; i < KEYSTORE_PAGE_SIZE; i++)
- mask &= page[i];
- }
-
- return mask == 0xFF ? HAL_OK : block_erase(blockno);
-}
-
-/*
- * Write a flash block, calculating CRC when appropriate.
- */
-
-static hal_error_t block_write(const unsigned blockno, flash_block_t *block)
-{
- if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE)
- return HAL_ERROR_IMPOSSIBLE;
-
- hal_error_t err = block_erase_maybe(blockno);
-
- if (err != HAL_OK)
- return err;
-
- switch (block_get_type(block)) {
- case BLOCK_TYPE_KEY:
- case BLOCK_TYPE_PIN:
- case BLOCK_TYPE_ATTR:
- block->header.crc = calculate_block_crc(block);
- break;
- default:
- break;
- }
-
- /* Sigh, magic numeric return codes */
- if (keystore_write_data(block_offset(blockno), block->bytes, sizeof(*block)) != 1)
- return HAL_ERROR_KEYSTORE_ACCESS;
-
- return HAL_OK;
-}
-
-/*
- * Update one flash block, including zombie jamboree.
- */
-
-static hal_error_t block_update(const unsigned b1, flash_block_t *block,
- const hal_uuid_t * const uuid, const unsigned chunk, int *hint)
-{
- if (block == NULL)
- return HAL_ERROR_IMPOSSIBLE;
-
- if (db.ksi.used == db.ksi.size)
- return HAL_ERROR_NO_KEY_INDEX_SLOTS;
-
- cache_release(block);
-
- hal_error_t err;
- unsigned b2;
-
- if ((err = block_deprecate(b1)) != HAL_OK ||
- (err = hal_ks_index_replace(&db.ksi, uuid, chunk, &b2, hint)) != HAL_OK ||
- (err = block_write(b2, block)) != HAL_OK ||
- (err = block_zero(b1)) != HAL_OK)
- return err;
-
- cache_mark_used(block, b2);
-
- /*
- * Erase the first block in the free list. In case of restart, this
- * puts the block back at the head of the free list.
- */
-
- return block_erase_maybe(db.ksi.index[db.ksi.used]);
-}
-
-/*
- * Forward reference.
- */
-
-static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block);
-
-/*
- * Initialize keystore. This includes various tricky bits, some of
- * which attempt to preserve the free list ordering across reboots, to
- * improve our simplistic attempt at wear leveling, others attempt to
- * recover from unclean shutdown.
- */
-
-static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
-{
- if (mem == NULL || *mem == NULL || len == NULL || size > *len)
- return NULL;
- void *ret = *mem;
- *mem += size;
- *len -= size;
- return ret;
-}
-
-static hal_error_t ks_init(const hal_ks_driver_t * const driver, const int alloc)
-{
- hal_error_t err = HAL_OK;
-
- hal_ks_lock();
-
- /*
- * Initialize the in-memory database.
- */
-
- if (alloc) {
-
- size_t len = (sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS +
- sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS +
- sizeof(*db.cache) * KS_FLASH_CACHE_SIZE);
-
- /*
- * This is done as a single large allocation, rather than 3 smaller
- * allocations, to make it atomic - we need all 3, so either all
- * succeed or all fail.
- */
-
- uint8_t *mem = hal_allocate_static_memory(len);
-
- if (mem == NULL) {
- err = HAL_ERROR_ALLOCATION_FAILURE;
- goto done;
- }
-
- memset(&db, 0, sizeof(db));
- memset(mem, 0, len);
-
- db.ksi.index = gnaw(&mem, &len, sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS);
- db.ksi.names = gnaw(&mem, &len, sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS);
- db.cache = gnaw(&mem, &len, sizeof(*db.cache) * KS_FLASH_CACHE_SIZE);
- db.ksi.size = NUM_FLASH_BLOCKS;
- }
-
- else {
- memset(&db.wheel_pin, 0, sizeof(db.wheel_pin));
- memset(&db.so_pin, 0, sizeof(db.so_pin));
- memset(&db.user_pin, 0, sizeof(db.user_pin));
- }
-
- db.ksi.used = 0;
-
- if (db.ksi.index == NULL || db.ksi.names == NULL || db.cache == NULL) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
- db.cache[i].blockno = ~0;
-
- /*
- * Scan existing content of flash to figure out what we've got.
- * This gets a bit involved due to the need to recover from things
- * like power failures at inconvenient times.
- */
-
- flash_block_type_t block_types[NUM_FLASH_BLOCKS];
- flash_block_status_t block_status[NUM_FLASH_BLOCKS];
- flash_block_t *block = cache_pick_lru();
- int first_erased = -1;
- uint16_t n = 0;
-
- if (block == NULL) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
-
- /*
- * Read one block. If the CRC is bad or the block type is
- * unknown, it's old data we don't understand, something we were
- * writing when we crashed, or bad flash; in any of these cases,
- * we want the block to end up near the end of the free list.
- */
-
- err = block_read(i, block);
-
- if (err == HAL_ERROR_KEYSTORE_BAD_CRC || err == HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE)
- block_types[i] = BLOCK_TYPE_UNKNOWN;
-
- else if (err == HAL_OK)
- block_types[i] = block_get_type(block);
-
- else
- goto done;
-
- switch (block_types[i]) {
- case BLOCK_TYPE_KEY:
- case BLOCK_TYPE_PIN:
- case BLOCK_TYPE_ATTR:
- block_status[i] = block_get_status(block);
- break;
- default:
- block_status[i] = BLOCK_STATUS_UNKNOWN;
- }
-
- /*
- * First erased block we see is head of the free list.
- */
-
- if (block_types[i] == BLOCK_TYPE_ERASED && first_erased < 0)
- first_erased = i;
-
- /*
- * If it's a valid data block, include it in the index. We remove
- * tombstones (if any) below, for now it's easiest to include them
- * in the index, so we can look them up by name if we must.
