diff options
-rw-r--r-- | tests/test-ecdsa.c | 110 | ||||
-rw-r--r-- | tests/test-ecdsa.h | 116 | ||||
-rw-r--r-- | tests/test-ecdsa.py | 123 |
3 files changed, 295 insertions, 54 deletions
diff --git a/tests/test-ecdsa.c b/tests/test-ecdsa.c index 0d3334e..fbdb300 100644 --- a/tests/test-ecdsa.c +++ b/tests/test-ecdsa.c @@ -110,53 +110,83 @@ static void set_next_random(const uint8_t * const data, const size_t length) * Run one keygen test from test vectors. */ -static int test_keygen_static(const hal_ecdsa_curve_t curve) +static int test_against_static_vectors(const ecdsa_tc_t * const tc) { - uint8_t keybuf[hal_ecdsa_key_t_size]; - hal_ecdsa_key_t *key = NULL; hal_error_t err; - const uint8_t *d, *Qx, *Qy; - size_t d_len, Qx_len, Qy_len; - switch (curve) { - - case HAL_ECDSA_CURVE_P256: - printf("ECDSA P-256 key generation test\n"); - d = p256_d; d_len = sizeof(p256_d); - Qx = p256_Qx; Qx_len = sizeof(p256_Qx); - Qy = p256_Qy; Qy_len = sizeof(p256_Qy); - break; + set_next_random(tc->d, tc->d_len); - case HAL_ECDSA_CURVE_P384: - printf("ECDSA P-384 key generation test\n"); - d = p384_d; d_len = sizeof(p384_d); - Qx = p384_Qx; Qx_len = sizeof(p384_Qx); - Qy = p384_Qy; Qy_len = sizeof(p384_Qy); - break; + uint8_t keybuf1[hal_ecdsa_key_t_size]; + hal_ecdsa_key_t *key1 = NULL; - default: - printf("Unsupported ECDSA curve type\n"); - return 0; - } - - set_next_random(d, d_len); - - if ((err = hal_ecdsa_key_gen(&key, keybuf, sizeof(keybuf), curve)) != HAL_OK) + if ((err = hal_ecdsa_key_gen(&key1, keybuf1, sizeof(keybuf1), tc->curve)) != HAL_OK) return printf("hal_ecdsa_key_gen() failed: %s\n", hal_error_string(err)), 0; - uint8_t Rx[Qx_len], Ry[Qy_len]; - size_t Rx_len, Ry_len; + uint8_t Qx[tc->Qx_len], Qy[tc->Qy_len]; + size_t Qx_len, Qy_len; - if ((err = hal_ecdsa_key_get_public(key, Rx, &Rx_len, sizeof(Rx), Ry, &Ry_len, sizeof(Ry))) != HAL_OK) + if ((err = hal_ecdsa_key_get_public(key1, Qx, &Qx_len, sizeof(Qx), Qy, &Qy_len, sizeof(Qy))) != HAL_OK) return printf("hal_ecdsa_key_get_public() failed: %s\n", hal_error_string(err)), 0; - if (Qx_len != Rx_len || memcmp(Qx, Rx, Rx_len) != 0) + if (tc->Qx_len != Qx_len || memcmp(tc->Qx, Qx, Qx_len) != 0) return printf("Qx mismatch\n"), 0; - if (Qy_len != Ry_len || memcmp(Qy, Ry, Ry_len) != 0) + if (tc->Qy_len != Qy_len || memcmp(tc->Qy, Qy, Qy_len) != 0) return printf("Qy mismatch\n"), 0; + if (hal_ecdsa_key_to_der_len(key1) != tc->key_len) + return printf("DER Key length mismatch\n"), 0; + + uint8_t keyder[tc->key_len]; + size_t keyder_len; + + if ((err = hal_ecdsa_key_to_der(key1, keyder, &keyder_len, sizeof(keyder))) != HAL_OK) + return printf("hal_ecdsa_key_to_der() failed: %s\n", hal_error_string(err)), 0; + + uint8_t keybuf2[hal_ecdsa_key_t_size]; + hal_ecdsa_key_t *key2 = NULL; + + if ((err = hal_ecdsa_key_from_der(&key2, keybuf2, sizeof(keybuf2), keyder, keyder_len)) != HAL_OK) + return printf("hal_ecdsa_key_from_der() failed: %s\n", hal_error_string(err)), 0; + + if (memcmp(key1, key2, hal_ecdsa_key_t_size) != 0) + return printf("Key mismatch after read/write cycle\n"), 0; + + set_next_random(tc->k, tc->k_len); + + uint8_t sig[tc->sig_len]; + size_t sig_len; + + if ((err = hal_ecdsa_sign(key1, tc->H, tc->H_len, sig, &sig_len, sizeof(sig))) != HAL_OK) + return printf("hal_ecdsa_sign() failed: %s\n", hal_error_string(err)), 0; + + if (sig_len != tc->sig_len || memcmp(sig, tc->sig, tc->sig_len) != 0) + return printf("Signature mismatch\n"), 0; + + if ((err = hal_ecdsa_verify(key2, tc->H, tc->H_len, sig, sig_len)) != HAL_OK) + return printf("hal_ecdsa_verify(private) failed: %s\n", hal_error_string(err)), 0; + + hal_ecdsa_key_clear(key2); + key2 = NULL; + + if ((err = hal_ecdsa_key_load_private(&key2, keybuf2, sizeof(keybuf2), tc->curve, + tc->Qx, tc->Qx_len, tc->Qy, tc->Qy_len, tc->d, tc->d_len)) != HAL_OK) + return printf("hal_ecdsa_load_private() failed: %s\n", hal_error_string(err)), 0; + + if (memcmp(key1, key2, hal_ecdsa_key_t_size) != 0) + return printf("Key mismatch after hal_ecdsa_load_private_key()\n"), 0; + + hal_ecdsa_key_clear(key2); + key2 = NULL; + + if ((err = hal_ecdsa_key_load_public(&key2, keybuf2, sizeof(keybuf2), tc->curve, + tc->Qx, tc->Qx_len, tc->Qy, tc->Qy_len)) != HAL_OK) + return printf("hal_ecdsa_load_public() failed: %s\n", hal_error_string(err)), 0; + + if ((err = hal_ecdsa_verify(key2, tc->H, tc->H_len, sig, sig_len)) != HAL_OK) + return printf("hal_ecdsa_verify(public) failed: %s\n", hal_error_string(err)), 0; + return 1; } @@ -261,16 +291,12 @@ static void _time_check(const struct timeval t0, const int ok) * Run tests for one ECDSA curve. */ -static int test_ecdsa(const hal_ecdsa_curve_t curve) +static int test_ecdsa(const ecdsa_tc_t * const tc) { int ok = 1; - - if (curve == HAL_ECDSA_CURVE_P256 || curve == HAL_ECDSA_CURVE_P384) - time_check(test_keygen_static(curve)); - - time_check(test_keygen_sign_verify(curve)); - + time_check(test_against_static_vectors(tc)); + time_check(test_keygen_sign_verify(tc->curve)); return ok; } @@ -291,7 +317,11 @@ int main(int argc, char *argv[]) printf("\"%8.8s\" \"%4.4s\"\n\n", name, version); - return !test_ecdsa(HAL_ECDSA_CURVE_P256) || !test_ecdsa(HAL_ECDSA_CURVE_P384); + for (int i = 0; i < sizeof(ecdsa_tc)/sizeof(*ecdsa_tc); i++) + if (!test_ecdsa(&ecdsa_tc[i])) + return 1; + + return 0; } /* diff --git a/tests/test-ecdsa.h b/tests/test-ecdsa.h index 61124e4..ca51858 100644 --- a/tests/test-ecdsa.h +++ b/tests/test-ecdsa.h @@ -58,6 +58,19 @@ static const uint8_t p256_k[] = { /* 32 bytes */ 0x19, 0x65, 0xc7, 0xb1, 