diff options
-rw-r--r-- | hal_internal.h | 10 | ||||
-rw-r--r-- | hashsig.c | 334 | ||||
-rw-r--r-- | hashsig.h | 4 | ||||
-rw-r--r-- | tests/test-rpc_hashsig.c | 20 |
4 files changed, 296 insertions, 72 deletions
diff --git a/hal_internal.h b/hal_internal.h index d3bf706..ae62ff0 100644 --- a/hal_internal.h +++ b/hal_internal.h @@ -125,17 +125,17 @@ static inline hal_error_t hal_io_wait_valid2(const hal_core_t *core1, const hal_ /* * Static memory allocation on start-up. Don't use this except where - * really necessary. By design, there's no way to free this, we don't - * want to have to manage a heap. Intent is just to allow allocation - * things like the large-ish ks_index arrays used by ks_flash.c from a - * memory source external to the executable image file (eg, from the - * secondary SDRAM chip on the Cryptech Alpha board). + * really necessary. Intent is just to allow allocation of things like + * the large-ish ks_index arrays used by ks_flash.c from a memory source + * external to the executable image file (eg, from the secondary SDRAM + * chip on the Cryptech Alpha board). * * We shouldn't need this except on the HSM, so for now we don't bother * with implementing a version of this based on malloc() or sbrk(). */ extern void *hal_allocate_static_memory(const size_t size); +extern hal_error_t hal_free_static_memory(const void * const ptr); /* * Longest hash block and digest we support at the moment. @@ -185,7 +185,7 @@ static inline size_t lmots_signature_len(lmots_parameter_t * const lmots) #if RPC_CLIENT == RPC_CLIENT_LOCAL /* Given a key with most fields filled in, generate the lmots private and - * public key components. + * public key components (x and K). * Let the caller worry about storage. */ static hal_error_t lmots_generate(lmots_key_t * const key) @@ -502,8 +502,8 @@ static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key, if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS) return HAL_ERROR_BAD_ARGUMENTS; - // u32str(lmots_type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1] - /* we also store K, to speed up restart */ + // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1] + /* K is not an integral part of the private key, but we store it to speed up restart */ /* * Calculate data length. @@ -514,10 +514,10 @@ static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key, check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len; + check(hal_asn1_encode_bytestring32(&key->K, NULL, &len, 0)); vlen += len; for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_encode_bytestring32(&key->x[i], NULL, &len, 0)); vlen += len; } - check(hal_asn1_encode_bytestring32(&key->K, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); @@ -539,10 +539,10 @@ static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key, check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len; + check(hal_asn1_encode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len; for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_encode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len; } - check(hal_asn1_encode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len; return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); @@ -580,20 +580,22 @@ static hal_error_t lmots_private_key_from_der(lmots_key_t *key, const uint8_t *d = privkey + hlen; size_t len; - // u32str(lmots_type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1] + // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1] lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, vlen)); d += len; vlen -= len; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_decode_size_t(&key->q, d, &len, vlen)); d += len; vlen -= len; - for (size_t i = 0; i < key->lmots->p; ++i) { - check(hal_asn1_decode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len; - } check(hal_asn1_decode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len; + if (key->x != NULL) { + for (size_t i = 0; i < key->lmots->p; ++i) { + check(hal_asn1_decode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len; + } - if (d != privkey + privkey_len) - return HAL_ERROR_ASN1_PARSE_FAILED; + if (d != privkey + privkey_len) + return HAL_ERROR_ASN1_PARSE_FAILED; + } return HAL_OK; } @@ -677,7 +679,7 @@ static hal_error_t lms_generate(lms_key_t *key) hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMOTS, .curve = HAL_CURVE_NONE, - .flags = (key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0 + .