- */
-
- const hal_uuid_t *uuid = NULL;
-
- switch (block_types[i]) {
- case BLOCK_TYPE_KEY: uuid = &block->key.name; break;
- case BLOCK_TYPE_ATTR: uuid = &block->attr.name; break;
- case BLOCK_TYPE_PIN: uuid = &pin_uuid; break;
- default: /* Keep GCC happy */ break;
- }
-
- if (uuid != NULL) {
- db.ksi.names[i].name = *uuid;
- db.ksi.names[i].chunk = block->header.this_chunk;
- db.ksi.index[n++] = i;
- }
- }
-
- db.ksi.used = n;
-
- assert(db.ksi.used <= db.ksi.size);
-
- /*
- * At this point we've built the (unsorted) index from all the valid
- * blocks. Now we need to insert free and unrecognized blocks into
- * the free list in our preferred order. It's possible that there's
- * a better way to do this than linear scan, but this is just
- * integer comparisons in a fairly small data set, so it's probably
- * not worth trying to optimize.
- */
-
- if (n < db.ksi.size)
- for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
- if (block_types[i] == BLOCK_TYPE_ERASED)
- db.ksi.index[n++] = i;
-
- if (n < db.ksi.size)
- for (int i = first_erased; i < NUM_FLASH_BLOCKS; i++)
- if (block_types[i] == BLOCK_TYPE_ZEROED)
- db.ksi.index[n++] = i;
-
- if (n < db.ksi.size)
- for (int i = 0; i < first_erased; i++)
- if (block_types[i] == BLOCK_TYPE_ZEROED)
- db.ksi.index[n++] = i;
-
- if (n < db.ksi.size)
- for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
- if (block_types[i] == BLOCK_TYPE_UNKNOWN)
- db.ksi.index[n++] = i;
-
- assert(n == db.ksi.size);
-
- /*
- * Initialize the index.
- */
-
- if ((err = hal_ks_index_setup(&db.ksi)) != HAL_OK)
- goto done;
-
- /*
- * We might want to call hal_ks_index_fsck() here, if we can figure
- * out some safe set of recovery actions we can take.
- */
-
- /*
- * Deal with tombstones. These are blocks left behind when
- * something bad (like a power failure) happened while we updating.
- * The sequence of operations while updating is designed so that,
- * barring a bug or a hardware failure, we should never lose data.
- *
- * For any tombstone we find, we start by looking for all the blocks
- * with a matching UUID, then see what valid sequences we can
- * construct from what we found. This basically works in reverse of
- * the update sequence in ks_set_attributes().
- *
- * If we can construct a valid sequence of live blocks, the complete
- * update was written out, and we just need to finish zeroing the
- * tombstones.
- *
- * Otherwise, if we can construct a complete sequence of tombstone
- * blocks, the update failed before it was completely written, so we
- * have to zero the incomplete sequence of live blocks then restore
- * the tombstones.
- *
- * Otherwise, if the live and tombstone blocks taken together form a
- * valid sequence, the update failed while deprecating the old live
- * blocks, and none of the new data was written, so we need to restore
- * the tombstones and leave the live blocks alone.
- *
- * If none of the above applies, we don't understand what happened,
- * which is a symptom of either a bug or a hardware failure more
- * serious than simple loss of power or reboot at an inconvenient
- * time, so we error out to avoid accidental loss of data.
- */
-
- for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
-
- if (block_status[i] != BLOCK_STATUS_TOMBSTONE)
- continue;
-
- hal_uuid_t name = db.ksi.names[i].name;
- unsigned n_blocks;
- int where = -1;
-
- if ((err = hal_ks_index_find_range(&db.ksi, &name, 0, &n_blocks, NULL, &where, 0)) != HAL_OK)
- goto done;
-
- /*
- * hal_ks_index_find_range does a binary search, not a linear search,
- * so it may not return the first instance of a block with the given
- * name and chunk=0. Search backwards to make sure we have all chunks.
- */
-
- while (where > 0 && !hal_uuid_cmp(&name, &db.ksi.names[db.ksi.index[where - 1]].name)) {
- where--;
- n_blocks++;
- }
-
- /*
- * Rather than calling hal_ks_index_find_range with an array pointer
- * to get the list of matching blocks (because of the binary search
- * issue), we're going to fondle the index directly. This is really
- * not something to do in regular code, but this is error-recovery
- * code.
- */
-
- int live_ok = 1, tomb_ok = 1, join_ok = 1;
- unsigned n_live = 0, n_tomb = 0;
- unsigned i_live = 0, i_tomb = 0;
-
- for (int j = 0; j < n_blocks; j++) {
- unsigned b = db.ksi.index[where + j];
- switch (block_status[b]) {
- case BLOCK_STATUS_LIVE: n_live++; break;
- case BLOCK_STATUS_TOMBSTONE: n_tomb++; break;
- default: err = HAL_ERROR_IMPOSSIBLE; goto done;
- }
- }
-
- uint16_t live_blocks[n_live], tomb_blocks[n_tomb];
-
- for (int j = 0; j < n_blocks; j++) {
- unsigned b = db.ksi.index[where + j];
-
- if ((err = block_read(b, block)) != HAL_OK)
- goto done;
-
- join_ok &= block->header.this_chunk == j && block->header.total_chunks == n_blocks;
-
- switch (block_status[b]) {
- case BLOCK_STATUS_LIVE:
- live_blocks[i_live] = b;
- live_ok &= block->header.this_chunk == i_live++ && block->header.total_chunks == n_live;
- break;
- case BLOCK_STATUS_TOMBSTONE:
- tomb_blocks[i_tomb] = b;
- tomb_ok &= block->header.this_chunk == i_tomb++ && block->header.total_chunks == n_tomb;
- break;
- default:
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
- }
-
- if (!live_ok && !tomb_ok && !join_ok) {
- err = HAL_ERROR_KEYSTORE_LOST_DATA;
- goto done;
- }
-
- /*
- * If live_ok or tomb_ok, we have to zero out some blocks, and adjust
- * the index. Again, don't fondle the index directly, outside of error
- * recovery.