0x34, 0xee, 0x45, 0xd0 }; +static const uint8_t p256_key[] = { /* 121 bytes */ + 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x70, 0xa1, 0x2c, 0x2d, 0xb1, + 0x68, 0x45, 0xed, 0x56, 0xff, 0x68, 0xcf, 0xc2, 0x1a, 0x47, 0x2b, 0x3f, + 0x04, 0xd7, 0xd6, 0x85, 0x1b, 0xf6, 0x34, 0x9f, 0x2d, 0x7d, 0x5b, 0x34, + 0x52, 0xb3, 0x8a, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, + 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0x81, 0x01, 0xec, + 0xe4, 0x74, 0x64, 0xa6, 0xea, 0xd7, 0x0c, 0xf6, 0x9a, 0x6e, 0x2b, 0xd3, + 0xd8, 0x86, 0x91, 0xa3, 0x26, 0x2d, 0x22, 0xcb, 0xa4, 0xf7, 0x63, 0x5e, + 0xaf, 0xf2, 0x66, 0x80, 0xa8, 0xd8, 0xa1, 0x2b, 0xa6, 0x1d, 0x59, 0x92, + 0x35, 0xf6, 0x7d, 0x9c, 0xb4, 0xd5, 0x8f, 0x17, 0x83, 0xd3, 0xca, 0x43, + 0xe7, 0x8f, 0x0a, 0x5a, 0xba, 0xa6, 0x24, 0x07, 0x99, 0x36, 0xc0, 0xc3, 0xa9 +}; + static const uint8_t p256_kinv[] = { /* 32 bytes */ 0x6a, 0x66, 0x4f, 0xa1, 0x15, 0x35, 0x6d, 0x33, 0xf1, 0x63, 0x31, 0xb5, 0x4c, 0x4e, 0x7c, 0xe9, 0x67, 0x96, 0x53, 0x86, 0xc7, 0xdc, 0xbf, 0x29, @@ -76,6 +89,15 @@ static const uint8_t p256_s[] = { /* 32 bytes */ 0x92, 0xdb, 0xea, 0xa1, 0xaf, 0x2b, 0xc3, 0x67 }; +static const uint8_t p256_sig[] = { /* 70 bytes */ + 0x30, 0x44, 0x02, 0x20, 0x72, 0x14, 0xbc, 0x96, 0x47, 0x16, 0x0b, 0xbd, + 0x39, 0xff, 0x2f, 0x80, 0x53, 0x3f, 0x5d, 0xc6, 0xdd, 0xd7, 0x0d, 0xdf, + 0x86, 0xbb, 0x81, 0x56, 0x61, 0xe8, 0x05, 0xd5, 0xd4, 0xe6, 0xf2, 0x7c, + 0x02, 0x20, 0x7d, 0x1f, 0xf9, 0x61, 0x98, 0x0f, 0x96, 0x1b, 0xda, 0xa3, + 0x23, 0x3b, 0x62, 0x09, 0xf4, 0x01, 0x33, 0x17, 0xd3, 0xe3, 0xf9, 0xe1, + 0x49, 0x35, 0x92, 0xdb, 0xea, 0xa1, 0xaf, 0x2b, 0xc3, 0x67 +}; + static const uint8_t p256_u1[] = { /* 32 bytes */ 0xbb, 0x25, 0x24, 0x01, 0xd6, 0xfb, 0x32, 0x2b, 0xb7, 0x47, 0x18, 0x4c, 0xf2, 0xac, 0x52, 0xbf, 0x8d, 0x54, 0xb9, 0x5a, 0x15, 0x15, 0x06, 0x2a, @@ -163,6 +185,23 @@ static const uint8_t p384_k[] = { /* 48 bytes */ 0x5a, 0xa1, 0xfd, 0x45, 0xe2, 0xd2, 0xa7, 0x35, 0xf8, 0x74, 0x93, 0x59 }; +static const uint8_t p384_key[] = { /* 167 bytes */ + 0x30, 0x81, 0xa4, 0x02, 0x01, 0x01, 0x04, 0x30, 0xc8, 0x38, 0xb8, 0x52, + 0x53, 0xef, 0x8d, 0xc7, 0x39, 0x4f, 0xa5, 0x80, 0x8a, 0x51, 0x83, 0x98, + 0x1c, 0x7d, 0xee, 0xf5, 0xa6, 0x9b, 0xa8, 0xf4, 0xf2, 0x11, 0x7f, 0xfe, + 0xa3, 0x9c, 0xfc, 0xd9, 0x0e, 0x95, 0xf6, 0xcb, 0xc8, 0x54, 0xab, 0xac, + 0xab, 0x70, 0x1d, 0x50, 0xc1, 0xf3, 0xcf, 0x24, 0xa0, 0x07, 0x06, 0x05, + 0x2b, 0x81, 0x04, 0x00, 0x22, 0xa1, 0x64, 0x03, 0x62, 0x00, 0x04, 0x1f, + 0xba, 0xc8, 0xee, 0xbd, 0x0c, 0xbf, 0x35, 0x64, 0x0b, 0x39, 0xef, 0xe0, + 0x80, 0x8d, 0xd7, 0x74, 0xde, 0xbf, 0xf2, 0x0a, 0x2a, 0x32, 0x9e, 0x91, + 0x71, 0x3b, 0xaf, 0x7d, 0x7f, 0x3c, 0x3e, 0x81, 0x54, 0x6d, 0x88, 0x37, + 0x30, 0xbe, 0xe7, 0xe4, 0x86, 0x78, 0xf8, 0x57, 0xb0, 0x2c, 0xa0, 