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0) }; hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; @@ -745,10 +747,7 @@ static hal_error_t lms_generate(lms_key_t *key) static hal_error_t lms_delete(const lms_key_t * const key) { - hal_pkey_slot_t slot; - memset(&slot, 0, sizeof(slot)); - slot.flags = (key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0; - + hal_pkey_slot_t slot = {0}; hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; /* delete the lmots keys */ @@ -787,7 +786,6 @@ static hal_error_t lms_sign(lms_key_t * const key, /* fetch and decode the lmots signing key from the keystore */ hal_pkey_slot_t slot; memset(&slot, 0, sizeof(slot)); - slot.flags = (key->level == 0) ? HAL_KEY_FLAG_TOKEN : 0; memcpy(&slot.name, &key->lmots_keys[key->q], sizeof(slot.name)); lmots_key_t lmots_key; @@ -823,6 +821,8 @@ static hal_error_t lms_sign(lms_key_t * const key, /* update and store q before returning the signature */ ++key->q; check(lms_private_key_to_der(key, der, &der_len, sizeof(der))); + slot.type = HAL_KEY_TYPE_HASHSIG_LMS; + slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN : 0); memcpy(&slot.name, &key->I, sizeof(slot.name)); check(hal_ks_rewrite_der(ks, &slot, der, der_len)); @@ -1069,10 +1069,7 @@ static size_t lms_private_key_to_der_len(const lms_key_t * const key) size_t len = 0; return lms_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } -#endif -#if 0 -// used in restart - caller will have to allocate and attach storage for lmots_keys[] and T[] static hal_error_t lms_private_key_from_der(lms_key_t *key, const uint8_t *der, const size_t der_len) { @@ -1132,6 +1129,7 @@ typedef struct hal_hashsig_key hss_key_t; struct hal_hashsig_key { hal_key_type_t type; hss_key_t *next; + hal_uuid_t name; size_t L; lms_parameter_t *lms; lmots_parameter_t *lmots; @@ -1191,12 +1189,10 @@ static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size) return ret; } -/* called from pkey_local_generate_hashsig */ -hal_error_t hal_hashsig_key_gen(hal_core_t *core, - hal_hashsig_key_t **key_, - const size_t L, - const lms_algorithm_t lms_type, - const lmots_algorithm_t lmots_type) +static hal_error_t hss_alloc(hal_hashsig_key_t **key_, + const size_t L, + const lms_algorithm_t lms_type, + const lmots_algorithm_t lmots_type) { if (key_ == NULL) return HAL_ERROR_BAD_ARGUMENTS; @@ -1221,19 +1217,11 @@ hal_error_t hal_hashsig_key_gen(hal_core_t *core, if (lmots_private_key_len(lmots) > HAL_KS_BLOCK_SIZE) return HAL_ERROR_UNSUPPORTED_KEY; - /* w=2 fails on the Alpha, as does w=4 with L=2, because the signature - * exceeds the meagre 4096-byte RPC packet size. - */ if (hss_signature_len(L, lms, lmots) > HAL_RPC_MAX_PKT_SIZE) return HAL_ERROR_UNSUPPORTED_KEY; - /* check flash keystore for space to store the root tree */ - size_t available; - check(hal_ks_available(hal_ks_token, &available)); - if (available < h2 + 2) - return HAL_ERROR_NO_KEY_INDEX_SLOTS; - /* check volatile keystore for space to store the lower-level trees */ + size_t available; check(hal_ks_available(hal_ks_volatile, &available)); if (available < (L - 1) * (h2 + 1)) return HAL_ERROR_NO_KEY_INDEX_SLOTS; @@ -1247,7 +1235,7 @@ hal_error_t hal_hashsig_key_gen(hal_core_t *core, L * lms_sig_len + L * lms_pub_len + L * h2 * sizeof(hal_uuid_t) + - L * (2 * h2 - 1) * sizeof(bytestring32)); + L * (2 * h2) * sizeof(bytestring32)); uint8_t *mem = hal_allocate_static_memory(len); if (mem == NULL) return HAL_ERROR_ALLOCATION_FAILURE; @@ -1255,6 +1243,7 @@ hal_error_t hal_hashsig_key_gen(hal_core_t *core, /* allocate the key that will stay in working memory */ hss_key_t *key = gnaw(&mem, &len, sizeof(hss_key_t)); + *key_ = key; key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE; key->L = L; key->lms = lms; @@ -1266,34 +1255,62 @@ hal_error_t hal_hashsig_key_gen(hal_core_t *core, /* allocate the list of lms trees */ key->lms_keys = gnaw(&mem, &len, L * sizeof(lms_key_t)); - - /* generate the lms trees */ for (size_t i = 0; i < L; ++i) { + /* XXX some of this is redundant to lms_private_key_from_der */ lms_key_t * lms_key = &key->lms_keys[i]; lms_key->type = HAL_KEY_TYPE_HASHSIG_LMS; lms_key->lms = lms; lms_key->lmots = lmots; lms_key->level = i; lms_key->lmots_keys = (hal_uuid_t *)gnaw(&mem, &len, h2 * sizeof(hal_uuid_t)); - lms_key->T = gnaw(&mem, &len, (2 * h2 - 1) * sizeof(bytestring32)); + lms_key->T = gnaw(&mem, &len, (2 * h2) * sizeof(bytestring32)); lms_key->signature = gnaw(&mem, &len, lms_sig_len); lms_key->signature_len = lms_sig_len; lms_key->pubkey = gnaw(&mem, &len, lms_pub_len); lms_key->pubkey_len = lms_pub_len; + } + + return HAL_OK; +} + +/* called from pkey_local_generate_hashsig */ +hal_error_t hal_hashsig_key_gen(hal_core_t *core, + hal_hashsig_key_t **key_, + const size_t L, + const lms_algorithm_t lms_type, + const lmots_algorithm_t lmots_type) +{ + /* hss_alloc does most of the checks */ + + /* check flash keystore for space to store the root tree */ + lms_parameter_t *lms = lms_select_parameter_set(lms_type); + if (lms == NULL) + return HAL_ERROR_BAD_ARGUMENTS; + size_t available; + check(hal_ks_available(hal_ks_token, &available)); + if (available < (1U << lms->h) + 2) + return HAL_ERROR_NO_KEY_INDEX_SLOTS; + + check(hss_alloc(key_, L, lms_type, lmots_type)); + hss_key_t *key = *key_; + + /* generate the lms trees */ + for (size_t i = 0; i < L; ++i) { + lms_key_t * lms_key = &key->lms_keys[i]; check(lms_generate(lms_key)); if (i > 0) /* sign this tree with the previous */ check(lms_sign(&key->lms_keys[i-1], - (const uint8_t * const)lms_key->pubkey, lms_pub_len, - lms_key->signature, NULL, lms_sig_len)); + (const uint8_t * const)lms_key->pubkey, lms_public_key_len(key->lms), + lms_key->signature, NULL, lms_signature_len(key->lms, key->lmots))); /* store the lms key */ hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .curve = HAL_CURVE_NONE, - .flags = (i == 0) ? HAL_KEY_FLAG_TOKEN: 0 + .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((i == 0) ? HAL_KEY_FLAG_TOKEN: 0) }; hal_ks_t *ks = (i == 0) ? hal_ks_token : hal_ks_volatile; uint8_t der[lms_private_key_to_der_len(lms_key)]; @@ -1307,13 +1324,12 @@ hal_error_t hal_hashsig_key_gen(hal_core_t *core, memcpy(&key->I, &key->lms_keys[0].I, sizeof(key->I)); memcpy(&key->T1, &key->lms_keys[0].T1, sizeof(key->T1)); - *key_ = key; - /* pkey_local_generate_hashsig stores the key */ return HAL_OK; } +/* caller will delete the hss key from the keystore */ hal_error_t hal_hashsig_key_delete(const hal_hashsig_key_t * const key) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE) @@ -1324,6 +1340,7 @@ hal_error_t hal_hashsig_key_delete(const hal_hashsig_key_t * const key) check(lms_delete(&key->lms_keys[level])); /* XXX free memory, if supported */ + (void)hal_free_static_memory(key); /* remove from global hss_keys linked list */ /* XXX or mark it unused, for possible re-use */ @@ -1536,10 +1553,11 @@ hal_error_t hal_hashsig_private_key_to_der(const hal_hashsig_key_t * const key, size_t len, vlen = 0, hlen; - check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len; - check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; - check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; - check(hal_asn1_encode_uuid((hal_uuid_t *)&key->lms_keys[0].I, NULL, &len, 0)); vlen += len; + check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len; + check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; + check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; + check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; + check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); @@ -1558,10 +1576,11 @@ hal_error_t hal_hashsig_private_key_to_der(const hal_hashsig_key_t * const key, uint8_t *d = der + hlen; memset(d, 0, vlen); - check(hal_asn1_encode_size_t(key->L, d, &len, vlen)); d += len; vlen -= len; - check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len; - check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; - check(hal_asn1_encode_uuid((hal_uuid_t *)&key->lms_keys[0].I, d, &len, vlen)); d += len; vlen -= len; + check(hal_asn1_encode_size_t(key->L, d, &len, vlen)); d += len; vlen -= len; + check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len; + check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; + check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; + check(hal_asn1_encode_bytestring32(&key->T1, d, &len, vlen)); d += len; vlen -= len; return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); @@ -1582,7 +1601,7 @@ hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_, memset(keybuf, 0, keybuf_len); - hss_key_t *key = keybuf; + hss_key_t *key = *key_ = keybuf; key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE; @@ -1614,8 +1633,8 @@ hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_, lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n; key->lmots = lmots_select_parameter_set(lmots_type); - hal_uuid_t I; - check(hal_asn1_decode_uuid(&I, d, &n, vlen)); d += n; vlen -= n; + check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n; + check(hal_asn1_decode_bytestring32(&key->T1, d, &n, vlen)); d += n; vlen -= n; if (d != privkey + privkey_len) return HAL_ERROR_ASN1_PARSE_FAILED; @@ -1626,12 +1645,12 @@ hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_, * and not molest ours.) */ for (hss_key_t *hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) { - if (hal_uuid_cmp(&I, (hal_uuid_t *)&hss_key->lms_keys[0].I) == 0) { + if (memcmp(&key->I, &hss_key->lms_keys[0].I, sizeof(key->I)) == 0) { *key_ = hss_key; - return HAL_OK; } } - return HAL_ERROR_KEY_NOT_FOUND; // or IMPOSSIBLE? + + return HAL_OK; } hal_error_t hal_hashsig_public_key_to_der(const hal_hashsig_key_t * const key, @@ -1838,3 +1857,202 @@ hal_error_t hal_hashsig_public_key_der_to_xdr(const uint8_t * const der, const s return HAL_OK; } + +#if RPC_CLIENT == RPC_CLIENT_LOCAL +/* Reinitialize the hashsig key structures after a device restart */ +hal_error_t hal_hashsig_ks_init(void) +{ + const hal_client_handle_t client = { -1 }; + const hal_session_handle_t session = { HAL_HANDLE_NONE }; + hal_uuid_t prev_name = {{0}}; + unsigned len; + hal_pkey_slot_t slot = {0}; + uint8_t der[HAL_KS_WRAPPED_KEYSIZE]; + size_t der_len; + + /* Find all hss private keys */ + while ((hal_ks_match(hal_ks_token, client, session, + HAL_KEY_TYPE_HASHSIG_PRIVATE, HAL_CURVE_NONE, 0, 0, NULL, 0, + &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { + hal_hashsig_key_t keybuf, *key; + if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK || + hal_hashsig_private_key_from_der(&key, (void *)&keybuf, sizeof(keybuf), der, der_len) != HAL_OK) { + (void)hal_ks_delete(hal_ks_token, &slot); + continue; + } + + /* Make sure we have the lms key */ + hal_pkey_slot_t lms_slot = {0}; + lms_key_t lms_key; + memcpy(&lms_slot.name, &key->I, sizeof(lms_slot.name)); + if (hal_ks_fetch(hal_ks_token, &lms_slot, der, &der_len, sizeof(der)) != HAL_OK || + lms_private_key_from_der(&lms_key, der, der_len) != HAL_OK || + /* check keys for consistency */ + lms_key.lms != key->lms || + lms_key.lmots != key->lmots || + memcmp(&lms_key.I, &key->I, sizeof(lms_key.I)) != 0 || + /* optimistically allocate the full hss key structure */ + hss_alloc(&key, key->L, key->lms->type, key->lmots->type) != HAL_OK) { + (void)hal_ks_delete(hal_ks_token, &slot); + (void)hal_ks_delete(hal_ks_token, &lms_slot); + continue; + } + + /* hss_alloc redefines key, so copy fields from the old version of the key */ + memcpy(&key->I, &keybuf.I, sizeof(key->I)); + memcpy(&key->T1, &keybuf.T1, sizeof(key->T1)); + key->name = slot.name; + + /* initialize top-level lms key (beyond what hss_alloc did) */ + memcpy(&key->lms_keys[0].I, &lms_key.I, sizeof(lms_key.I)); + key->lms_keys[0].q = lms_key.q; + + prev_name = slot.name; + } + + /* Delete orphaned lms keys */ + memset(&prev_name, 0, sizeof(prev_name)); + while ((hal_ks_match(hal_ks_token, client, session, + HAL_KEY_TYPE_HASHSIG_LMS, HAL_CURVE_NONE, 