- */
-
- if (live_ok) {
- for (int j = 0; j < n_tomb; j++) {
- const unsigned b = tomb_blocks[j];
- if ((err = block_zero(b)) != HAL_OK)
- goto done;
- block_types[b] = BLOCK_TYPE_ZEROED;
- block_status[b] = BLOCK_STATUS_UNKNOWN;
- }
- }
-
- else if (tomb_ok) {
- for (int j = 0; j < n_live; j++) {
- const unsigned b = live_blocks[j];
- if ((err = block_zero(b)) != HAL_OK)
- goto done;
- block_types[b] = BLOCK_TYPE_ZEROED;
- block_status[b] = BLOCK_STATUS_UNKNOWN;
- }
- }
-
- if (live_ok) {
- memcpy(&db.ksi.index[where], live_blocks, n_live * sizeof(*db.ksi.index));
- memmove(&db.ksi.index[where + n_live], &db.ksi.index[where + n_blocks],
- (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index));
- memcpy(&db.ksi.index[db.ksi.size - n_tomb], tomb_blocks, n_tomb * sizeof(*db.ksi.index));
- db.ksi.used -= n_tomb;
- n_blocks = n_live;
- }
-
- else if (tomb_ok) {
- memcpy(&db.ksi.index[where], tomb_blocks, n_tomb * sizeof(*db.ksi.index));
- memmove(&db.ksi.index[where + n_tomb], &db.ksi.index[where + n_blocks],
- (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index));
- memcpy(&db.ksi.index[db.ksi.size - n_live], live_blocks, n_live * sizeof(*db.ksi.index));
- db.ksi.used -= n_live;
- n_blocks = n_tomb;
- }
-
- /*
- * Restore tombstone blocks (tomb_ok or join_ok).
- */
-
- for (int j = 0; j < n_blocks; j++) {
- int hint = where + j;
- unsigned b1 = db.ksi.index[hint], b2;
- if (block_status[b1] != BLOCK_STATUS_TOMBSTONE)
- continue;
- if ((err = block_read(b1, block)) != HAL_OK)
- goto done;
- block->header.block_status = BLOCK_STATUS_LIVE;
- if ((err = hal_ks_index_replace(&db.ksi, &name, j, &b2, &hint)) != HAL_OK ||
- (err = block_write(b2, block)) != HAL_OK)
- goto done;
- block_types[b1] = BLOCK_TYPE_ZEROED;
- block_status[b1] = BLOCK_STATUS_UNKNOWN;
- block_status[b2] = BLOCK_STATUS_LIVE;
- }
- }
-
- /*
- * Fetch or create the PIN block.
- */
-
- err = fetch_pin_block(NULL, &block);
-
- if (err == HAL_OK) {
- db.wheel_pin = block->pin.wheel_pin;
- db.so_pin = block->pin.so_pin;
- db.user_pin = block->pin.user_pin;
- }
-
- else if (err != HAL_ERROR_KEY_NOT_FOUND)
- goto done;
-
- else {
- /*
- * We found no PIN block, so create one, with the user and so PINs
- * cleared and the wheel PIN set to the last-gasp value. The
- * last-gasp WHEEL PIN is a terrible answer, but we need some kind
- * of bootstrapping mechanism when all else fails. If you have a
- * better suggestion, we'd love to hear it.
- */
-
- unsigned b;
-
- memset(block, 0xFF, sizeof(*block));
-
- block->header.block_type = BLOCK_TYPE_PIN;
- block->header.block_status = BLOCK_STATUS_LIVE;
- block->header.total_chunks = 1;
- block->header.this_chunk = 0;
-
- block->pin.wheel_pin = db.wheel_pin = hal_last_gasp_pin;
- block->pin.so_pin = db.so_pin;
- block->pin.user_pin = db.user_pin;
-
- if ((err = hal_ks_index_add(&db.ksi, &pin_uuid, 0, &b, NULL)) != HAL_OK)
- goto done;
-
- cache_mark_used(block, b);
-
- err = block_write(b, block);
-
- cache_release(block);
-
- if (err != HAL_OK)
- goto done;
- }
-
- /*
- * Erase first block on free list if it's not already erased.
- */
-
- if (db.ksi.used < db.ksi.size &&
- (err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK)
- goto done;
-
- /*
- * And we're finally done.
- */
-
- db.ks.driver = driver;
-
- err = HAL_OK;
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-static hal_error_t ks_shutdown(const hal_ks_driver_t * const driver)
-{
- if (db.ks.driver != driver)
- return HAL_ERROR_KEYSTORE_ACCESS;
- return HAL_OK;
-}
-
-static hal_error_t ks_open(const hal_ks_driver_t * const driver,
- hal_ks_t **ks)
-{
- if (driver != hal_ks_token_driver || ks == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- *ks = &db.ks;
- return HAL_OK;
-}
-
-static hal_error_t ks_close(hal_ks_t *ks)
-{
- if (ks != NULL && ks != &db.ks)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- return HAL_OK;
-}
-
-static inline int acceptable_key_type(const hal_key_type_t type)
-{
- switch (type) {
- case HAL_KEY_TYPE_RSA_PRIVATE:
- case HAL_KEY_TYPE_EC_PRIVATE:
- case HAL_KEY_TYPE_RSA_PUBLIC:
- case HAL_KEY_TYPE_EC_PUBLIC:
- return 1;
- default:
- return 0;
- }
-}
-
-static hal_error_t ks_store(hal_ks_t *ks,
- hal_pkey_slot_t *slot,
- const uint8_t * const der, const size_t der_len)
-{
- if (ks != &db.ks || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
- return HAL_ERROR_BAD_ARGUMENTS;
-
- hal_error_t err = HAL_OK;
- flash_block_t *block;
- flash_key_block_t *k;
- uint8_t kek[KEK_LENGTH];
- size_t kek_len;
- unsigned b;
-
- hal_ks_lock();
-
- if ((block = cache_pick_lru()) == NULL) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- k = &block->key;
-
- if ((err = hal_ks_index_add(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
- goto done;
-
- cache_mark_used(block, b);
-
- memset(block, 0xFF, sizeof(*block));
-
- block->header.block_type = BLOCK_TYPE_KEY;
- block->header.block_status = BLOCK_STATUS_LIVE;
- block->header.total_chunks = 1;
- block->header.this_chunk = 0;
-
- k->name = slot->name;
- k->type = slot->type;
- k->curve = slot->curve;
- k->flags = slot->flags;
- k->der_len = SIZEOF_FLASH_KEY_BLOCK_DER;
- k->attributes_len = 0;
-
- if (db.ksi.used < db.ksi.size)
- err = block_erase_maybe(db.ksi.index[db.ksi.used]);
-
- if (err == HAL_OK)
- err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek));
-
- if (err == HAL_OK)
- err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k->der, &k->der_len);
-
- memset(kek, 0, sizeof(kek));
-
- if (err == HAL_OK)
- err = block_write(b, block);
-
- if (err == HAL_OK)
- goto done;
-
- memset(block, 0, sizeof(*block));
- cache_release(block);
- (void) hal_ks_index_delete(&db.ksi, &slot->name, 0, NULL, &slot->hint);
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-static hal_error_t ks_fetch(hal_ks_t *ks,
