aboutsummaryrefslogtreecommitdiff
path: root/hashsig.c
diff options
context:
space:
mode:
authorPaul Selkirk <paul@psgd.org>2018-07-24 22:56:11 -0400
committerPaul Selkirk <paul@psgd.org>2018-07-25 00:49:44 -0400
commit253f7b849c18455da0b5bae0c25fdca0e16c8015 (patch)
tree559cb12b83f3d413c867a9c8be10dbff00ccac46 /hashsig.c
parent64d415775323dd8a435a0db3548d6b642df4ad99 (diff)
parent653d6b406c82848875f3581da41f095aade30338 (diff)
Merge branch 'hashsig'
Diffstat (limited to 'hashsig.c')
-rw-r--r--hashsig.c2122
1 files changed, 2122 insertions, 0 deletions
diff --git a/hashsig.c b/hashsig.c
new file mode 100644
index 0000000..4060818
--- /dev/null
+++ b/hashsig.c
@@ -0,0 +1,2122 @@
+/*
+ * hashsig.c
+ * ---------
+ * Implementation of draft-mcgrew-hash-sigs-10.txt
+ *
+ * Copyright (c) 2018, NORDUnet A/S All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ * - Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * - Neither the name of the NORDUnet nor the names of its contributors may
+ * be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+ * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+ * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
+ * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "hal.h"
+#include "hashsig.h"
+#include "ks.h"
+#include "asn1_internal.h"
+#include "xdr_internal.h"
+
+typedef struct { uint8_t bytes[32]; } bytestring32;
+typedef struct { uint8_t bytes[16]; } bytestring16;
+
+#define D_PBLC 0x8080
+#define D_MESG 0x8181
+#define D_LEAF 0x8282
+#define D_INTR 0x8383
+
+#define u32str(X) htonl(X)
+#define u16str(X) htons(X)
+#define u8str(X) (X & 0xff)
+
+#define check(op) do { hal_error_t _err = (op); if (_err != HAL_OK) return _err; } while (0)
+
+/* ---------------------------------------------------------------- */
+
+/*
+ * XDR extensions
+ */
+
+static inline hal_error_t hal_xdr_encode_bytestring32(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring32 * const value)
+{
+ return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring32));
+}
+
+static inline hal_error_t hal_xdr_decode_bytestring32_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 **value)
+{
+ return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring32));
+}
+
+static inline hal_error_t hal_xdr_decode_bytestring32(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 * const value)
+{
+ return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring32));
+}
+
+static inline hal_error_t hal_xdr_encode_bytestring16(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring16 *value)
+{
+ return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring16));
+}
+
+static inline hal_error_t hal_xdr_decode_bytestring16_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 **value)
+{
+ return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring16));
+}
+
+static inline hal_error_t hal_xdr_decode_bytestring16(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 * const value)
+{
+ return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring16));
+}
+
+/* ---------------------------------------------------------------- */
+
+/*
+ * ASN.1 extensions
+ */
+
+static inline hal_error_t hal_asn1_encode_size_t(const size_t n, uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_encode_uint32((const uint32_t)n, der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_decode_size_t(size_t *np, const uint8_t * const der, size_t *der_len, const size_t der_max)
+{
+ /* trust the compiler to optimize out the unused code path */
+ if (sizeof(size_t) == sizeof(uint32_t)) {
+ return hal_asn1_decode_uint32((uint32_t *)np, der, der_len, der_max);
+ }
+ else {
+ uint32_t n;
+ hal_error_t err;
+
