diff options
author | Rob Austein <sra@hactrn.net> | 2017-06-08 17:48:50 -0400 |
---|---|---|
committer | Rob Austein <sra@hactrn.net> | 2017-06-08 17:48:50 -0400 |
commit | 80a921caaef0e66904e5fae4527d334052319335 (patch) | |
tree | 20f7160454c06dd1a1883617ec13ea3d25f7e84c /ks_flash.c | |
parent | ebd6c702e4426370a278b95becba3afb83715c0a (diff) | |
parent | 6dcfc197e4d7fa3c74dc0adc06cd206051367862 (diff) |
Merge branch 'ks9'
Diffstat (limited to 'ks_flash.c')
-rw-r--r-- | ks_flash.c | 2213 |
1 files changed, 0 insertions, 2213 deletions
diff --git a/ks_flash.c b/ks_flash.c deleted file mode 100644 index 8aadc37..0000000 --- a/ks_flash.c +++ /dev/null @@ -1,2213 +0,0 @@ -/* - * ks_flash.c - * ---------- - * Keystore implementation in flash memory. - * - * Authors: Rob Austein, Fredrik Thulin - * Copyright (c) 2015-2016, NORDUnet A/S All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are - * met: - * - Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * - Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * - Neither the name of the NORDUnet nor the names of its contributors may - * be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS - * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED - * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A - * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED - * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR - * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING - * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -/* - * This keystore driver operates over bare flash, versus over a flash file - * system or flash translation layer. The block size is large enough to - * hold an AES-keywrapped 4096-bit RSA key. Any remaining space in the key - * block may be used to store attributes (opaque TLV blobs). If the - * attributes overflow the key block, additional blocks may be added, but - * no attribute may exceed the block size. - */ - -#include <stddef.h> -#include <string.h> -#include <assert.h> - -#include "hal.h" -#include "hal_internal.h" - -#include "last_gasp_pin_internal.h" - -#define HAL_OK CMIS_HAL_OK -#include "stm-keystore.h" -#undef HAL_OK - -/* - * Known block states. - * - * C does not guarantee any particular representation for enums, so - * including enums directly in the block header isn't safe. Instead, - * we use an access method which casts when reading from the header. - * Writing to the header isn't a problem, because C does guarantee - * that enum is compatible with *some* integer type, it just doesn't - * specify which one. - */ - -typedef enum { - BLOCK_TYPE_ERASED = 0xFF, /* Pristine erased block (candidate for reuse) */ - BLOCK_TYPE_ZEROED = 0x00, /* Zeroed block (recently used) */ - BLOCK_TYPE_KEY = 0x55, /* Block contains key material */ - BLOCK_TYPE_ATTR = 0x66, /* Block contains key attributes (overflow from key block) */ - BLOCK_TYPE_PIN = 0xAA, /* Block contains PINs */ - BLOCK_TYPE_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */ -} flash_block_type_t; - -/* - * Block status. - */ - -typedef enum { - BLOCK_STATUS_LIVE = 0x66, /* This is a live flash block */ - BLOCK_STATUS_TOMBSTONE = 0x44, /* This is a tombstone left behind during an update */ - BLOCK_STATUS_UNKNOWN = -1, /* Internal code for "I have no clue what this is" */ -} flash_block_status_t; - -/* - * Common header for all flash block types. - * A few of these fields are deliberately omitted from the CRC. - */ - -typedef struct { - uint8_t block_type; - uint8_t block_status; - uint8_t total_chunks; - uint8_t this_chunk; - hal_crc32_t crc; -} flash_block_header_t; - -/* - * Key block. Tail end of "der" field (after der_len) used for attributes. - */ - -typedef struct { - flash_block_header_t header; - hal_uuid_t name; - hal_key_type_t type; - hal_curve_name_t curve; - hal_key_flags_t flags; - size_t der_len; - unsigned attributes_len; - uint8_t der[]; /* Must be last field -- C99 "flexible array member" */ -} flash_key_block_t; - -#define SIZEOF_FLASH_KEY_BLOCK_DER \ - (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_key_block_t, der)) - -/* - * Key attribute overflow block (attributes which don't fit in der field of key block). - */ - -typedef struct { - flash_block_header_t header; - hal_uuid_t name; - unsigned attributes_len; - uint8_t attributes[]; /* Must be last field -- C99 "flexible array member" */ -} flash_attributes_block_t; - -#define SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES \ - (KEYSTORE_SUBSECTOR_SIZE - offsetof(flash_attributes_block_t, attributes)) - -/* - * PIN block. Also includes space for backing up the KEK when - * HAL_MKM_FLASH_BACKUP_KLUDGE is enabled. - */ - -typedef struct { - flash_block_header_t header; - hal_ks_pin_t wheel_pin; - hal_ks_pin_t so_pin; - hal_ks_pin_t user_pin; -#if HAL_MKM_FLASH_BACKUP_KLUDGE - uint32_t kek_set; - uint8_t kek[KEK_LENGTH]; -#endif -} flash_pin_block_t; - -#define FLASH_KEK_SET 0x33333333 - -/* - * One flash block. - */ - -typedef union { - uint8_t bytes[KEYSTORE_SUBSECTOR_SIZE]; - flash_block_header_t header; - flash_key_block_t key; - flash_attributes_block_t attr; - flash_pin_block_t pin; -} flash_block_t; - -/* - * In-memory cache. - */ - -typedef struct { - unsigned blockno; - uint32_t lru; - flash_block_t block; -} cache_block_t; - -/* - * In-memory database. - * - * The top-level structure is a static variable; the arrays are allocated at runtime - * using hal_allocate_static_memory() because they can get kind of large. - */ - -#ifndef KS_FLASH_CACHE_SIZE -#define KS_FLASH_CACHE_SIZE 4 -#endif - -#define NUM_FLASH_BLOCKS KEYSTORE_NUM_SUBSECTORS - -typedef struct { - hal_ks_t ks; /* Must be first (C "subclassing") */ - hal_ks_index_t ksi; - hal_ks_pin_t wheel_pin; - hal_ks_pin_t so_pin; - hal_ks_pin_t user_pin; - uint32_t cache_lru; - cache_block_t *cache; -} db_t; - -/* - * PIN block gets the all-zeros UUID, which will never be returned by - * the UUID generation code (by definition -- it's not a version 4 UUID). - */ - -const static hal_uuid_t pin_uuid = {{0}}; - -/* - * The in-memory database structure itself is small, but the arrays it - * points to are large enough that they come from SDRAM allocated at - * startup. - */ - -static db_t db; - -/* - * Type safe casts. - */ - -static inline flash_block_type_t block_get_type(const flash_block_t * const block) -{ - assert(block != NULL); - return (flash_block_type_t) block->header.block_type; -} - -static inline flash_block_status_t block_get_status(const flash_block_t * const block) -{ - assert(block != NULL); - return (flash_block_status_t) block->header.block_status; -} - -/* - * Pick unused or least-recently-used slot in our in-memory cache. - * - * Updating lru values is caller's problem: if caller is using a cache - * slot as a temporary buffer and there's no point in caching the - * result, leave the lru values alone and the right thing will happen. - */ - -static inline flash_block_t *cache_pick_lru(void) -{ - uint32_t best_delta = 0; - int best_index = 0; - - for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) { - - if (db.cache[i].blockno == ~0) - return &db.cache[i].block; - - const uint32_t delta = db.cache_lru - db.cache[i].lru; - if (delta > best_delta) { - best_delta = delta; - best_index = i; - } - - } - - db.cache[best_index].blockno = ~0; - return &db.cache[best_index].block; -} - -/* - * Find a block in our in-memory cache; return block or NULL if not present. - */ - -static inline flash_block_t *cache_find_block(const unsigned blockno) -{ - for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) - if (db.cache[i].blockno == blockno) - return &db.cache[i].block; - return NULL; -} - -/* - * Mark a block in our in-memory cache as being in current use. - */ - -static inline void cache_mark_used(const flash_block_t * const block, const unsigned blockno) -{ - for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) { - if (&db.cache[i].block == block) { - db.cache[i].blockno = blockno; - db.cache[i].lru = ++db.cache_lru; - return; - } - } -} - -/* - * Release a block from the in-memory cache. - */ - -static inline void cache_release(const flash_block_t * const block) -{ - if (block != NULL) - cache_mark_used(block, ~0); -} - -/* - * Generate CRC-32 for a block. - * - * This function needs to understand the structure of - * flash_block_header_t, so that it can skip over fields that - * shouldn't be included in the CRC. - */ - -static hal_crc32_t calculate_block_crc(const flash_block_t * const block) -{ - assert(block != NULL); - - hal_crc32_t crc = hal_crc32_init(); - - crc = hal_crc32_update(crc, &block->header.block_type, - sizeof(block->header.block_type)); - - crc = hal_crc32_update(crc, &block->header.total_chunks, - sizeof(block->header.total_chunks)); - - crc = hal_crc32_update(crc, &block->header.this_chunk, - sizeof(block->header.this_chunk)); - - crc = hal_crc32_update(crc, block->bytes + sizeof(flash_block_header_t), - sizeof(*block) - sizeof(flash_block_header_t)); - - return hal_crc32_finalize(crc); -} - -/* - * Calculate offset of the block in the flash address space. - */ - -static inline uint32_t block_offset(const unsigned blockno) -{ - return blockno * KEYSTORE_SUBSECTOR_SIZE; -} - -/* - * Read a flash block. - * - * Flash read on the Alpha is slow enough that it pays to check the - * first page before reading the rest of the block. - */ - -static hal_error_t block_read(const unsigned blockno, flash_block_t *block) -{ - if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE) - return HAL_ERROR_IMPOSSIBLE; - - /* Sigh, magic numeric return codes */ - if (keystore_read_data(block_offset(blockno), - block->bytes, - KEYSTORE_PAGE_SIZE) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - - switch (block_get_type(block)) { - case BLOCK_TYPE_ERASED: - case BLOCK_TYPE_ZEROED: - return HAL_OK; - case BLOCK_TYPE_KEY: - case BLOCK_TYPE_PIN: - case BLOCK_TYPE_ATTR: - break; - default: - return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE; - } - - switch (block_get_status(block)) { - case BLOCK_STATUS_LIVE: - case BLOCK_STATUS_TOMBSTONE: - break; - default: - return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE; - } - - /* Sigh, magic numeric return codes */ - if (keystore_read_data(block_offset(blockno) + KEYSTORE_PAGE_SIZE, - block->bytes + KEYSTORE_PAGE_SIZE, - sizeof(*block) - KEYSTORE_PAGE_SIZE) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - - if (calculate_block_crc(block) != block->header.crc) - return HAL_ERROR_KEYSTORE_BAD_CRC; - - return HAL_OK; -} - -/* - * Read a block using the cache. Marking the block as used is left - * for the caller, so we can avoid blowing out the cache when we - * perform a ks_match() operation. - */ - -static hal_error_t block_read_cached(const unsigned blockno, flash_block_t **block) -{ - if (block == NULL) - return HAL_ERROR_IMPOSSIBLE; - - if ((*block = cache_find_block(blockno)) != NULL) - return HAL_OK; - - if ((*block = cache_pick_lru()) == NULL) - return HAL_ERROR_IMPOSSIBLE; - - return block_read(blockno, *block); -} - -/* - * Convert a live block into a tombstone. Caller is responsible for - * making sure that the block being converted is valid; since we don't - * need to update the CRC for this, we just modify the first page. - */ - -static hal_error_t block_deprecate(const unsigned blockno) -{ - if (blockno >= NUM_FLASH_BLOCKS) - return HAL_ERROR_IMPOSSIBLE; - - uint8_t page[KEYSTORE_PAGE_SIZE]; - flash_block_header_t *header = (void *) page; - uint32_t offset = block_offset(blockno); - - /* Sigh, magic numeric return codes */ - if (keystore_read_data(offset, page, sizeof(page)) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - - header->block_status = BLOCK_STATUS_TOMBSTONE; - - /* Sigh, magic numeric return codes */ - if (keystore_write_data(offset, page, sizeof(page)) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - - return HAL_OK; -} - -/* - * Zero (not erase) a flash block. Just need to zero the first page. - */ - -static hal_error_t block_zero(const unsigned blockno) -{ - if (blockno >= NUM_FLASH_BLOCKS) - return HAL_ERROR_IMPOSSIBLE; - - uint8_t page[KEYSTORE_PAGE_SIZE] = {0}; - - /* Sigh, magic numeric return codes */ - if (keystore_write_data(block_offset(blockno), page, sizeof(page)) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - - return HAL_OK; -} - -/* - * Erase a flash block. Also see block_erase_maybe(), below. - */ - -static hal_error_t block_erase(const unsigned blockno) -{ - if (blockno >= NUM_FLASH_BLOCKS) - return HAL_ERROR_IMPOSSIBLE; - - /* Sigh, magic numeric return codes */ - if (keystore_erase_subsector(blockno) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - - return HAL_OK; -} - -/* - * Erase a flash block if it hasn't already been erased. - * May not be necessary, trying to avoid unnecessary wear. - * - * Unclear whether there's any sane reason why this needs to be - * constant time, given how slow erasure is. But side channel attacks - * can be tricky things, and it's theoretically possible that we could - * leak information about, eg, key length, so we do constant time. - */ - -static hal_error_t block_erase_maybe(const unsigned blockno) -{ - if (blockno >= NUM_FLASH_BLOCKS) - return HAL_ERROR_IMPOSSIBLE; - - uint8_t mask = 0xFF; - - for (uint32_t a = block_offset(blockno); a < block_offset(blockno + 1); a += KEYSTORE_PAGE_SIZE) { - uint8_t page[KEYSTORE_PAGE_SIZE]; - if (keystore_read_data(a, page, sizeof(page)) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - for (int i = 0; i < KEYSTORE_PAGE_SIZE; i++) - mask &= page[i]; - } - - return mask == 0xFF ? HAL_OK : block_erase(blockno); -} - -/* - * Write a flash block, calculating CRC when appropriate. - */ - -static hal_error_t block_write(const unsigned blockno, flash_block_t *block) -{ - if (block == NULL || blockno >= NUM_FLASH_BLOCKS || sizeof(*block) != KEYSTORE_SUBSECTOR_SIZE) - return HAL_ERROR_IMPOSSIBLE; - - hal_error_t err = block_erase_maybe(blockno); - - if (err != HAL_OK) - return err; - - switch (block_get_type(block)) { - case BLOCK_TYPE_KEY: - case BLOCK_TYPE_PIN: - case BLOCK_TYPE_ATTR: - block->header.crc = calculate_block_crc(block); - break; - default: - break; - } - - /* Sigh, magic numeric return codes */ - if (keystore_write_data(block_offset(blockno), block->bytes, sizeof(*block)) != 1) - return HAL_ERROR_KEYSTORE_ACCESS; - - return HAL_OK; -} - -/* - * Update one flash block, including zombie jamboree. - */ - -static hal_error_t block_update(const unsigned b1, flash_block_t *block, - const hal_uuid_t * const uuid, const unsigned chunk, int *hint) -{ - if (block == NULL) - return HAL_ERROR_IMPOSSIBLE; - - if (db.ksi.used == db.ksi.size) - return HAL_ERROR_NO_KEY_INDEX_SLOTS; - - cache_release(block); - - hal_error_t err; - unsigned b2; - - if ((err = block_deprecate(b1)) != HAL_OK || - (err = hal_ks_index_replace(&db.ksi, uuid, chunk, &b2, hint)) != HAL_OK || - (err = block_write(b2, block)) != HAL_OK || - (err = block_zero(b1)) != HAL_OK) - return err; - - cache_mark_used(block, b2); - - /* - * Erase the first block in the free list. In case of restart, this - * puts the block back at the head of the free list. - */ - - return block_erase_maybe(db.ksi.index[db.ksi.used]); -} - -/* - * Forward reference. - */ - -static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block); - -/* - * Initialize keystore. This includes various tricky bits, some of - * which attempt to preserve the free list ordering across reboots, to - * improve our simplistic attempt at wear leveling, others attempt to - * recover from unclean shutdown. - */ - -static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size) -{ - if (mem == NULL || *mem == NULL || len == NULL || size > *len) - return NULL; - void *ret = *mem; - *mem += size; - *len -= size; - return ret; -} - -static hal_error_t ks_init(const hal_ks_driver_t * const driver, const int alloc) -{ - hal_error_t err = HAL_OK; - - hal_ks_lock(); - - /* - * Initialize the in-memory database. - */ - - if (alloc) { - - size_t len = (sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS + - sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS + - sizeof(*db.cache) * KS_FLASH_CACHE_SIZE); - - /* - * This is done as a single large allocation, rather than 3 smaller - * allocations, to make it atomic - we need all 3, so either all - * succeed or all fail. - */ - - uint8_t *mem = hal_allocate_static_memory(len); - - if (mem == NULL) { - err = HAL_ERROR_ALLOCATION_FAILURE; - goto done; - } - - memset(&db, 0, sizeof(db)); - memset(mem, 0, len); - - db.ksi.index = gnaw(&mem, &len, sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS); - db.ksi.names = gnaw(&mem, &len, sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS); - db.cache = gnaw(&mem, &len, sizeof(*db.cache) * KS_FLASH_CACHE_SIZE); - db.ksi.size = NUM_FLASH_BLOCKS; - } - - else { - memset(&db.wheel_pin, 0, sizeof(db.wheel_pin)); - memset(&db.so_pin, 0, sizeof(db.so_pin)); - memset(&db.user_pin, 0, sizeof(db.user_pin)); - } - - db.ksi.used = 0; - - if (db.ksi.index == NULL || db.ksi.names == NULL || db.cache == NULL) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) - db.cache[i].blockno = ~0; - - /* - * Scan existing content of flash to figure out what we've got. - * This gets a bit involved due to the need to recover from things - * like power failures at inconvenient times. - */ - - flash_block_type_t block_types[NUM_FLASH_BLOCKS]; - flash_block_status_t block_status[NUM_FLASH_BLOCKS]; - flash_block_t *block = cache_pick_lru(); - int first_erased = -1; - uint16_t n = 0; - - if (block == NULL) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - for (int i = 0; i < NUM_FLASH_BLOCKS; i++) { - - /* - * Read one block. If the CRC is bad or the block type is - * unknown, it's old data we don't understand, something we were - * writing when we crashed, or bad flash; in any of these cases, - * we want the block to end up near the end of the free list. - */ - - err = block_read(i, block); - - if (err == HAL_ERROR_KEYSTORE_BAD_CRC || err == HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE) - block_types[i] = BLOCK_TYPE_UNKNOWN; - - else if (err == HAL_OK) - block_types[i] = block_get_type(block); - - else - goto done; - - switch (block_types[i]) { - case BLOCK_TYPE_KEY: - case BLOCK_TYPE_PIN: - case BLOCK_TYPE_ATTR: - block_status[i] = block_get_status(block); - break; - default: - block_status[i] = BLOCK_STATUS_UNKNOWN; - } - - /* - * First erased block we see is head of the free list. - */ - - if (block_types[i] == BLOCK_TYPE_ERASED && first_erased < 0) - first_erased = i; - - /* - * If it's a valid data block, include it in the index. We remove - * tombstones (if any) below, for now it's easiest to include them - * in the index, so we can look them up by name if we must. - */ - - const hal_uuid_t *uuid = NULL; - - switch (block_types[i]) { - case BLOCK_TYPE_KEY: uuid = &block->key.name; break; - case BLOCK_TYPE_ATTR: uuid = &block->attr.name; break; - case BLOCK_TYPE_PIN: uuid = &pin_uuid; break; - default: /* Keep GCC happy */ break; - } - - if (uuid != NULL) { - db.ksi.names[i].name = *uuid; - db.ksi.names[i].chunk = block->header.this_chunk; - db.ksi.index[n++] = i; - } - } - - db.ksi.used = n; - - assert(db.ksi.used <= db.ksi.size); - - /* - * At this point we've built the (unsorted) index from all the valid - * blocks. Now we need to insert free and unrecognized blocks into - * the free list in our preferred order. It's possible that there's - * a better way to do this than linear scan, but this is just - * integer comparisons in a fairly small data set, so it's probably - * not worth trying to optimize. - */ - - if (n < db.ksi.size) - for (int i = 0; i < NUM_FLASH_BLOCKS; i++) - if (block_types[i] == BLOCK_TYPE_ERASED) - db.ksi.index[n++] = i; - - if (n < db.ksi.size) - for (int i = first_erased; i < NUM_FLASH_BLOCKS; i++) - if (block_types[i] == BLOCK_TYPE_ZEROED) - db.ksi.index[n++] = i; - - if (n < db.ksi.size) - for (int i = 0; i < first_erased; i++) - if (block_types[i] == BLOCK_TYPE_ZEROED) - db.ksi.index[n++] = i; - - if (n < db.ksi.size) - for (int i = 0; i < NUM_FLASH_BLOCKS; i++) - if (block_types[i] == BLOCK_TYPE_UNKNOWN) - db.ksi.index[n++] = i; - - assert(n == db.ksi.size); - - /* - * Initialize the index. - */ - - if ((err = hal_ks_index_setup(&db.ksi)) != HAL_OK) - goto done; - - /* - * We might want to call hal_ks_index_fsck() here, if we can figure - * out some safe set of recovery actions we can take. - */ - - /* - * Deal with tombstones. These are blocks left behind when - * something bad (like a power failure) happened while we updating. - * The sequence of operations while updating is designed so that, - * barring a bug or a hardware failure, we should never lose data. - * - * For any tombstone we find, we start by looking for all the blocks - * with a matching UUID, then see what valid sequences we can - * construct from what we found. This basically works in reverse of - * the update sequence in ks_set_attributes(). - * - * If we can construct a valid sequence of live blocks, the complete - * update was written out, and we just need to finish zeroing the - * tombstones. - * - * Otherwise, if we can construct a complete sequence of tombstone - * blocks, the update failed before it was completely written, so we - * have to zero the incomplete sequence of live blocks then restore - * the tombstones. - * - * Otherwise, if the live and tombstone blocks taken together form a - * valid sequence, the update failed while deprecating the old live - * blocks, and none of the new data was written, so we need to restore - * the tombstones and leave the live blocks alone. - * - * If none of the above applies, we don't understand what happened, - * which is a symptom of either a bug or a hardware failure