- hal_pkey_slot_t *slot,
- uint8_t *der, size_t *der_len, const size_t der_max)
-{
- if (ks != &db.ks || slot == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- hal_error_t err = HAL_OK;
- flash_block_t *block;
- unsigned b;
-
- hal_ks_lock();
-
- if ((err = hal_ks_index_find(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK ||
- (err = block_read_cached(b, &block)) != HAL_OK)
- goto done;
-
- if (block_get_type(block) != BLOCK_TYPE_KEY) {
- err = HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
- goto done;
- }
-
- cache_mark_used(block, b);
-
- flash_key_block_t *k = &block->key;
-
- slot->type = k->type;
- slot->curve = k->curve;
- slot->flags = k->flags;
-
- if (der == NULL && der_len != NULL)
- *der_len = k->der_len;
-
- if (der != NULL) {
-
- uint8_t kek[KEK_LENGTH];
- size_t kek_len, der_len_;
- hal_error_t err;
-
- if (der_len == NULL)
- der_len = &der_len_;
-
- *der_len = der_max;
-
- if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
- err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);
-
- memset(kek, 0, sizeof(kek));
- }
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-static hal_error_t ks_delete(hal_ks_t *ks,
- hal_pkey_slot_t *slot)
-{
- if (ks != &db.ks || slot == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- hal_error_t err = HAL_OK;
- unsigned n;
-
- hal_ks_lock();
-
- {
- /*
- * Get the count of blocks to delete.
- */
-
- if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, 0, &n, NULL, &slot->hint)) != HAL_OK)
- goto done;
-
- /*
- * Then delete them.
- */
-
- unsigned b[n];
-
- if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, n, NULL, b, &slot->hint)) != HAL_OK)
- goto done;
-
- for (int i = 0; i < n; i++)
- cache_release(cache_find_block(b[i]));
-
- /*
- * Zero the blocks, to mark them as recently used.
- */
-
- for (int i = 0; i < n; i++)
- if ((err = block_zero(b[i])) != HAL_OK)
- goto done;
-
- /*
- * Erase the first block in the free list. In case of restart, this
- * puts the block back at the head of the free list.
- */
-
- err = block_erase_maybe(db.ksi.index[db.ksi.used]);
- }
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-static inline hal_error_t locate_attributes(flash_block_t *block, const unsigned chunk,
- uint8_t **bytes, size_t *bytes_len,
- unsigned **attrs_len)
-{
- if (block == NULL || bytes == NULL || bytes_len == NULL || attrs_len == NULL)
- return HAL_ERROR_IMPOSSIBLE;
-
- if (chunk == 0) {
- if (block_get_type(block) != BLOCK_TYPE_KEY)
- return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
- *attrs_len = &block->key.attributes_len;
- *bytes = block->key.der + block->key.der_len;
- *bytes_len = SIZEOF_FLASH_KEY_BLOCK_DER - block->key.der_len;
- }
-
- else {
- if (block_get_type(block) != BLOCK_TYPE_ATTR)
- return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */
- *attrs_len = &block->attr.attributes_len;
- *bytes = block->attr.attributes;
- *bytes_len = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES;
- }
-
- return HAL_OK;
-}
-
-static hal_error_t ks_match(hal_ks_t *ks,
- const hal_client_handle_t client,
- const hal_session_handle_t session,
- const hal_key_type_t type,
- const hal_curve_name_t curve,
- const hal_key_flags_t mask,
- const hal_key_flags_t flags,
- const hal_pkey_attribute_t *attributes,
- const unsigned attributes_len,
- hal_uuid_t *result,
- unsigned *result_len,
- const unsigned result_max,
- const hal_uuid_t * const previous_uuid)
-{
- if (ks == NULL || (attributes == NULL && attributes_len > 0) ||
- result == NULL || result_len == NULL || previous_uuid == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- uint8_t need_attr[attributes_len > 0 ? attributes_len : 1];
- hal_error_t err = HAL_OK;
- flash_block_t *block;
- int possible = 0;
- int i = -1;
-
- hal_ks_lock();
-
- *result_len = 0;
-
- err = hal_ks_index_find(&db.ksi, previous_uuid, 0, NULL, &i);
-
- if (err == HAL_ERROR_KEY_NOT_FOUND)
- i--;
- else if (err != HAL_OK)
- goto done;
-
- while (*result_len < result_max && ++i < db.ksi.used) {
-
- unsigned b = db.ksi.index[i];
-
- if (db.ksi.names[b].chunk == 0)
- possible = 1;
-
- if (!possible)
- continue;
-
- if ((err = block_read_cached(b, &block)) != HAL_OK)
- goto done;
-
- if (db.ksi.names[b].chunk == 0) {
- memset(need_attr, 1, sizeof(need_attr));
- possible = ((type == HAL_KEY_TYPE_NONE || type == block->key.type) &&
- (curve == HAL_CURVE_NONE || curve == block->key.curve) &&
- ((flags ^ block->key.flags) & mask) == 0);
- }
-
- if (!possible)
- continue;
-
- if (attributes_len > 0) {
- uint8_t *bytes = NULL;
- size_t bytes_len = 0;
- unsigned *attrs_len;
-
- if ((err = locate_attributes(block, db.ksi.names[b].chunk,
- &bytes, &bytes_len, &attrs_len)) != HAL_OK)
- goto done;
-
- if (*attrs_len > 0) {
- hal_pkey_attribute_t attrs[*attrs_len];
-
- if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
- goto done;
-
- for (int j = 0; possible && j < attributes_len; j++) {
-
- if (!need_attr[j])
- continue;
-
- for (hal_pkey_attribute_t *a = attrs; a < attrs + *attrs_len; a++) {
- if (a->type != attributes[j].type)
- continue;
- need_attr[j] = 0;
- possible = (a->length == attributes[j].length &&
- !memcmp(a->value, attributes[j].value, a->length));
- break;
- }
- }
- }
- }
-
- if (!possible)
- continue;
-
- if (attributes_len > 0 && memchr(need_attr, 1, sizeof(need_attr)) != NULL)
- continue;
-
- result[*result_len] = db.ksi.names[b].name;
- ++*result_len;
- possible = 0;
- }
-
- err = HAL_OK;
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-/*
- * This controls whether we include a separate code path for the
- * common case where we can handle attribute setting via a single
- * block update. It's a lot simpler when it works, but it's yet
- * another code path, and enabling it leaves the slower full-blown
- * algorithm less tested.