0xeb, + 0x21, 0x31, 0x03, 0xbd, 0x68, 0xce, 0x34, 0x33, 0x65, 0xa8, 0xa4, 0xc3, + 0xd4, 0x55, 0x5f, 0xa3, 0x85, 0xf5, 0x33, 0x02, 0x03, 0xbd, 0xd7, 0x6f, + 0xfa, 0xd1, 0xf3, 0xaf, 0xfb, 0x95, 0x75, 0x1c, 0x13, 0x20, 0x07, 0xe1, + 0xb2, 0x40, 0x35, 0x3c, 0xb0, 0xa4, 0xcf, 0x16, 0x93, 0xbd, 0xf9 +}; + static const uint8_t p384_kinv[] = { /* 48 bytes */ 0x74, 0x36, 0xf0, 0x30, 0x88, 0xe6, 0x5c, 0x37, 0xba, 0x8e, 0x7b, 0x33, 0x88, 0x7f, 0xbc, 0x87, 0x75, 0x75, 0x14, 0xd6, 0x11, 0xf7, 0xd1, 0xfb, @@ -184,6 +223,18 @@ static const uint8_t p384_s[] = { /* 48 bytes */ 0x67, 0xad, 0xad, 0xf1, 0x68, 0xeb, 0xbe, 0x80, 0x37, 0x94, 0xa4, 0x02 }; +static const uint8_t p384_sig[] = { /* 103 bytes */ + 0x30, 0x65, 0x02, 0x31, 0x00, 0xa0, 0xc2, 0x7e, 0xc8, 0x93, 0x09, 0x2d, + 0xea, 0x1e, 0x1b, 0xd2, 0xcc, 0xfe, 0xd3, 0xcf, 0x94, 0x5c, 0x81, 0x34, + 0xed, 0x0c, 0x9f, 0x81, 0x31, 0x1a, 0x0f, 0x4a, 0x05, 0x94, 0x2d, 0xb8, + 0xdb, 0xed, 0x8d, 0xd5, 0x9f, 0x26, 0x74, 0x71, 0xd5, 0x46, 0x2a, 0xa1, + 0x4f, 0xe7, 0x2d, 0xe8, 0x56, 0x02, 0x30, 0x20, 0xab, 0x3f, 0x45, 0xb7, + 0x4f, 0x10, 0xb6, 0xe1, 0x1f, 0x96, 0xa2, 0xc8, 0xeb, 0x69, 0x4d, 0x20, + 0x6b, 0x9d, 0xda, 0x86, 0xd3, 0xc7, 0xe3, 0x31, 0xc2, 0x6b, 0x22, 0xc9, + 0x87, 0xb7, 0x53, 0x77, 0x26, 0x57, 0x76, 0x67, 0xad, 0xad, 0xf1, 0x68, + 0xeb, 0xbe, 0x80, 0x37, 0x94, 0xa4, 0x02 +}; + static const uint8_t p384_u1[] = { /* 48 bytes */ 0x6c, 0xe2, 0x56, 0x49, 0xd4, 0x2d, 0x22, 0x3e, 0x02, 0x0c, 0x11, 0x14, 0x0f, 0xe7, 0x72, 0x32, 0x66, 0x12, 0xbb, 0x11, 0xb6, 0x86, 0xd3, 0x5e, @@ -211,3 +262,68 @@ static const uint8_t p384_w[] = { /* 48 bytes */ 0x0a, 0x7c, 0x86, 0x1a, 0xf8, 0xfe, 0x82, 0x25, 0x46, 0x7a, 0x25, 0x7f, 0x5b, 0xf9, 0x1a, 0x4a, 0xaa, 0x5a, 0x79, 0xa8, 0x63, 0x7d, 0x21, 0x8a }; + +typedef struct { + hal_ecdsa_curve_t curve; + const uint8_t * H; size_t H_len; + const uint8_t * M; size_t M_len; + const uint8_t * Qx; size_t Qx_len; + const uint8_t * Qy; size_t Qy_len; + const uint8_t * Rx; size_t Rx_len; + const uint8_t * Ry; size_t Ry_len; + const uint8_t * d; size_t d_len; + const uint8_t * e; size_t e_len; + const uint8_t * k; size_t k_len; + const uint8_t * key; size_t key_len; + const uint8_t * kinv; size_t kinv_len; + const uint8_t * r; size_t r_len; + const uint8_t * s; size_t s_len; + const uint8_t * sig; size_t sig_len; + const uint8_t * u1; size_t u1_len; + const uint8_t * u2; size_t u2_len; + const uint8_t * v; size_t v_len; + const uint8_t * w; size_t w_len; +} ecdsa_tc_t; + +static const ecdsa_tc_t