+ if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK)
+ *np = (size_t)n;
+
+ return err;
+ }
+}
+
+static inline hal_error_t hal_asn1_encode_lms_algorithm(const lms_algorithm_t type, uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_decode_lms_algorithm(lms_algorithm_t *type, const uint8_t * const der, size_t *der_len, const size_t der_max)
+{
+ uint32_t n;
+ hal_error_t err;
+
+ if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK)
+ *type = (lms_algorithm_t)n;
+
+ return err;
+}
+
+static inline hal_error_t hal_asn1_encode_lmots_algorithm(const lmots_algorithm_t type, uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_decode_lmots_algorithm(lmots_algorithm_t *type, const uint8_t * const der, size_t *der_len, const size_t der_max)
+{
+ uint32_t n;
+ hal_error_t err;
+
+ if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK)
+ *type = (lmots_algorithm_t)n;
+
+ return err;
+}
+
+static inline hal_error_t hal_asn1_encode_uuid(const hal_uuid_t * const data, uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(hal_uuid_t), der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_decode_uuid(hal_uuid_t *data, const uint8_t * const der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(hal_uuid_t), der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_encode_bytestring16(const bytestring16 * const data, uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring16), der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_decode_bytestring16(bytestring16 *data, const uint8_t * const der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring16), der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_encode_bytestring32(const bytestring32 * const data, uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring32), der, der_len, der_max);
+}
+
+static inline hal_error_t hal_asn1_decode_bytestring32(bytestring32 *data, const uint8_t * const der, size_t *der_len, const size_t der_max)
+{
+ return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring32), der, der_len, der_max);
+}
+
+/* ---------------------------------------------------------------- */
+
+/*
+ * LM-OTS
+ */
+
+typedef const struct lmots_parameter_set {
+ lmots_algorithm_t type;
+ size_t n, w, p, ls;
+} lmots_parameter_t;
+static lmots_parameter_t lmots_parameters[] = {
+ { lmots_sha256_n32_w1, 32, 1, 265, 7 },
+ { lmots_sha256_n32_w2, 32, 2, 133, 6 },
+ { lmots_sha256_n32_w4, 32, 4, 67, 4 },
+ { lmots_sha256_n32_w8, 32, 8, 34, 0 },
+};
+
+typedef struct lmots_key {
+ hal_key_type_t type;
+ lmots_parameter_t *lmots;
+ bytestring16 I;
+ size_t q;
+ bytestring32 * x;
+ bytestring32 K;
+} lmots_key_t;
+
+static inline lmots_parameter_t *lmots_select_parameter_set(const lmots_algorithm_t lmots_type)
+{
+ if (lmots_type < lmots_sha256_n32_w1 || lmots_type > lmots_sha256_n32_w8)
+ return NULL;
+ else
+ return &lmots_parameters[lmots_type - lmots_sha256_n32_w1];
+}
+
+static inline size_t lmots_private_key_len(lmots_parameter_t * const lmots)
+{
+ /* u32str(type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1] */
+ return 2 * sizeof(uint32_t) + sizeof(bytestring16) + (lmots->p * lmots->n);
+}
+
+static inline size_t lmots_public_key_len(lmots_parameter_t * const lmots)
+{
+ /* u32str(type) || I || u32str(q) || K */
+ return 2 * sizeof(uint32_t) + sizeof(bytestring16) + lmots->n;
+}
+
+static inline size_t lmots_signature_len(lmots_parameter_t * const lmots)
+{
+ /* u32str(type) || C || y[0] || ... || y[p-1] */
+ return sizeof(uint32_t) + (lmots->p + 1) * lmots->n;
+}
+
+#if RPC_CLIENT == RPC_CLIENT_LOCAL
+/* Given a key with most fields filled in, generate the lmots private and
+ * public key components (x and K).
+ * Let the caller worry about storage.