- */
-
-#ifndef KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH
-#define KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH 0
-#endif
-
-/*
- * ks_set_attributes() is much too long. Probably needs to be broken
- * up into a collection of inline functions, even if most of them end
- * up being called exactly once.
- */
-
-static hal_error_t ks_set_attributes(hal_ks_t *ks,
- hal_pkey_slot_t *slot,
- const hal_pkey_attribute_t *attributes,
- const unsigned attributes_len)
-{
- if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- /*
- * Perform initial scan of the object to figure out the total
- * attribute count and a few other parameters.
- *
- * If enabled, try to do everything as as a single-block update. If
- * single block update fails, we MUST clear the modified block from
- * the cache before doing anything else.
- */
-
- unsigned updated_attributes_len = attributes_len;
- hal_error_t err = HAL_OK;
- flash_block_t *block;
- unsigned chunk = 0;
- unsigned b;
-
- hal_ks_lock();
-
- {
-
- do {
- int hint = slot->hint + chunk;
-
- if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
- (err = block_read_cached(b, &block)) != HAL_OK)
- goto done;
-
- if (block->header.this_chunk != chunk) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- cache_mark_used(block, b);
-
- if (chunk == 0)
- slot->hint = hint;
-
- uint8_t *bytes = NULL;
- size_t bytes_len = 0;
- unsigned *attrs_len;
-
- if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
- goto done;
-
- updated_attributes_len += *attrs_len;
-
-#if KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH
-
- hal_pkey_attribute_t attrs[*attrs_len + attributes_len];
- size_t total;
-
- if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK)
- goto done;
-
- for (int i = 0; err == HAL_OK && i < attributes_len; i++)
- if (attributes[i].length == HAL_PKEY_ATTRIBUTE_NIL)
- err = hal_ks_attribute_delete(bytes, bytes_len, attrs, attrs_len, &total,
- attributes[i].type);
- else
- err = hal_ks_attribute_insert(bytes, bytes_len, attrs, attrs_len, &total,
- attributes[i].type,
- attributes[i].value,
- attributes[i].length);
-
- if (err != HAL_OK)
- cache_release(block);
-
- if (err == HAL_ERROR_RESULT_TOO_LONG)
- continue;
-
- if (err == HAL_OK)
- err = block_update(b, block, &slot->name, chunk, &hint);
-
- goto done;
-
-#endif /* KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH */
-
- } while (++chunk < block->header.total_chunks);
-
- /*
- * If we get here, we're on the slow path, which requires rewriting
- * all the chunks in this object but which can also add or remove
- * chunks from this object. We need to keep track of all the old
- * chunks so we can zero them at the end, and because we can't zero
- * them until we've written out the new chunks, we need enough free
- * blocks to hold all the new chunks.
- *
- * Calculating all of this is extremely tedious, but flash writes
- * are so much more expensive than anything else we do here that
- * it's almost certainly worth it.
- *
- * We don't need the attribute values to compute the sizes, just the
- * attribute sizes, so we scan all the existing blocks, build up a
- * structure with the current attribute types and sizes, modify that
- * according to our arguments, and compute the needed size. Once we
- * have that, we can start rewriting existing blocks. We put all
- * the new stuff at the end, which simplifies this slightly.
- *
- * In theory, this process never requires us to have more than two
- * blocks in memory at the same time (source and destination when
- * copying across chunk boundaries), but having enough cache buffers
- * to keep the whole set in memory will almost certainly make this
- * run faster.
- */
-
- hal_pkey_attribute_t updated_attributes[updated_attributes_len];
- const unsigned total_chunks_old = block->header.total_chunks;
- size_t bytes_available = 0;
-
- updated_attributes_len = 0;
-
- /*
- * Phase 0.1: Walk the old chunks to populate updated_attributes[].
- * This also initializes bytes_available, since we can only get that
- * by reading old chunk zero.
- */
-
- for (chunk = 0; chunk < total_chunks_old; chunk++) {
- int hint = slot->hint + chunk;
-
- if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
- (err = block_read_cached(b, &block)) != HAL_OK)
- goto done;
-
- if (block->header.this_chunk != chunk) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- cache_mark_used(block, b);
-
- uint8_t *bytes = NULL;
- size_t bytes_len = 0;
- unsigned *attrs_len;
-
- if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
- goto done;
-
- hal_pkey_attribute_t attrs[*attrs_len];
- size_t total;
-
- if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK)
- goto done;
-
- if (chunk == 0)
- bytes_available = bytes_len;
-
- for (int i = 0; i < *attrs_len; i++) {
-
- if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes)) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- updated_attributes[updated_attributes_len].type = attrs[i].type;
- updated_attributes[updated_attributes_len].length = attrs[i].length;
- updated_attributes[updated_attributes_len].value = NULL;
- updated_attributes_len++;
- }
- }
-
- /*
- * Phase 0.2: Merge new attributes into updated_attributes[].
- * For each new attribute type, mark any existing attributes of that
- * type for deletion. Append new attributes to updated_attributes[].
- */
-
- for (int i = 0; i < attributes_len; i++) {
-
- for (int j = 0; j < updated_attributes_len; j++)
- if (updated_attributes[j].type == attributes[i].type)
- updated_attributes[j].length = HAL_PKEY_ATTRIBUTE_NIL;
-
- if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes)) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- updated_attributes[updated_attributes_len].type = attributes[i].type;
- updated_attributes[updated_attributes_len].length = attributes[i].length;
- updated_attributes[updated_attributes_len].value = attributes[i].value;
- updated_attributes_len++;
- }
-
- /*
- * Phase 0.3: Prune trailing deletion actions: we don't need them to
- * maintain synchronization with existing attributes, and doing so
- * simplifies logic for updating the final new chunk.