ecdsa_tc[] = { + { HAL_ECDSA_CURVE_P256, + p256_H, sizeof(p256_H), + p256_M, sizeof(p256_M), + p256_Qx, sizeof(p256_Qx), + p256_Qy, sizeof(p256_Qy), + p256_Rx, sizeof(p256_Rx), + p256_Ry, sizeof(p256_Ry), + p256_d, sizeof(p256_d), + p256_e, sizeof(p256_e), + p256_k, sizeof(p256_k), + p256_key, sizeof(p256_key), + p256_kinv, sizeof(p256_kinv), + p256_r, sizeof(p256_r), + p256_s, sizeof(p256_s), + p256_sig, sizeof(p256_sig), + p256_u1, sizeof(p256_u1), + p256_u2, sizeof(p256_u2), + p256_v, sizeof(p256_v), + p256_w, sizeof(p256_w), + }, + { HAL_ECDSA_CURVE_P384, + p384_H, sizeof(p384_H), + p384_M, sizeof(p384_M), + p384_Qx, sizeof(p384_Qx), + p384_Qy, sizeof(p384_Qy), + p384_Rx, sizeof(p384_Rx), + p384_Ry, sizeof(p384_Ry), + p384_d, sizeof(p384_d), + p384_e, sizeof(p384_e), + p384_k, sizeof(p384_k), + p384_key, sizeof(p384_key), + p384_kinv, sizeof(p384_kinv), + p384_r, sizeof(p384_r), + p384_s, sizeof(p384_s), + p384_sig, sizeof(p384_sig), + p384_u1, sizeof(p384_u1), + p384_u2, sizeof(p384_u2), + p384_v, sizeof(p384_v), + p384_w, sizeof(p384_w), + }, +}; diff --git a/tests/test-ecdsa.py b/tests/test-ecdsa.py index 8fb33f1..a52f85b 100644 --- a/tests/test-ecdsa.py +++ b/tests/test-ecdsa.py @@ -2,9 +2,6 @@ # # e is given in decimal, all other values are hex, because that's how # these were given in the paper -# -# This script will probably become a bit more elaborate at some later date, eg, -# to add ASN.1 encoding. p256_d = 0x70a12c2db16845ed56ff68cfc21a472b3f04d7d6851bf6349f2d7d5b3452b38a p256_Qx = 0x8101ece47464a6ead70cf69a6e2bd3d88691a3262d22cba4f7635eaff26680a8 @@ -40,22 +37,120 @@ p384_u1 = 0x6ce25649d42d223e020c11140fe772326612bb11b686d35ee98ed4550e0635d9dd p384_u2 = 0xf3b240751d5d8ed394a4b5bf8e2a4c0e1e21aa51f2620a08b8c55a2bc334c9689923162648f06e5f4659fc526d9c1fd6 p384_v = 0xa0c27ec893092dea1e1bd2ccfed3cf945c8134ed0c9f81311a0f4a05942db8dbed8dd59f267471d5462aa14fe72de856 -from textwrap import TextWrapper -from os.path import basename -from sys import argv +from textwrap import TextWrapper +from os.path import basename +from sys import argv +from pyasn1.type.univ import Sequence, Choice, Integer, OctetString, ObjectIdentifier, BitString +from pyasn1.type.namedtype import NamedTypes, NamedType, OptionalNamedType +from pyasn1.type.namedval import NamedValues +from pyasn1.type.tag import Tag, tagClassContext, tagFormatSimple +from pyasn1.type.constraint import SingleValueConstraint +from pyasn1.codec.der.encoder import encode as DER_Encode +from pyasn1.codec.der.decoder import decode as DER_Decode wrapper = TextWrapper(width = 78, initial_indent = " " * 2, subsequent_indent = " " * 2) +def long_to_bytes(l): + # + # This is just plain nasty. + # + s = "%x" % l + return ("0" + s if len(s) & 1 else s).decode("hex") + +def bytes_to_bits(b): + # + # This, on the other hand, is not just plain nasty, this is fancy nasty. + # This is nasty with rasins in it. + # + bits = bin(long(b.encode("hex"), 16))[2:] + if len(bits) % 8: + bits = ("0" * (8 - len(bits) % 8)) + bits + return tuple(int(i) for i in