0, 0, NULL, 0, + &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { + hss_key_t *hss_key; + for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) { + if (memcmp(&slot.name, &hss_key->I, sizeof(slot.name)) == 0) + break; + } + if (hss_key == NULL) { + (void)hal_ks_delete(hal_ks_token, &slot); + continue; + } + + prev_name = slot.name; + } + + /* Find all lmots keys */ + memset(&prev_name, 0, sizeof(prev_name)); + while ((hal_ks_match(hal_ks_token, client, session, + HAL_KEY_TYPE_HASHSIG_LMOTS, HAL_CURVE_NONE, 0, 0, NULL, 0, + &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { + if (hss_keys == NULL) { + /* if no hss keys were recovered, all lmots keys are orphaned */ + (void)hal_ks_delete(hal_ks_token, &slot); + continue; + } + + lmots_key_t lmots_key = {0}; + if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK || + lmots_private_key_from_der(&lmots_key, der, der_len) != HAL_OK) { + (void)hal_ks_delete(hal_ks_token, &slot); + continue; + } + + hss_key_t *hss_key; + for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) { + if (memcmp(&hss_key->I, &lmots_key.I, sizeof(lmots_key.I)) == 0) + break; + } + if (hss_key == NULL) { + /* delete orphaned key */ + (void)hal_ks_delete(hal_ks_token, &slot); + continue; + } + + /* record this lmots key in the top-level lms key */ + memcpy(&hss_key->lms_keys[0].lmots_keys[lmots_key.q], &slot.name, sizeof(slot.name)); + + /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */ + size_t r = (1U << hss_key->lms->h) + lmots_key.q; + uint8_t statebuf[512]; + hal_hash_state_t *state = NULL; + hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)); + hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I)); + uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l)); + uint16_t s = u16str(D_LEAF); hal_hash_update(state, (const uint8_t *)&s, sizeof(s)); + hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)); + hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r])); + + prev_name = slot.name; + } + + /* After all keys have been read, scan for completeness. */ + hal_uuid_t uuid_0 = {{0}}; + hss_key_t *hss_key, *hss_next = NULL; + for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_next) { + hss_next = hss_key->next; + int fail = 0; + for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) { + if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) == 0) { + fail = 1; + break; + } + } + if (fail) { + fail: + /* lms key is incomplete, give up on it */ + /* delete lmots keys */ + for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) { + if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) != 0) { + memcpy(&slot.name, &hss_key->lms_keys[0].lmots_keys[i], sizeof(slot.name)); + (void)hal_ks_delete(hal_ks_token, &slot); + } + } + /* delete lms key */ + memcpy(&slot.name, &hss_key->I, sizeof(slot.name)); + (void)hal_ks_delete(hal_ks_token, &slot); + /* delete hss key */ + slot.name = hss_key->name; + (void)hal_ks_delete(hal_ks_token, &slot); + /* remove the hss key from the key list */ + if (hss_keys == hss_key) { + hss_keys = hss_key->next; + } + else { + for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) { + if (prev->next == hss_key) { + prev->next = hss_key->next; + break; + } + } + } + (void)hal_free_static_memory(hss_key); + continue; + } + + /* generate the rest of T[] */ + for (size_t r = (1U << hss_key->lms->h) - 1; r > 0; --r) { + uint8_t statebuf[512]; + hal_hash_state_t *state = NULL; + hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)); + hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I)); + uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l)); + uint16_t s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); + hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r], sizeof(hss_key->lms_keys[0].T[r])); + hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r+1], sizeof(hss_key->lms_keys[0].T[r])); + hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r])); + } + if (memcmp(&hss_key->lms_keys[0].T[1], &hss_key->T1, sizeof(hss_key->lms_keys[0].T[1])) != 0) + goto fail; + + /* generate the