- */
-
- while (updated_attributes_len > 0 &&
- updated_attributes[updated_attributes_len - 1].length == HAL_PKEY_ATTRIBUTE_NIL)
- --updated_attributes_len;
-
- /*
- * Phase 0.4: Figure out how many chunks all this will occupy.
- */
-
- chunk = 0;
-
- for (int i = 0; i < updated_attributes_len; i++) {
-
- if (updated_attributes[i].length == HAL_PKEY_ATTRIBUTE_NIL)
- continue;
-
- const size_t needed = hal_ks_attribute_header_size + updated_attributes[i].length;
-
- if (needed > bytes_available) {
- bytes_available = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES;
- chunk++;
- }
-
- if (needed > bytes_available) {
- err = HAL_ERROR_RESULT_TOO_LONG;
- goto done;
- }
-
- bytes_available -= needed;
- }
-
- const unsigned total_chunks_new = chunk + 1;
-
- /*
- * If there aren't enough free blocks, give up now, before changing anything.
- */
-
- if (db.ksi.used + total_chunks_new > db.ksi.size) {
- err = HAL_ERROR_NO_KEY_INDEX_SLOTS;
- goto done;
- }
-
- /*
- * Phase 1: Deprecate all the old chunks, remember where they were.
- */
-
- unsigned old_blocks[total_chunks_old];
-
- for (chunk = 0; chunk < total_chunks_old; chunk++) {
- int hint = slot->hint + chunk;
- if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
- (err = block_deprecate(b)) != HAL_OK)
- goto done;
- old_blocks[chunk] = b;
- }
-
- /*
- * Phase 2: Write new chunks, copying attributes from old chunks or
- * from attributes[], as needed.
- */
-
- {
- hal_pkey_attribute_t old_attrs[updated_attributes_len], new_attrs[updated_attributes_len];
- unsigned *old_attrs_len = NULL, *new_attrs_len = NULL;
- flash_block_t *old_block = NULL, *new_block = NULL;
- uint8_t *old_bytes = NULL, *new_bytes = NULL;
- size_t old_bytes_len = 0, new_bytes_len = 0;
- unsigned old_chunk = 0, new_chunk = 0;
- size_t old_total = 0, new_total = 0;
-
- int updated_attributes_i = 0, old_attrs_i = 0;
-
- uint32_t new_attr_type;
- size_t new_attr_length;
- const uint8_t *new_attr_value;
-
- while (updated_attributes_i < updated_attributes_len) {
-
- if (old_chunk >= total_chunks_old || new_chunk >= total_chunks_new) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- /*
- * If we've gotten as far as new data that comes from
- * attributes[], we have it in hand and can just copy it.
- */
-
- if (updated_attributes_len - updated_attributes_i <= attributes_len) {
- new_attr_type = updated_attributes[updated_attributes_i].type;
- new_attr_length = updated_attributes[updated_attributes_i].length;
- new_attr_value = updated_attributes[updated_attributes_i].value;
- }
-
- /*
- * Otherwise, we have to read it from an old block, which may in
- * turn require reading in the next old block.
- */
-
- else {
-
- if (old_block == NULL) {
-
- if ((err = block_read_cached(old_blocks[old_chunk], &old_block)) != HAL_OK)
- goto done;
-
- if (old_block->header.this_chunk != old_chunk) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- if ((err = locate_attributes(old_block, old_chunk,
- &old_bytes, &old_bytes_len, &old_attrs_len)) != HAL_OK ||
- (err = hal_ks_attribute_scan(old_bytes, old_bytes_len,
- old_attrs, *old_attrs_len, &old_total)) != HAL_OK)
- goto done;
-
- old_attrs_i = 0;
- }
-
- if (old_attrs_i >= *old_attrs_len) {
- old_chunk++;
- old_block = NULL;
- continue;
- }
-
- new_attr_type = old_attrs[old_attrs_i].type;
- new_attr_length = old_attrs[old_attrs_i].length;
- new_attr_value = old_attrs[old_attrs_i].value;
-
- if (new_attr_type != updated_attributes[updated_attributes_i].type) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- old_attrs_i++;
- }
-
- /*
- * Unless this is a deletion, we should have something to write.
- */
-
- if (new_attr_length != HAL_PKEY_ATTRIBUTE_NIL && new_attr_value == NULL) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- /*
- * Initialize the new block if necessary. If it's the new chunk
- * zero, we need to copy all the non-attribute data from the old
- * chunk zero; otherwise, it's a new empty attribute block.
- */
-
- if (new_block == NULL) {
-
- new_block = cache_pick_lru();
- memset(new_block, 0xFF, sizeof(*new_block));
-
- if (new_chunk == 0) {
- flash_block_t *tmp_block;
- if ((err = block_read_cached(old_blocks[0], &tmp_block)) != HAL_OK)
- goto done;
- if (tmp_block->header.this_chunk != 0) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
- new_block->header.block_type = BLOCK_TYPE_KEY;
- new_block->key.name = slot->name;
- new_block->key.type = tmp_block->key.type;
- new_block->key.curve = tmp_block->key.curve;
- new_block->key.flags = tmp_block->key.flags;
- new_block->key.der_len = tmp_block->key.der_len;
- new_block->key.attributes_len = 0;
- memcpy(new_block->key.der, tmp_block->key.der, tmp_block->key.der_len);
- }
- else {
- new_block->header.block_type = BLOCK_TYPE_ATTR;
- new_block->attr.name = slot->name;
- new_block->attr.attributes_len = 0;
- }
-
- new_block->header.block_status = BLOCK_STATUS_LIVE;
- new_block->header.total_chunks = total_chunks_new;
- new_block->header.this_chunk = new_chunk;
-
- if ((err = locate_attributes(new_block, new_chunk,
- &new_bytes, &new_bytes_len, &new_attrs_len)) != HAL_OK)
- goto done;
-
- new_total = 0;
- }
-
- /*
- * After all that setup, we finally get to write the frelling attribute.