+ */
+static hal_error_t lmots_generate(lmots_key_t * const key)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || key->lmots == NULL || key->x == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+// Algorithm 0: Generating a Private Key
+
+// 3. set n and p according to the typecode and Table 1
+
+ size_t n = key->lmots->n;
+ size_t p = key->lmots->p;
+ size_t w = key->lmots->w;
+
+// 4. compute the array x as follows:
+// for ( i = 0; i < p; i = i + 1 ) {
+// set x[i] to a uniformly random n-byte string
+// }
+
+ for (size_t i = 0; i < p; ++i)
+ check(hal_rpc_get_random(&key->x[i], n));
+
+// Algorithm 1: Generating a One Time Signature Public Key From a
+// Private Key
+
+// 4. compute the string K as follows:
+
+ uint8_t statebuf[512];
+ hal_hash_state_t *state = NULL;
+ bytestring32 y[p];
+ uint32_t l;
+ uint16_t s;
+ uint8_t b;
+
+// for ( i = 0; i < p; i = i + 1 ) {
+ for (size_t i = 0; i < p; ++i) {
+
+// tmp = x[i]
+ bytestring32 tmp;
+ memcpy(&tmp, &key->x[i], sizeof(tmp));
+
+// for ( j = 0; j < 2^w - 1; j = j + 1 ) {
+ for (size_t j = 0; j < (1U << w) - 1; ++j) {
+
+// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
+ check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
+ check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
+ }
+
+// y[i] = tmp
+ memcpy(&y[i], &tmp, sizeof(tmp));
+// }
+ }
+
+// K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1])
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ for (size_t i = 0; i < p; ++i)
+ check(hal_hash_update(state, (const uint8_t *)&y[i], sizeof(y[i])));
+ check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K)));
+
+ return HAL_OK;
+}
+#endif
+
+/* strings of w-bit elements */
+static uint8_t coef(const uint8_t * const S, const size_t i, size_t w)
+{
+ switch (w) {
+ case 1:
+ return (S[i/8] >> (7 - (i % 8))) & 0x01;
+ case 2:
+ return (S[i/4] >> (6 - (2 * (i % 4)))) & 0x03;
+ case 4:
+ return (S[i/2] >> (4 - (4 * (i % 2)))) & 0x0f;
+ case 8:
+ return S[i];
+ default:
+ return 0;
+ }
+}
+
+/* checksum */
+static uint16_t Cksm(const uint8_t * const S, lmots_parameter_t *lmots)
+{
+ uint16_t sum = 0;
+
+ for (size_t i = 0; i < (lmots->n * 8 / lmots->w); ++i)
+ sum += ((1 << lmots->w) - 1) - coef(S, i, lmots->w);
+
+ return (sum << lmots->ls);
+}
+
+#if RPC_CLIENT == RPC_CLIENT_LOCAL
+static hal_error_t lmots_sign(lmots_key_t *key,
+ const uint8_t * const msg, const size_t msg_len,
+ uint8_t * sig, size_t *sig_len, const size_t sig_max)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || msg == NULL || sig == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+// Algorithm 3: Generating a One Time Signature From a Private Key and a
+// Message
+
+// 1. set type to the typecode of the algorithm
+//
+// 2. set n, p, and w according to the typecode and Table 1
+
+ size_t n = key->lmots->n;
+ size_t p = key->lmots->p;
+ size_t w = key->lmots->w;
+
+ if (sig_max < lmots_signature_len(key->lmots))
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+// 3. determine x, I and q from the private key
+//
+// 4. set C to a uniformly random n-byte string
+
+ bytestring32 C;
+ check(hal_rpc_get_random(&C, n));
+
+// 5. compute the array y as follows:
+
+ uint8_t statebuf[512];
+ hal_hash_state_t *state = NULL;
+ uint8_t Q[n + 2]; /* hash || 16-bit checksum */
+ uint32_t l;
+ uint16_t s;
+ uint8_t b;
+
+// Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C)));
+ check(hal_hash_update(state, msg, msg_len));
+ check(hal_hash_finalize(state, Q, n));
+
+ /* append checksum */
+ *(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots));
+
+ bytestring32 y[p];
+
+// for ( i = 0; i < p; i = i + 1 ) {
+ for (size_t i = 0; i < p; ++i) {
+
+// a = coef(Q || Cksm(Q), i, w)
+ uint8_t a = coef(Q, i, w);
+
+// tmp = x[i]
+ bytestring32 tmp;
+ memcpy(&tmp, &key->x[i], sizeof(tmp));
+
+// for ( j = 0; j < a; j = j + 1 ) {
+ for (size_t j = 0; j < (size_t)a; ++j) {
+
+// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
+ check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
+ check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
+// }
+ }
+
+// y[i] = tmp
+ memcpy(&y[i], &tmp, sizeof(tmp));
+ }
+
+// 6. return u32str(type) || C || y[0] || ... || y[p-1]
+ uint8_t *sigptr = sig;
+ const uint8_t * const siglim = sig + sig_max;
+ check(hal_xdr_encode_int(&sigptr, siglim, key->lmots->type));
+ check(hal_xdr_encode_bytestring32(&sigptr, siglim, &C));
+ for (size_t i = 0; i < p; ++i)
+ check(hal_xdr_encode_bytestring32(&sigptr, siglim, &y[i]));
+
+ if (sig_len != NULL)
+ *sig_len = sigptr - sig;
+
+ return HAL_OK;
+}
+#endif
+
+static hal_error_t lmots_public_key_candidate(const lmots_key_t * const key,
+ const uint8_t * const msg, const size_t msg_len,
+ const uint8_t * const sig, const size_t sig_len)
+{
+ if (key == NULL || msg == NULL || sig == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ /* Skip the length checks here, because we did a unitary length check
+ * at the start of lms_verify.