lower-level lms keys */ + for (size_t i = 1; i < hss_key->L; ++i) { + lms_key_t * lms_key = &hss_key->lms_keys[i]; + if (lms_generate(lms_key) != HAL_OK) + goto fail; + + /* store the lms key */ + slot.type = HAL_KEY_TYPE_HASHSIG_LMS; + slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE; + memcpy(&slot.name, &lms_key->I, sizeof(slot.name)); + if (lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)) != HAL_OK || + hal_ks_store(hal_ks_volatile, &slot, der, der_len) != HAL_OK || + /* sign this lms key with the previous */ + lms_sign(&hss_key->lms_keys[i-1], + (const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len, + lms_key->signature, NULL, lms_key->signature_len) != HAL_OK) + goto fail; + } + } + + return HAL_OK; +} +#endif @@ -1,5 +1,5 @@ /* - * hashsig.c + * hashsig.h * --------- * Implementation of draft-mcgrew-hash-sigs-08.txt * @@ -113,6 +113,6 @@ extern size_t hal_hashsig_lmots_private_key_len(const lmots_algorithm_t lmots_ty extern hal_error_t hal_hashsig_public_key_der_to_xdr(const uint8_t * const der, const size_t der_len, uint8_t * const xdr, size_t * const xdr_len , const size_t xdr_max); -//extern hal_error_t hal_hashsig_restart(...); +extern hal_error_t hal_hashsig_ks_init(void); #endif /* _HAL_HASHSIG_H_ */ diff --git a/tests/test-rpc_hashsig.c b/tests/test-rpc_hashsig.c index b93f11e..00728c3 100644 --- a/tests/test-rpc_hashsig.c +++ b/tests/test-rpc_hashsig.c @@ -264,7 +264,7 @@ static int test_hashsig_sign(const size_t L, const lms_algorithm_t lms_type, const lmots_algorithm_t lmots_type, size_t iterations, - int save) + int save, int keep) { const hal_client_handle_t client = {HAL_HANDLE_NONE}; const hal_session_handle_t session = {HAL_HANDLE_NONE}; @@ -287,7 +287,7 @@ static int test_hashsig_sign(const size_t L, lose("Error closing %s: %s\n", save_name, strerror(errno)); } - hal_key_flags_t flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE; + hal_key_flags_t flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | HAL_KEY_FLAG_TOKEN; printf("Starting hashsig key test: L %lu, lms type %u (h=%lu), lmots type %u (w=%lu)\n", L, lms_type, lms_type_to_h(lms_type), lmots_type, lmots_type_to_w(lmots_type)); @@ -399,8 +399,10 @@ static int test_hashsig_sign(const size_t L, } } - if ((err = hal_rpc_pkey_delete(private_key)) != HAL_OK) - lose("Could not delete private key: %s\n", hal_error_string(err)); + if (!keep) { + if ((err = hal_rpc_pkey_delete(private_key)) != HAL_OK) + lose("Could not delete private key: %s\n", hal_error_string(err)); + } if ((err = hal_rpc_pkey_delete(public_key)) != HAL_OK) lose("Could not delete public key: %s\n", hal_error_string(err)); @@ -460,7 +462,7 @@ int main(int argc, char *argv[]) size_t L_lo = 0, L_hi = 0; size_t lms_lo = 5, lms_hi = 0; size_t lmots_lo = 3, lmots_hi = 0; - int save = 0; + int save = 0, keep = 0; char *p; hal_error_t err; int ok = 1; @@ -476,11 +478,12 @@ Usage: %s [-d] [-i] [-p pin] [-t] [-L n] [-l n] [-o n] [-n n] [-s] [-r file]\n\ -o: LM-OTS type (1..4)\n\ -n: number of signatures to generate (0..'max')\n\ -s: save generated public key and signatures\n\ + -k: keep (don't delete) the generated keys on the hsm\n\ -r: read and pretty-print a saved signature file\n\ Numeric arguments can be a single number or a range, e.g. '1..4'\n"; int opt; - while ((opt = getopt(argc, argv, "ditp:L:l:o:n:sr:h?")) != -1) { + while ((opt = getopt(argc, argv, "ditp:L:l:o:n:skr:h?")) != -1) { switch (opt) { case 'd': debug = 1; @@ -526,6 +529,9 @@ Numeric arguments can be a single number or a range, e.g. '1..4'\n"; case's': save = 1; break; + case 'k': + keep = 1; + break; case 'r': ok &= read_sig(optarg); do_default = 0; @@ -572,7 +578,7 @@ Numeric arguments can be a single number or a range, e.g. '1..4'\n"; for (size_t L = L_lo; L <= L_hi; ++L) { for (lms_algorithm_t lms_type = lms_lo; lms_type <= lms_hi; ++lms_type) { for (lmots_algorithm_t lmots_type = lmots_lo; lmots_type <= lmots_hi; ++lmots_type) { - ok &= test_hashsig_sign(L, lms_type, lmots_type, iterations, save); + ok &= test_hashsig_sign(L, lms_type, lmots_type, iterations, save, keep); } } } |