- */
-
- if (new_attr_length != HAL_PKEY_ATTRIBUTE_NIL)
- err = hal_ks_attribute_insert(new_bytes, new_bytes_len, new_attrs, new_attrs_len, &new_total,
- new_attr_type, new_attr_value, new_attr_length);
-
- /*
- * Figure out what to do next: immediately loop for next
- * attribute, write current block, or bail out.
- */
-
- switch (err) {
- case HAL_OK:
- if (++updated_attributes_i < updated_attributes_len)
- continue;
- break;
- case HAL_ERROR_RESULT_TOO_LONG:
- if (new_chunk > 0 && new_attrs_len == 0)
- goto done;
- break;
- default:
- goto done;
- }
-
- /*
- * If we get here, either the current new block is full or we
- * finished the last block, so we need to write it out.
- */
-
- int hint = slot->hint + new_chunk;
-
- if (new_chunk < total_chunks_old)
- err = hal_ks_index_replace(&db.ksi, &slot->name, new_chunk, &b, &hint);
- else
- err = hal_ks_index_add( &db.ksi, &slot->name, new_chunk, &b, &hint);
-
- if (err != HAL_OK || (err = block_write(b, new_block)) != HAL_OK)
- goto done;
-
- cache_mark_used(new_block, b);
-
- new_block = NULL;
- new_chunk++;
- }
-
- /*
- * If number of blocks shrank, we need to clear trailing entries from the index.
- */
-
- for (old_chunk = total_chunks_new; old_chunk < total_chunks_old; old_chunk++) {
- int hint = slot->hint + old_chunk;
-
- err = hal_ks_index_delete(&db.ksi, &slot->name, old_chunk, NULL, &hint);
-
- if (err != HAL_OK)
- goto done;
- }
-
- }
-
- /*
- * Phase 3: Zero the old chunks we deprecated in phase 1.
- */
-
- for (chunk = 0; chunk < total_chunks_old; chunk++)
- if ((err = block_zero(old_blocks[chunk])) != HAL_OK)
- goto done;
-
- err = HAL_OK;
-
- }
-
- done:
- hal_ks_unlock();
- return err;
-
-#warning What happens if something goes wrong partway through this awful mess?
- // We're left in a state with all the old blocks deprecated and
- // (maybe) some of the new blocks current, need to clean that up.
- // Would be nice if we could just reuse the keystore initialization
- // code, but don't quite see how (yet?).
-}
-
-static hal_error_t ks_get_attributes(hal_ks_t *ks,
- hal_pkey_slot_t *slot,
- hal_pkey_attribute_t *attributes,
- const unsigned attributes_len,
- uint8_t *attributes_buffer,
- const size_t attributes_buffer_len)
-{
- if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0 ||
- attributes_buffer == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- for (int i = 0; i < attributes_len; i++) {
- attributes[i].length = 0;
- attributes[i].value = NULL;
- }
-
- uint8_t *abuf = attributes_buffer;
- flash_block_t *block = NULL;
- unsigned chunk = 0;
- unsigned found = 0;
- hal_error_t err = HAL_OK;
- unsigned b;
-
- hal_ks_lock();
-
- do {
- int hint = slot->hint + chunk;
-
- if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK ||
- (err = block_read_cached(b, &block)) != HAL_OK)
- goto done;
-
- if (block->header.this_chunk != chunk) {
- err = HAL_ERROR_IMPOSSIBLE;
- goto done;
- }
-
- if (chunk == 0)
- slot->hint = hint;
-
- cache_mark_used(block, b);
-
- uint8_t *bytes = NULL;
- size_t bytes_len = 0;
- unsigned *attrs_len;
-
- if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK)
- goto done;
-
- if (*attrs_len == 0)
- continue;
-
- hal_pkey_attribute_t attrs[*attrs_len];
-
- if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK)
- goto done;
-
- for (int i = 0; i < attributes_len; i++) {
-
- if (attributes[i].length > 0)
- continue;
-
- int j = 0;
- while (j < *attrs_len && attrs[j].type != attributes[i].type)
- j++;
- if (j >= *attrs_len)
- continue;
- found++;
-
- attributes[i].length = attrs[j].length;
-
- if (attributes_buffer_len == 0)
- continue;
-
- if (attrs[j].length > attributes_buffer + attributes_buffer_len - abuf) {
- err = HAL_ERROR_RESULT_TOO_LONG;
- goto done;
- }
-
- memcpy(abuf, attrs[j].value, attrs[j].length);
- attributes[i].value = abuf;
- abuf += attrs[j].length;
- }
-
- } while (found < attributes_len && ++chunk < block->header.total_chunks);
-
- if (found < attributes_len && attributes_buffer_len > 0)
- err = HAL_ERROR_ATTRIBUTE_NOT_FOUND;
- else
- err = HAL_OK;
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-const hal_ks_driver_t hal_ks_token_driver[1] = {{
- .init = ks_init,
- .shutdown = ks_shutdown,
- .open = ks_open,
- .close = ks_close,
- .store = ks_store,
- .fetch = ks_fetch,
- .delete = ks_delete,
- .match = ks_match,
- .set_attributes = ks_set_attributes,
- .get_attributes = ks_get_attributes
-}};
-
-/*
- * The remaining functions aren't really part of the keystore API per se,
- * but they all involve non-key data which we keep in the keystore
- * because it's the flash we've got.
- */
-
-/*
- * Special bonus init routine used only by the bootloader, so that it
- * can read PINs set by the main firmware. Yes, this is a kludge. We
- * could of course call the real ks_init() routine instead, but it's
- * slow, and we don't want to allow anything that would modify the
- * flash here, so having a special entry point for this kludge is
- * simplest, overall. Sigh.
- */
-
-void hal_ks_init_read_only_pins_only(void)
-{
- unsigned b, best_seen = ~0;
- flash_block_t block[1];
-
- hal_ks_lock();
-
- for (b = 0; b < NUM_FLASH_BLOCKS; b++) {
- if (block_read(b, block) != HAL_OK || block_get_type(block) != BLOCK_TYPE_PIN)
- continue;
- best_seen = b;
- if (block_get_status(block) == BLOCK_STATUS_LIVE)
- break;
- }
-
- if (b != best_seen && best_seen != ~0 && block_read(best_seen, block) != HAL_OK)
- best_seen = ~0;
-
- if (best_seen == ~0) {
- memset(block, 0xFF, sizeof(*block));
- block->pin.wheel_pin = hal_last_gasp_pin;
- }
-
- db.wheel_pin = block->pin.wheel_pin;
- db.so_pin = block->pin.so_pin;
- db.user_pin = block->pin.user_pin;
-
- hal_ks_unlock();
-}
-
-/*
- * Fetch PIN. This is always cached, so just returned cached value.