+ */
+
+// 1. if the signature is not at least four bytes long, return INVALID
+//
+// 2. parse sigtype, C, and y from the signature as follows:
+// a. sigtype = strTou32(first 4 bytes of signature)
+
+ const uint8_t *sigptr = sig;
+ const uint8_t * const siglim = sig + sig_len;
+
+ uint32_t sigtype;
+ check(hal_xdr_decode_int(&sigptr, siglim, &sigtype));
+
+// b. if sigtype is not equal to pubtype, return INVALID
+
+ if ((lmots_algorithm_t)sigtype != key->lmots->type)
+ return HAL_ERROR_INVALID_SIGNATURE;
+
+// c. set n and p according to the pubtype and Table 1; if the
+// signature is not exactly 4 + n * (p+1) bytes long, return INVALID
+
+ size_t n = key->lmots->n;
+ size_t p = key->lmots->p;
+ size_t w = key->lmots->w;
+
+// d. C = next n bytes of signature
+
+ bytestring32 C;
+ check(hal_xdr_decode_bytestring32(&sigptr, siglim, &C));
+
+// e. y[0] = next n bytes of signature
+// y[1] = next n bytes of signature
+// ...
+// y[p-1] = next n bytes of signature
+
+ bytestring32 y[p];
+ for (size_t i = 0; i < p; ++i)
+ check(hal_xdr_decode_bytestring32(&sigptr, siglim, &y[i]));
+
+// 3. compute the string Kc as follows
+
+ uint8_t statebuf[512];
+ hal_hash_state_t *state = NULL;
+ uint8_t Q[n + 2]; /* hash || 16-bit checksum */
+ uint32_t l;
+ uint16_t s;
+ uint8_t b;
+
+// Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C)));
+ check(hal_hash_update(state, msg, msg_len));
+ check(hal_hash_finalize(state, Q, n));
+
+ /* append checksum */
+ *(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots));
+
+ bytestring32 z[p];
+
+// for ( i = 0; i < p; i = i + 1 ) {
+ for (size_t i = 0; i < p; ++i) {
+
+// a = coef(Q || Cksm(Q), i, w)
+ uint8_t a = coef(Q, i, w);
+
+// tmp = y[i]
+ bytestring32 tmp;
+ memcpy(&tmp, &y[i], sizeof(tmp));
+
+// for ( j = a; j < 2^w - 1; j = j + 1 ) {
+ for (size_t j = (size_t)a; j < (1U << w) - 1; ++j) {
+
+// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
+ check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
+ check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
+// }
+ }
+
+// z[i] = tmp
+ memcpy(&z[i], &tmp, sizeof(tmp));
+// }
+ }
+
+// Kc = H(I || u32str(q) || u16str(D_PBLC) || z[0] || z[1] || ... || z[p-1])
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ for (size_t i = 0; i < p; ++i)
+ check(hal_hash_update(state, (const uint8_t *)&z[i], sizeof(z[i])));
+ check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K)));
+
+// 4. return Kc
+ return HAL_OK;
+}
+
+#if RPC_CLIENT == RPC_CLIENT_LOCAL
+static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key,
+ uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1]
+ /* K is not an integral part of the private key, but we store it to speed up restart */
+
+ /*
+ * Calculate data length.