more - * serious than simple loss of power or reboot at an inconvenient - * time, so we error out to avoid accidental loss of data. - */ - - for (int i = 0; i < NUM_FLASH_BLOCKS; i++) { - - if (block_status[i] != BLOCK_STATUS_TOMBSTONE) - continue; - - hal_uuid_t name = db.ksi.names[i].name; - unsigned n_blocks; - int where = -1; - - if ((err = hal_ks_index_find_range(&db.ksi, &name, 0, &n_blocks, NULL, &where, 0)) != HAL_OK) - goto done; - - /* - * hal_ks_index_find_range does a binary search, not a linear search, - * so it may not return the first instance of a block with the given - * name and chunk=0. Search backwards to make sure we have all chunks. - */ - - while (where > 0 && !hal_uuid_cmp(&name, &db.ksi.names[db.ksi.index[where - 1]].name)) { - where--; - n_blocks++; - } - - /* - * Rather than calling hal_ks_index_find_range with an array pointer - * to get the list of matching blocks (because of the binary search - * issue), we're going to fondle the index directly. This is really - * not something to do in regular code, but this is error-recovery - * code. - */ - - int live_ok = 1, tomb_ok = 1, join_ok = 1; - unsigned n_live = 0, n_tomb = 0; - unsigned i_live = 0, i_tomb = 0; - - for (int j = 0; j < n_blocks; j++) { - unsigned b = db.ksi.index[where + j]; - switch (block_status[b]) { - case BLOCK_STATUS_LIVE: n_live++; break; - case BLOCK_STATUS_TOMBSTONE: n_tomb++; break; - default: err = HAL_ERROR_IMPOSSIBLE; goto done; - } - } - - uint16_t live_blocks[n_live], tomb_blocks[n_tomb]; - - for (int j = 0; j < n_blocks; j++) { - unsigned b = db.ksi.index[where + j]; - - if ((err = block_read(b, block)) != HAL_OK) - goto done; - - join_ok &= block->header.this_chunk == j && block->header.total_chunks == n_blocks; - - switch (block_status[b]) { - case BLOCK_STATUS_LIVE: - live_blocks[i_live] = b; - live_ok &= block->header.this_chunk == i_live++ && block->header.total_chunks == n_live; - break; - case BLOCK_STATUS_TOMBSTONE: - tomb_blocks[i_tomb] = b; - tomb_ok &= block->header.this_chunk == i_tomb++ && block->header.total_chunks == n_tomb; - break; - default: - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - } - - if (!live_ok && !tomb_ok && !join_ok) { - err = HAL_ERROR_KEYSTORE_LOST_DATA; - goto done; - } - - /* - * If live_ok or tomb_ok, we have to zero out some blocks, and adjust - * the index. Again, don't fondle the index directly, outside of error - * recovery. - */ - - if (live_ok) { - for (int j = 0; j < n_tomb; j++) { - const unsigned b = tomb_blocks[j]; - if ((err = block_zero(b)) != HAL_OK) - goto done; - block_types[b] = BLOCK_TYPE_ZEROED; - block_status[b] = BLOCK_STATUS_UNKNOWN; - } - } - - else if (tomb_ok) { - for (int j = 0; j < n_live; j++) { - const unsigned b = live_blocks[j]; - if ((err = block_zero(b)) != HAL_OK) - goto done; - block_types[b] = BLOCK_TYPE_ZEROED; - block_status[b] = BLOCK_STATUS_UNKNOWN; - } - } - - if (live_ok) { - memcpy(&db.ksi.index[where], live_blocks, n_live * sizeof(*db.ksi.index)); - memmove(&db.ksi.index[where + n_live], &db.ksi.index[where + n_blocks], - (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index)); - memcpy(&db.ksi.index[db.ksi.size - n_tomb], tomb_blocks, n_tomb * sizeof(*db.ksi.index)); - db.ksi.used -= n_tomb; - n_blocks = n_live; - } - - else if (tomb_ok) { - memcpy(&db.ksi.index[where], tomb_blocks, n_tomb * sizeof(*db.ksi.index)); - memmove(&db.ksi.index[where + n_tomb], &db.ksi.index[where + n_blocks], - (db.ksi.size - where - n_blocks) * sizeof(*db.ksi.index)); - memcpy(&db.ksi.index[db.ksi.size - n_live], live_blocks, n_live * sizeof(*db.ksi.index)); - db.ksi.used -= n_live; - n_blocks = n_tomb; - } - - /* - * Restore tombstone blocks (tomb_ok or join_ok). - */ - - for (int j = 0; j < n_blocks; j++) { - int hint = where + j; - unsigned b1 = db.ksi.index[hint], b2; - if (block_status[b1] != BLOCK_STATUS_TOMBSTONE) - continue; - if ((err = block_read(b1, block)) != HAL_OK) - goto done; - block->header.block_status = BLOCK_STATUS_LIVE; - if ((err = hal_ks_index_replace(&db.ksi, &name, j, &b2, &hint)) != HAL_OK || - (err = block_write(b2, block)) != HAL_OK) - goto done; - block_types[b1] = BLOCK_TYPE_ZEROED; - block_status[b1] = BLOCK_STATUS_UNKNOWN; - block_status[b2] = BLOCK_STATUS_LIVE; - } - } - - /* - * Fetch or create the PIN block. - */ - - err = fetch_pin_block(NULL, &block); - - if (err == HAL_OK) { - db.wheel_pin = block->pin.wheel_pin; - db.so_pin = block->pin.so_pin; - db.user_pin = block->pin.user_pin; - } - - else if (err != HAL_ERROR_KEY_NOT_FOUND) - goto done; - - else { - /* - * We found no PIN block, so create one, with the user and so PINs - * cleared and the wheel PIN set to the last-gasp value. The - * last-gasp WHEEL PIN is a terrible answer, but we need some kind - * of bootstrapping mechanism when all else fails. If you have a - * better suggestion, we'd love to hear it. - */ - - unsigned b; - - memset(block, 0xFF, sizeof(*block)); - - block->header.block_type = BLOCK_TYPE_PIN; - block->header.block_status = BLOCK_STATUS_LIVE; - block->header.total_chunks = 1; - block->header.this_chunk = 0; - - block->pin.wheel_pin = db.wheel_pin = hal_last_gasp_pin; - block->pin.so_pin = db.so_pin; - block->pin.user_pin = db.user_pin; - - if ((err = hal_ks_index_add(&db.ksi, &pin_uuid, 0, &b, NULL)) != HAL_OK) - goto done; - - cache_mark_used(block, b); - - err = block_write(b, block); - - cache_release(block); - - if (err != HAL_OK) - goto done; - } - - /* - * Erase first block on free list if it's not already erased. - */ - - if (db.ksi.used < db.ksi.size && - (err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK) - goto done; - - /* - * And we're finally done. - */ - - db.ks.driver = driver; - - err = HAL_OK; - - done: - hal_ks_unlock(); - return err; -} - -static hal_error_t ks_shutdown(const hal_ks_driver_t * const driver) -{ - if (db.ks.driver != driver) - return HAL_ERROR_KEYSTORE_ACCESS; - return HAL_OK; -} - -static hal_error_t ks_open(const hal_ks_driver_t * const driver, - hal_ks_t **ks) -{ - if (driver != hal_ks_token_driver || ks == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - *ks = &db.ks; - return HAL_OK; -} - -static hal_error_t ks_close(hal_ks_t *ks) -{ - if (ks != NULL && ks != &db.ks) - return HAL_ERROR_BAD_ARGUMENTS; - - return HAL_OK; -} - -static inline int acceptable_key_type(const hal_key_type_t type) -{ - switch (type) { - case HAL_KEY_TYPE_RSA_PRIVATE: - case HAL_KEY_TYPE_EC_PRIVATE: - case HAL_KEY_TYPE_RSA_PUBLIC: - case HAL_KEY_TYPE_EC_PUBLIC: - return 1; - default: - return 0; - } -} - -static hal_error_t ks_store(hal_ks_t *ks, - hal_pkey_slot_t *slot, - const uint8_t * const der, const size_t der_len) -{ - if (ks != &db.ks || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type)) - return HAL_ERROR_BAD_ARGUMENTS; - - hal_error_t err = HAL_OK; - flash_block_t *block; - flash_key_block_t *k; - uint8_t kek[KEK_LENGTH]; - size_t kek_len; - unsigned b; - - hal_ks_lock(); - - if ((block = cache_pick_lru()) == NULL) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - k = &block->key; - - if ((err = hal_ks_index_add(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK) - goto done; - - cache_mark_used(block, b); - - memset(block, 0xFF, sizeof(*block)); - - block->header.block_type = BLOCK_TYPE_KEY; - block->header.block_status = BLOCK_STATUS_LIVE; - block->header.total_chunks = 1; - block->header.this_chunk = 0; - - k->name = slot->name; - k->type = slot->type; - k->curve = slot->curve; - k->flags = slot->flags; - k->der_len = SIZEOF_FLASH_KEY_BLOCK_DER; - k->attributes_len = 0; - - if (db.ksi.used < db.ksi.size) - err = block_erase_maybe(db.ksi.index[db.ksi.used]); - - if (err == HAL_OK) - err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek)); - - if (err == HAL_OK) - err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k->der, &k->der_len); - - memset(kek, 0, sizeof(kek)); - - if (err == HAL_OK) - err = block_write(b, block); - - if (err == HAL_OK) - goto done; - - memset(block, 0, sizeof(*block)); - cache_release(block); - (void) hal_ks_index_delete(&db.ksi, &slot->name, 0, NULL, &slot->hint); - - done: - hal_ks_unlock(); - return err; -} - -static hal_error_t ks_fetch(hal_ks_t *ks, - hal_pkey_slot_t *slot, - uint8_t *der, size_t *der_len, const size_t der_max) -{ - if (ks != &db.ks || slot == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - hal_error_t err = HAL_OK; - flash_block_t *block; - unsigned b; - - hal_ks_lock(); - - if ((err = hal_ks_index_find(&db.ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK || - (err = block_read_cached(b, &block)) != HAL_OK) - goto done; - - if (block_get_type(block) != BLOCK_TYPE_KEY) { - err = HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */ - goto done; - } - - cache_mark_used(block, b); - - flash_key_block_t *k = &block->key; - - slot->type = k->type; - slot->curve = k->curve; - slot->flags = k->flags; - - if (der == NULL && der_len != NULL) - *der_len = k->der_len; - - if (der != NULL) { - - uint8_t kek[KEK_LENGTH]; - size_t kek_len, der_len_; - hal_error_t err; - - if (der_len == NULL) - der_len = &der_len_; - - *der_len = der_max; - - if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK) - err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len); - - memset(kek, 0, sizeof(kek)); - } - - done: - hal_ks_unlock(); - return err; -} - -static hal_error_t ks_delete(hal_ks_t *ks, - hal_pkey_slot_t *slot) -{ - if (ks != &db.ks || slot == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - hal_error_t err = HAL_OK; - unsigned n; - - hal_ks_lock(); - - { - /* - * Get the count of blocks to delete. - */ - - if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, 0, &n, NULL, &slot->hint)) != HAL_OK) - goto done; - - /* - * Then delete them. - */ - - unsigned b[n]; - - if ((err = hal_ks_index_delete_range(&db.ksi, &slot->name, n, NULL, b, &slot->hint)) != HAL_OK) - goto done; - - for (int i = 0; i < n; i++) - cache_release(cache_find_block(b[i])); - - /* - * Zero the blocks, to mark them as recently used. - */ - - for (int i = 0; i < n; i++) - if ((err = block_zero(b[i])) != HAL_OK) - goto done; - - /* - * Erase the first block in the free list. In case of restart, this - * puts the block back at the head of the free list. - */ - - err = block_erase_maybe(db.ksi.index[db.ksi.used]); - } - - done: - hal_ks_unlock(); - return err; -} - -static inline hal_error_t locate_attributes(flash_block_t *block, const unsigned chunk, - uint8_t **bytes, size_t *bytes_len, - unsigned **attrs_len) -{ - if (block == NULL || bytes == NULL || bytes_len == NULL || attrs_len == NULL) - return HAL_ERROR_IMPOSSIBLE; - - if (chunk == 0) { - if (block_get_type(block) != BLOCK_TYPE_KEY) - return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */ - *attrs_len = &block->key.attributes_len; - *bytes = block->key.der + block->key.der_len; - *bytes_len = SIZEOF_FLASH_KEY_BLOCK_DER - block->key.der_len; - } - - else { - if (block_get_type(block) != BLOCK_TYPE_ATTR) - return HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE; /* HAL_ERROR_KEY_NOT_FOUND */ - *attrs_len = &block->attr.attributes_len; - *bytes = block->attr.attributes; - *bytes_len = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES; - } - - return HAL_OK; -} - -static hal_error_t ks_match(hal_ks_t *ks, - const hal_client_handle_t client, - const hal_session_handle_t session, - const hal_key_type_t type, - const hal_curve_name_t curve, - const hal_key_flags_t mask, - const hal_key_flags_t flags, - const hal_pkey_attribute_t *attributes, - const unsigned attributes_len, - hal_uuid_t *result, - unsigned *result_len, - const unsigned result_max, - const hal_uuid_t * const previous_uuid) -{ - if (ks == NULL || (attributes == NULL && attributes_len > 0) || - result == NULL || result_len == NULL || previous_uuid == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - uint8_t need_attr[attributes_len > 0 ? attributes_len : 1]; - hal_error_t err = HAL_OK; - flash_block_t *block; - int possible = 0; - int i = -1; - - hal_ks_lock(); - - *result_len = 0; - - err = hal_ks_index_find(&db.ksi, previous_uuid, 0, NULL, &i); - - if (err == HAL_ERROR_KEY_NOT_FOUND) - i--; - else if (err != HAL_OK) - goto done; - - while (*result_len < result_max && ++i < db.ksi.used) { - - unsigned b = db.ksi.index[i]; - - if (db.ksi.names[b].chunk == 0) - possible = 1; - - if (!possible) - continue; - - if ((err = block_read_cached(b, &block)) != HAL_OK) - goto done; - - if (db.ksi.names[b].chunk == 0) { - memset(need_attr, 1, sizeof(need_attr)); - possible = ((type == HAL_KEY_TYPE_NONE || type == block->key.type) && - (curve == HAL_CURVE_NONE || curve == block->key.curve) && - ((flags ^ block->key.flags) & mask) == 0); - } - - if (!possible) - continue; - - if (attributes_len > 0) { - uint8_t *bytes = NULL; - size_t bytes_len = 0; - unsigned *attrs_len; - - if ((err = locate_attributes(block, db.ksi.names[b].chunk, - &bytes, &bytes_len, &attrs_len)) != HAL_OK) - goto done; - - if (*attrs_len > 0) { - hal_pkey_attribute_t attrs[*attrs_len]; - - if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK) - goto done; - - for (int j = 0; possible && j < attributes_len; j++) { - - if (!need_attr[j]) - continue; - - for (hal_pkey_attribute_t *a = attrs; a < attrs + *attrs_len; a++) { - if (a->type != attributes[j].type) - continue; - need_attr[j] = 0; - possible = (a->length == attributes[j].length && - !memcmp(a->value, attributes[j].value, a->length)); - break; - } - } - } - } - - if (!possible) - continue; - - if (attributes_len > 0 && memchr(need_attr, 1, sizeof(need_attr)) != NULL) - continue; - - result[*result_len] = db.ksi.names[b].name; - ++*result_len; - possible = 0; - } - - err = HAL_OK; - - done: - hal_ks_unlock(); - return err; -} - -/* - * This controls whether we include a separate code path for the - * common case where we can handle attribute setting via a single - * block update. It's a lot simpler when it works, but it's yet - * another code path, and enabling it leaves the slower full-blown - * algorithm less tested. - */ - -#ifndef KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH -#define KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH 0 -#endif - -/* - * ks_set_attributes() is much too long. Probably needs to be broken - * up into a collection of inline functions, even if most of them end - * up being called exactly once. - */ - -static hal_error_t ks_set_attributes(hal_ks_t *ks, - hal_pkey_slot_t *slot, - const hal_pkey_attribute_t *attributes, - const unsigned attributes_len) -{ - if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0) - return HAL_ERROR_BAD_ARGUMENTS; - - /* - * Perform initial scan of the object to figure out the total - * attribute count and a few other parameters. - * - * If enabled, try to do everything as as a single-block update. If - * single block update fails, we MUST clear the modified block from - * the cache before doing anything else. - */ - - unsigned updated_attributes_len = attributes_len; - hal_error_t err = HAL_OK; - flash_block_t *block; - unsigned chunk = 0; - unsigned b; - - hal_ks_lock(); - - { - - do { - int hint = slot->hint + chunk; - - if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK || - (err = block_read_cached(b, &block)) != HAL_OK) - goto done; - - if (block->header.this_chunk != chunk) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - cache_mark_used(block, b); - - if (chunk == 0) - slot->hint = hint; - - uint8_t *bytes = NULL; - size_t bytes_len = 0; - unsigned *attrs_len; - - if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK) - goto done; - - updated_attributes_len += *attrs_len; - -#if KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH - - hal_pkey_attribute_t attrs[*attrs_len + attributes_len]; - size_t total; - - if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK) - goto done; - - for (int i = 0; err == HAL_OK && i < attributes_len; i++) - if (attributes[i].length == HAL_PKEY_ATTRIBUTE_NIL) - err = hal_ks_attribute_delete(bytes, bytes_len, attrs, attrs_len, &total, - attributes[i].type); - else - err = hal_ks_attribute_insert(bytes, bytes_len, attrs, attrs_len, &total, - attributes[i].type, - attributes[i].value, - attributes[i].length); - - if (err != HAL_OK) - cache_release(block); - - if (err == HAL_ERROR_RESULT_TOO_LONG) - continue; - - if (err == HAL_OK) - err = block_update(b, block, &slot->name, chunk, &hint); - - goto done; - -#endif /* KS_SET_ATTRIBUTES_SINGLE_BLOCK_UPDATE_FAST_PATH */ - - } while (++chunk < block->header.total_chunks); - - /* - * If we get here, we're on the slow path, which requires rewriting - * all the chunks in this object but which can also add or remove - * chunks from this object. We need to keep track of all the old - * chunks so we can zero them at the end, and because we can't zero - * them until we've written out the new chunks, we need enough free - * blocks to hold all the new chunks. - * - * Calculating all of this is extremely tedious, but flash writes - * are so much more expensive than anything else we do here that - * it's almost certainly worth it. - * - * We don't need the attribute values to compute the sizes, just the - * attribute sizes, so we scan all the existing blocks, build up a - * structure with the current attribute types and sizes, modify that - * according to our arguments, and compute the needed size. Once we - * have that, we can start rewriting existing blocks. We put all - * the new stuff at the end, which simplifies this slightly. - * - * In theory, this process never requires us to have more than two - * blocks in memory at the same time (source and destination when - * copying across chunk boundaries), but having enough cache buffers - * to keep the whole set in memory will almost certainly make this - * run faster. - */ - - hal_pkey_attribute_t updated_attributes[updated_attributes_len]; - const unsigned total_chunks_old = block->header.total_chunks; - size_t bytes_available = 0; - - updated_attributes_len = 0; - - /* - * Phase 0.1: Walk the old chunks to populate updated_attributes[]. - * This also initializes bytes_available, since we can only get that - * by reading old chunk zero. - */ - - for (chunk = 0; chunk < total_chunks_old; chunk++) { - int hint = slot->hint + chunk; - - if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK || - (err = block_read_cached(b, &block)) != HAL_OK) - goto done; - - if (block->header.this_chunk != chunk) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - cache_mark_used(block, b); - - uint8_t *bytes = NULL; - size_t bytes_len = 0; - unsigned *attrs_len; - - if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK) - goto done; - - hal_pkey_attribute_t attrs[*attrs_len]; - size_t total; - - if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, &total)) != HAL_OK) - goto done; - - if (chunk == 0) - bytes_available = bytes_len; - - for (int i = 0; i < *attrs_len; i++) { - - if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes)) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - updated_attributes[updated_attributes_len].type = attrs[i].type; - updated_attributes[updated_attributes_len].length = attrs[i].length; - updated_attributes[updated_attributes_len].value = NULL; - updated_attributes_len++; - } - } - - /* - * Phase 0.2: Merge new attributes into updated_attributes[]. - * For each new attribute type, mark any existing attributes of that - * type for deletion. Append new attributes to updated_attributes[]. - */ - - for (int i = 0; i < attributes_len; i++) { - - for (int j = 0; j < updated_attributes_len; j++) - if (updated_attributes[j].type == attributes[i].type) - updated_attributes[j].length = HAL_PKEY_ATTRIBUTE_NIL; - - if (updated_attributes_len >= sizeof(updated_attributes)/sizeof(*updated_attributes)) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - updated_attributes[updated_attributes_len].type = attributes[i].type; - updated_attributes[updated_attributes_len].length = attributes[i].length; - updated_attributes[updated_attributes_len].value = attributes[i].value; - updated_attributes_len++; - } - - /* - * Phase 0.3: Prune trailing deletion actions: we don't need them to - * maintain synchronization with existing attributes, and doing so - * simplifies logic for updating the final new chunk. - */ - - while (updated_attributes_len > 0 && - updated_attributes[updated_attributes_len - 1].length == HAL_PKEY_ATTRIBUTE_NIL) - --updated_attributes_len; - - /* - * Phase 0.4: Figure out how many chunks all this will occupy. - */ - - chunk = 0; - - for (int i = 0; i < updated_attributes_len; i++) { - - if (updated_attributes[i].length == HAL_PKEY_ATTRIBUTE_NIL) - continue; - - const size_t needed = hal_ks_attribute_header_size + updated_attributes[i].length; - - if (needed > bytes_available) { - bytes_available = SIZEOF_FLASH_ATTRIBUTE_BLOCK_ATTRIBUTES; - chunk++; - } - - if (needed > bytes_available) { - err = HAL_ERROR_RESULT_TOO_LONG; - goto done; - } - - bytes_available -= needed; - } - - const unsigned total_chunks_new = chunk + 1; - - /* - * If there aren't enough free blocks, give up now, before changing anything. - */ - - if (db.ksi.used + total_chunks_new > db.ksi.size) { - err = HAL_ERROR_NO_KEY_INDEX_SLOTS; - goto done; - } - - /* - * Phase 1: Deprecate all the old chunks, remember where they were. - */ - - unsigned old_blocks[total_chunks_old]; - - for (chunk = 0; chunk < total_chunks_old; chunk++) { - int hint = slot->hint + chunk; - if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK || - (err = block_deprecate(b)) != HAL_OK) - goto done; - old_blocks[chunk] = b; - } - - /* - * Phase 2: Write new chunks, copying attributes from old chunks or - * from attributes[], as needed. - */ - - { - hal_pkey_attribute_t old_attrs[updated_attributes_len], new_attrs[updated_attributes_len]; - unsigned *old_attrs_len = NULL, *new_attrs_len = NULL; - flash_block_t *old_block = NULL, *new_block = NULL; - uint8_t *old_bytes = NULL, *new_bytes = NULL; - size_t old_bytes_len = 0, new_bytes_len = 0; - unsigned old_chunk = 0, new_chunk = 0; - size_t old_total = 0, new_total = 0; - - int updated_attributes_i = 0, old_attrs_i = 0; - - uint32_t new_attr_type; - size_t new_attr_length; - const uint8_t *new_attr_value; - - while (updated_attributes_i < updated_attributes_len) { - - if (old_chunk >= total_chunks_old || new_chunk >= total_chunks_new) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - /* - * If we've gotten as far as new data that comes from - * attributes[], we have it in hand and can just copy it. - */ - - if (updated_attributes_len - updated_attributes_i <= attributes_len) { - new_attr_type = updated_attributes[updated_attributes_i].type; - new_attr_length = updated_attributes[updated_attributes_i].length; - new_attr_value = updated_attributes[updated_attributes_i].value; - } - - /* - * Otherwise, we have to read it from an old block, which may in - * turn require reading in the next old block. - */ - - else { - - if (old_block == NULL) { - - if ((err = block_read_cached(old_blocks[old_chunk], &old_block)) != HAL_OK) - goto done; - - if (old_block->header.this_chunk != old_chunk) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - if ((err = locate_attributes(old_block, old_chunk, - &old_bytes, &old_bytes_len, &old_attrs_len)) != HAL_OK || - (err = hal_ks_attribute_scan(old_bytes, old_bytes_len, - old_attrs, *old_attrs_len, &old_total)) != HAL_OK) - goto done; - - old_attrs_i = 0; - } - - if (old_attrs_i >= *old_attrs_len) { - old_chunk++; - old_block = NULL; - continue; - } - - new_attr_type = old_attrs[old_attrs_i].type; - new_attr_length = old_attrs[old_attrs_i].length; - new_attr_value = old_attrs[old_attrs_i].value; - - if (new_attr_type != updated_attributes[updated_attributes_i].type) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - old_attrs_i++; - } - - /* - * Unless this is a deletion, we should have something to write. - */ - - if (new_attr_length != HAL_PKEY_ATTRIBUTE_NIL && new_attr_value == NULL) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - /* - * Initialize the new block if necessary. If it's the new chunk - * zero, we need to copy all the non-attribute data from the old - * chunk zero; otherwise, it's a new empty attribute block. - */ - - if (new_block == NULL) { - - new_block = cache_pick_lru(); - memset(new_block, 0xFF, sizeof(*new_block)); - - if (new_chunk == 0) { - flash_block_t *tmp_block; - if ((err = block_read_cached(old_blocks[0], &tmp_block)) != HAL_OK) - goto done; - if (tmp_block->header.this_chunk != 0) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - new_block->header.block_type = BLOCK_TYPE_KEY; - new_block->key.name = slot->name; - new_block->key.type = tmp_block->key.type; - new_block->key.curve = tmp_block->key.curve; - new_block->key.flags = tmp_block->key.flags; - new_block->key.der_len = tmp_block->key.der_len; - new_block->key.attributes_len = 0; - memcpy(new_block->key.der, tmp_block->key.der, tmp_block->key.der_len); - } - else { - new_block->header.block_type = BLOCK_TYPE_ATTR; - new_block->attr.name = slot->name; - new_block->attr.attributes_len = 0; - } - - new_block->header.block_status = BLOCK_STATUS_LIVE; - new_block->header.total_chunks = total_chunks_new; - new_block->header.this_chunk = new_chunk; - - if ((err = locate_attributes(new_block, new_chunk, - &new_bytes, &new_bytes_len, &new_attrs_len)) != HAL_OK) - goto done; - - new_total = 0; - } - - /* - * After all that setup, we finally get to write the frelling attribute. - */ - - if (new_attr_length != HAL_PKEY_ATTRIBUTE_NIL) - err = hal_ks_attribute_insert(new_bytes, new_bytes_len, new_attrs, new_attrs_len, &new_total, - new_attr_type, new_attr_value, new_attr_length); - - /* - * Figure out what to do next: immediately loop for next - * attribute, write current block, or bail out. - */ - - switch (err) { - case HAL_OK: - if (++updated_attributes_i < updated_attributes_len) - continue; - break; - case HAL_ERROR_RESULT_TOO_LONG: - if (new_chunk > 0 && new_attrs_len == 0) - goto done; - break; - default: - goto done; - } - - /* - * If we get here, either the current new block is full or we - * finished the last block, so we need to write it out. - */ - - int hint = slot->hint + new_chunk; - - if (new_chunk < total_chunks_old) - err = hal_ks_index_replace(&db.ksi, &slot->name, new_chunk, &b, &hint); - else - err = hal_ks_index_add( &db.ksi, &slot->name, new_chunk, &b, &hint); - - if (err != HAL_OK || (err = block_write(b, new_block)) != HAL_OK) - goto done; - - cache_mark_used(new_block, b); - - new_block = NULL; - new_chunk++; - } - - /* - * If number of blocks shrank, we need to clear trailing entries from the index. - */ - - for (old_chunk = total_chunks_new; old_chunk < total_chunks_old; old_chunk++) { - int hint = slot->hint + old_chunk; - - err = hal_ks_index_delete(&db.ksi, &slot->name, old_chunk, NULL, &hint); - - if (err != HAL_OK) - goto done; - } - - } - - /* - * Phase 3: Zero the old chunks we deprecated in phase 1. - */ - - for (chunk = 0; chunk < total_chunks_old; chunk++) - if ((err = block_zero(old_blocks[chunk])) != HAL_OK) - goto done; - - err = HAL_OK; - - } - - done: - hal_ks_unlock(); - return err; - -#warning What happens if something goes wrong partway through this awful mess? - // We're left in a state with all the old blocks deprecated and - // (maybe) some of the new blocks current, need to clean that up. - // Would be nice if we could just reuse the keystore initialization - // code, but don't quite see how (yet?). -} - -static hal_error_t ks_get_attributes(hal_ks_t *ks, - hal_pkey_slot_t *slot, - hal_pkey_attribute_t *attributes, - const unsigned attributes_len, - uint8_t *attributes_buffer, - const size_t attributes_buffer_len) -{ - if (ks != &db.ks || slot == NULL || attributes == NULL || attributes_len == 0 || - attributes_buffer == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - for (int i = 0; i < attributes_len; i++) { - attributes[i].length = 0; - attributes[i].value = NULL; - } - - uint8_t *abuf = attributes_buffer; - flash_block_t *block = NULL; - unsigned chunk = 0; - unsigned found = 0; - hal_error_t err = HAL_OK; - unsigned b; - - hal_ks_lock(); - - do { - int hint = slot->hint + chunk; - - if ((err = hal_ks_index_find(&db.ksi, &slot->name, chunk, &b, &hint)) != HAL_OK || - (err = block_read_cached(b, &block)) != HAL_OK) - goto done; - - if (block->header.this_chunk != chunk) { - err = HAL_ERROR_IMPOSSIBLE; - goto done; - } - - if (chunk == 0) - slot->hint = hint; - - cache_mark_used(block, b); - - uint8_t *bytes = NULL; - size_t bytes_len = 0; - unsigned *attrs_len; - - if ((err = locate_attributes(block, chunk, &bytes, &bytes_len, &attrs_len)) != HAL_OK) - goto done; - - if (*attrs_len == 0) - continue; - - hal_pkey_attribute_t attrs[*attrs_len]; - - if ((err = hal_ks_attribute_scan(bytes, bytes_len, attrs, *attrs_len, NULL)) != HAL_OK) - goto done; - - for (int i = 0; i < attributes_len; i++) { - - if (attributes[i].length > 0) - continue; - - int j = 0; - while (j < *attrs_len && attrs[j].type != attributes[i].type) - j++; - if (j >= *attrs_len) - continue; - found++; - - attributes[i].length = attrs[j].length; - - if (attributes_buffer_len == 0) - continue; - - if (attrs[j].length > attributes_buffer + attributes_buffer_len - abuf) { - err = HAL_ERROR_RESULT_TOO_LONG; - goto done; - } - - memcpy(abuf, attrs[j].value, attrs[j].length); - attributes[i].value = abuf; - abuf += attrs[j].length; - } - - } while (found < attributes_len && ++chunk < block->header.total_chunks); - - if (found < attributes_len && attributes_buffer_len > 0) - err = HAL_ERROR_ATTRIBUTE_NOT_FOUND; - else - err = HAL_OK; - - done: - hal_ks_unlock(); - return err; -} - -const hal_ks_driver_t hal_ks_token_driver[1] = {{ - .init = ks_init, - .shutdown = ks_shutdown, - .open = ks_open, - .close = ks_close, - .store = ks_store, - .fetch = ks_fetch, - .delete = ks_delete, - .match = ks_match, - .set_attributes = ks_set_attributes, - .get_attributes = ks_get_attributes -}}; - -/* - * The remaining functions aren't really part of the keystore API per se, - * but they all involve non-key data which we keep in the keystore - * because it's the flash we've got. - */ - -/* - * Special bonus init routine used only by the bootloader, so that it - * can read PINs set by the main firmware. Yes, this is a kludge. We - * could of course call the real ks_init() routine instead, but it's - * slow, and we don't want to allow anything that would modify the - * flash here, so having a special entry point for this kludge is - * simplest, overall. Sigh. - */ - -void hal_ks_init_read_only_pins_only(void) -{ - unsigned b, best_seen = ~0; - flash_block_t block[1]; - - hal_ks_lock(); - - for (b = 0; b < NUM_FLASH_BLOCKS; b++) { - if (block_read(b, block) != HAL_OK || block_get_type(block) != BLOCK_TYPE_PIN) - continue; - best_seen = b; - if (block_get_status(block) == BLOCK_STATUS_LIVE) - break; - } - - if (b != best_seen && best_seen != ~0 && block_read(best_seen, block) != HAL_OK) - best_seen = ~0; - - if (best_seen == ~0) { - memset(block, 0xFF, sizeof(*block)); - block->pin.wheel_pin = hal_last_gasp_pin; - } - - db.wheel_pin = block->pin.wheel_pin; - db.so_pin = block->pin.so_pin; - db.user_pin = block->pin.user_pin; - - hal_ks_unlock(); -} - -/* - * Fetch PIN. This is always cached, so just returned cached value. - */ - -hal_error_t hal_get_pin(const hal_user_t user, - const hal_ks_pin_t **pin) -{ - if (pin == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - hal_error_t err = HAL_OK; - - hal_ks_lock(); - - switch (user) { - case HAL_USER_WHEEL: *pin = &db.wheel_pin; break; - case HAL_USER_SO: *pin = &db.so_pin; break; - case HAL_USER_NORMAL: *pin = &db.user_pin; break; - default: err = HAL_ERROR_BAD_ARGUMENTS; - } - - hal_ks_unlock(); - - return err; -} - -/* - * Fetch PIN block. hint = 0 because we know that the all-zeros UUID - * should always sort to first slot in the index. - */ - -static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block) -{ - if (block == NULL) - return HAL_ERROR_IMPOSSIBLE; - - hal_error_t err; - int hint = 0; - unsigned b_; - - if (b == NULL) - b = &b_; - - if ((err = hal_ks_index_find(&db.ksi, &pin_uuid, 0, b, &hint)) != HAL_OK || - (err = block_read_cached(*b, block)) != HAL_OK) - return err; - - cache_mark_used(*block, *b); - - if (block_get_type(*block) != BLOCK_TYPE_PIN) - return HAL_ERROR_IMPOSSIBLE; - - return HAL_OK; -} - -/* - * Update the PIN block. This block should always be present, but we - * have to do the zombie jamboree to make sure we write the new PIN - * block before destroying the old one. hint = 0 because we know that - * the all-zeros UUID should always sort to first slot in the index. - */ - -static hal_error_t update_pin_block(const unsigned b, - flash_block_t *block, - const flash_pin_block_t * const new_data) -{ - if (block == NULL || new_data == NULL || block_get_type(block) != BLOCK_TYPE_PIN) - return HAL_ERROR_IMPOSSIBLE; - - int hint = 0; - - block->pin = *new_data; - - return block_update(b, block, &pin_uuid, 0, &hint); -} - -/* - * Change a PIN. - */ - -hal_error_t hal_set_pin(const hal_user_t user, - const hal_ks_pin_t * const pin) -{ - if (pin == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - flash_block_t *block; - hal_error_t err; - unsigned b; - - hal_ks_lock(); - - if ((err = fetch_pin_block(&b, &block)) != HAL_OK) - goto done; - - flash_pin_block_t new_data = block->pin; - hal_ks_pin_t *dp, *bp; - - switch (user) { - case HAL_USER_WHEEL: bp = &new_data.wheel_pin; dp = &db.wheel_pin; break; - case HAL_USER_SO: bp = &new_data.so_pin; dp = &db.so_pin; break; - case HAL_USER_NORMAL: bp = &new_data.user_pin; dp = &db.user_pin; break; - default: err = HAL_ERROR_BAD_ARGUMENTS; goto done; - } - - const hal_ks_pin_t old_pin = *dp; - *dp = *bp = *pin; - - if ((err = update_pin_block(b, block, &new_data)) != HAL_OK) - *dp = old_pin; - - done: - hal_ks_unlock(); - return err; -} - -#if HAL_MKM_FLASH_BACKUP_KLUDGE - -/* - * Horrible insecure kludge in lieu of a battery for the MKM. - * - * API here is a little strange: all calls pass a length parameter, - * but any length other than the compiled in constant just returns an - * immediate error, there's no notion of buffer max length vs buffer - * used length, querying for the size of buffer really needed, or - * anything like that. - * - * We might want to rewrite this some day, if we don't replace it with - * a battery first. For now we just preserve the API as we found it - * while re-implementing it on top of the new keystore. - */ - -hal_error_t hal_mkm_flash_read_no_lock(uint8_t *buf, const size_t len) -{ - if (buf != NULL && len != KEK_LENGTH) - return HAL_ERROR_MASTERKEY_BAD_LENGTH; - - flash_block_t *block; - hal_error_t err; - unsigned b; - - if ((err = fetch_pin_block(&b, &block)) != HAL_OK) - return err; - - if (block->pin.kek_set != FLASH_KEK_SET) - return HAL_ERROR_MASTERKEY_NOT_SET; - - if (buf != NULL) - memcpy(buf, block->pin.kek, len); - - return HAL_OK; -} - -hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len) -{ - hal_ks_lock(); - const hal_error_t err = hal_mkm_flash_read_no_lock(buf, len); - hal_ks_unlock(); - return err; -} - -hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len) -{ - if (buf == NULL) - return HAL_ERROR_BAD_ARGUMENTS; - - if (len != KEK_LENGTH) - return HAL_ERROR_MASTERKEY_BAD_LENGTH; - - flash_block_t *block; - hal_error_t err; - unsigned b; - - hal_ks_lock(); - - if ((err = fetch_pin_block(&b, &block)) != HAL_OK) - goto done; - - flash_pin_block_t new_data = block->pin; - - new_data.kek_set = FLASH_KEK_SET; - memcpy(new_data.kek, buf, len); - - err = update_pin_block(b, block, &new_data); - - done: - hal_ks_unlock(); - return err; -} - -hal_error_t hal_mkm_flash_erase(const size_t len) -{ - if (len != KEK_LENGTH) - return HAL_ERROR_MASTERKEY_BAD_LENGTH; - - flash_block_t *block; - hal_error_t err; - unsigned b; - - hal_ks_lock(); - - if ((err = fetch_pin_block(&b, &block)) != HAL_OK) - goto done; - - flash_pin_block_t new_data = block->pin; - - new_data.kek_set = FLASH_KEK_SET; - memset(new_data.kek, 0, len); - - err = update_pin_block(b, block, &new_data); - - done: - hal_ks_unlock(); - return err; -} - -#endif /* HAL_MKM_FLASH_BACKUP_KLUDGE */ - - -/* - * Local variables: - * indent-tabs-mode: nil - * End: - */ |