- */
-
-hal_error_t hal_get_pin(const hal_user_t user,
- const hal_ks_pin_t **pin)
-{
- if (pin == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- hal_error_t err = HAL_OK;
-
- hal_ks_lock();
-
- switch (user) {
- case HAL_USER_WHEEL: *pin = &db.wheel_pin; break;
- case HAL_USER_SO: *pin = &db.so_pin; break;
- case HAL_USER_NORMAL: *pin = &db.user_pin; break;
- default: err = HAL_ERROR_BAD_ARGUMENTS;
- }
-
- hal_ks_unlock();
-
- return err;
-}
-
-/*
- * Fetch PIN block. hint = 0 because we know that the all-zeros UUID
- * should always sort to first slot in the index.
- */
-
-static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block)
-{
- if (block == NULL)
- return HAL_ERROR_IMPOSSIBLE;
-
- hal_error_t err;
- int hint = 0;
- unsigned b_;
-
- if (b == NULL)
- b = &b_;
-
- if ((err = hal_ks_index_find(&db.ksi, &pin_uuid, 0, b, &hint)) != HAL_OK ||
- (err = block_read_cached(*b, block)) != HAL_OK)
- return err;
-
- cache_mark_used(*block, *b);
-
- if (block_get_type(*block) != BLOCK_TYPE_PIN)
- return HAL_ERROR_IMPOSSIBLE;
-
- return HAL_OK;
-}
-
-/*
- * Update the PIN block. This block should always be present, but we
- * have to do the zombie jamboree to make sure we write the new PIN
- * block before destroying the old one. hint = 0 because we know that
- * the all-zeros UUID should always sort to first slot in the index.
- */
-
-static hal_error_t update_pin_block(const unsigned b,
- flash_block_t *block,
- const flash_pin_block_t * const new_data)
-{
- if (block == NULL || new_data == NULL || block_get_type(block) != BLOCK_TYPE_PIN)
- return HAL_ERROR_IMPOSSIBLE;
-
- int hint = 0;
-
- block->pin = *new_data;
-
- return block_update(b, block, &pin_uuid, 0, &hint);
-}
-
-/*
- * Change a PIN.
- */
-
-hal_error_t hal_set_pin(const hal_user_t user,
- const hal_ks_pin_t * const pin)
-{
- if (pin == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- flash_block_t *block;
- hal_error_t err;
- unsigned b;
-
- hal_ks_lock();
-
- if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
- goto done;
-
- flash_pin_block_t new_data = block->pin;
- hal_ks_pin_t *dp, *bp;
-
- switch (user) {
- case HAL_USER_WHEEL: bp = &new_data.wheel_pin; dp = &db.wheel_pin; break;
- case HAL_USER_SO: bp = &new_data.so_pin; dp = &db.so_pin; break;
- case HAL_USER_NORMAL: bp = &new_data.user_pin; dp = &db.user_pin; break;
- default: err = HAL_ERROR_BAD_ARGUMENTS; goto done;
- }
-
- const hal_ks_pin_t old_pin = *dp;
- *dp = *bp = *pin;
-
- if ((err = update_pin_block(b, block, &new_data)) != HAL_OK)
- *dp = old_pin;
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-#if HAL_MKM_FLASH_BACKUP_KLUDGE
-
-/*
- * Horrible insecure kludge in lieu of a battery for the MKM.
- *
- * API here is a little strange: all calls pass a length parameter,
- * but any length other than the compiled in constant just returns an
- * immediate error, there's no notion of buffer max length vs buffer
- * used length, querying for the size of buffer really needed, or
- * anything like that.
- *
- * We might want to rewrite this some day, if we don't replace it with
- * a battery first. For now we just preserve the API as we found it
- * while re-implementing it on top of the new keystore.
- */
-
-hal_error_t hal_mkm_flash_read_no_lock(uint8_t *buf, const size_t len)
-{
- if (buf != NULL && len != KEK_LENGTH)
- return HAL_ERROR_MASTERKEY_BAD_LENGTH;
-
- flash_block_t *block;
- hal_error_t err;
- unsigned b;
-
- if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
- return err;
-
- if (block->pin.kek_set != FLASH_KEK_SET)
- return HAL_ERROR_MASTERKEY_NOT_SET;
-
- if (buf != NULL)
- memcpy(buf, block->pin.kek, len);
-
- return HAL_OK;
-}
-
-hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len)
-{
- hal_ks_lock();
- const hal_error_t err = hal_mkm_flash_read_no_lock(buf, len);
- hal_ks_unlock();
- return err;
-}
-
-hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len)
-{
- if (buf == NULL)
- return HAL_ERROR_BAD_ARGUMENTS;
-
- if (len != KEK_LENGTH)
- return HAL_ERROR_MASTERKEY_BAD_LENGTH;
-
- flash_block_t *block;
- hal_error_t err;
- unsigned b;
-
- hal_ks_lock();
-
- if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
- goto done;
-
- flash_pin_block_t new_data = block->pin;
-
- new_data.kek_set = FLASH_KEK_SET;
- memcpy(new_data.kek, buf, len);
-
- err = update_pin_block(b, block, &new_data);
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-hal_error_t hal_mkm_flash_erase(const size_t len)
-{
- if (len != KEK_LENGTH)
- return HAL_ERROR_MASTERKEY_BAD_LENGTH;
-
- flash_block_t *block;
- hal_error_t err;
- unsigned b;
-
- hal_ks_lock();
-
- if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
- goto done;
-
- flash_pin_block_t new_data = block->pin;
-
- new_data.kek_set = FLASH_KEK_SET;
- memset(new_data.kek, 0, len);
-
- err = update_pin_block(b, block, &new_data);
-
- done:
- hal_ks_unlock();
- return err;
-}
-
-#endif /* HAL_MKM_FLASH_BACKUP_KLUDGE */
-
-
-/*
- * Local variables:
- * indent-tabs-mode: nil
- * End:
- */