bits) + +### + +class ECDSA_Sig_Value(Sequence): + componentType = NamedTypes( + NamedType("r", Integer()), + NamedType("s", Integer())) + +def encode_sig(r, s): + sig = ECDSA_Sig_Value() + sig["r"] = r + sig["s"] = s + return DER_Encode(sig) + +p256_sig = encode_sig(p256_r, p256_s) +p384_sig = encode_sig(p384_r, p384_s) + +### + +class ECPrivateKey(Sequence): + componentType = NamedTypes( + NamedType("version", Integer(namedValues = NamedValues(("ecPrivkeyVer1", 1)) + ).subtype(subtypeSpec = Integer.subtypeSpec + SingleValueConstraint(1))), + NamedType("privateKey", OctetString()), + OptionalNamedType("parameters", ObjectIdentifier().subtype(explicitTag = Tag(tagClassContext, tagFormatSimple, 0))), + OptionalNamedType("publicKey", BitString().subtype(explicitTag = Tag(tagClassContext, tagFormatSimple, 1)))) + +def encode_key(d, Qx, Qy, oid): + private_key = long_to_bytes(d) + public_key = bytes_to_bits(chr(0x04) + long_to_bytes(Qx) + long_to_bytes(Qy)) + parameters = oid + key = ECPrivateKey() + key["version"] = 1 + key["privateKey"] = private_key + key["parameters"] = parameters + key["publicKey"] = public_key + return DER_Encode(key) + +p256_key = encode_key(p256_d, p256_Qx, p256_Qy, "1.2.840.10045.3.1.7") +p384_key = encode_key(p384_d, p384_Qx, p384_Qy, "1.3.132.0.34") + +### + print "/*" print " * ECDSA test data." print " * File automatically generated by", basename(argv[0]) print " */" -for name in sorted(dir()): - if name.startswith("p256_") or name.startswith("p384_"): - value = "%x" % globals()[name] - value = ("0" + value if len(value) & 1 else value).decode("hex") - print - print "static const uint8_t %s[] = { /* %d bytes */" % (name, len(value)) - print wrapper.fill(", ".join("0x%02x" % ord(v) for v in value)) - print "};" +curves = ("p256", "p384") +vars = set() + +for name in dir(): + head, sep, tail = name.partition("_") + if head in curves: + vars.add(tail) + +vars = sorted(vars) + +for curve in curves: + for var in vars: + name = curve + "_" + var + value = globals().get(name, None) + if isinstance(value, (int, long)): + value = long_to_bytes(value) + if value is not None: + print + print "static const uint8_t %s[] = { /* %d bytes */" % (name, len(value)) + print wrapper.fill(", ".join("0x%02x" % ord(v) for v in value)) + print "};" + +print +print "typedef struct {" +print " hal_ecdsa_curve_t curve;" +for var in vars: + print " const uint8_t *%8s; size_t %8s_len;" % (var, var) +print "} ecdsa_tc_t;" +print +print "static const ecdsa_tc_t ecdsa_tc[] = {" +for curve in curves: + print " { HAL_ECDSA_CURVE_%s," % curve.upper() + for var in vars: + name = curve + "_" + var + if name in globals(): + print " %-14s sizeof(%s)," % (name + ",", name) + else: + print " %-14s 0," % "NULL," + print " }," +print "};" |