+ */
+
+ size_t len, vlen = 0, hlen;
+
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_bytestring32(&key->K, NULL, &len, 0)); vlen += len;
+ for (size_t i = 0; i < key->lmots->p; ++i) {
+ check(hal_asn1_encode_bytestring32(&key->x[i], NULL, &len, 0)); vlen += len;
+ }
+
+ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
+
+ check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
+ NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
+
+ if (der == NULL)
+ return HAL_OK;
+
+ /*
+ * Encode data.
+ */
+
+ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
+
+ uint8_t *d = der + hlen;
+ memset(d, 0, vlen);
+
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len;
+ for (size_t i = 0; i < key->lmots->p; ++i) {
+ check(hal_asn1_encode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len;
+ }
+
+ return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
+ NULL, 0, der, d - der, der, der_len, der_max);
+}
+
+static size_t lmots_private_key_to_der_len(const lmots_key_t * const key)
+{
+ size_t len = 0;
+ return (lmots_private_key_to_der(key, NULL, &len, 0) == HAL_OK) ? len : 0;
+}
+
+static hal_error_t lmots_private_key_from_der(lmots_key_t *key,
+ const uint8_t *der, const size_t der_len)
+{
+ if (key == NULL || der == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ key->type = HAL_KEY_TYPE_HASHSIG_LMOTS;
+
+ size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
+ const uint8_t *alg_oid, *curve_oid, *privkey;
+
+ check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
+ &curve_oid, &curve_oid_len,
+ &privkey, &privkey_len,
+ der, der_len));
+
+ if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
+ memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
+ curve_oid_len != 0)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen));
+
+ const uint8_t *d = privkey + hlen;
+ size_t len;
+
+ // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1]
+
+ lmots_algorithm_t lmots_type;
+ check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, vlen)); d += len; vlen -= len;
+ key->lmots = lmots_select_parameter_set(lmots_type);
+ check(hal_asn1_decode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_decode_size_t(&key->q, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_decode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len;
+ if (key->x != NULL) {
+ for (size_t i = 0; i < key->lmots->p; ++i) {
+ check(hal_asn1_decode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len;
+ }
+
+ if (d != privkey + privkey_len)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+ }
+
+ return HAL_OK;
+}
+#endif
+
+/* ---------------------------------------------------------------- */
+
+/*
+ * LMS
+ */
+
+typedef const struct lms_parameter_set {
+ lms_algorithm_t type;
+ size_t m, h;
+} lms_parameter_t;
+static lms_parameter_t lms_parameters[] = {
+ { lms_sha256_n32_h5, 32, 5 },
+ { lms_sha256_n32_h10, 32, 10 },
+ { lms_sha256_n32_h15, 32, 15 },
+ { lms_sha256_n32_h20, 32, 20 },
+ { lms_sha256_n32_h25, 32, 25 },
+};
+
+typedef struct lms_key {
+ hal_key_type_t type;
+ size_t level;
+ lms_parameter_t *lms;
+ lmots_parameter_t *lmots;
+ bytestring16 I;
+ size_t q; /* index of next lmots signing key */
+ hal_uuid_t *lmots_keys; /* private key components */
+ bytestring32 *T; /* public key components */
+ bytestring32 T1; /* copy of T[1] */
+ uint8_t *pubkey; /* in XDR format */
+ size_t pubkey_len;
+ uint8_t *signature; /* of public key by parent lms key */
+ size_t signature_len;
+} lms_key_t;
+
+static inline lms_parameter_t *lms_select_parameter_set(const lms_algorithm_t lms_type)
+{
+ if (lms_type < lms_sha256_n32_h5 || lms_type > lms_sha256_n32_h25)
+ return NULL;
+ else
+ return &lms_parameters[lms_type - lms_sha256_n32_h5];
+}
+
+static inline size_t lms_public_key_len(lms_parameter_t * const lms)
+{
+ /* u32str(type) || u32str(otstype) || I || T[1] */
+ return 2 * sizeof(uint32_t) + 16 + lms->m;
+}
+
+static inline size_t lms_signature_len(lms_parameter_t * const lms, lmots_parameter_t * const lmots)
+{
+ /* u32str(q) || ots_signature || u32str(type) || path[0] || path[1] || ... || path[h-1] */
+ return 2 * sizeof(uint32_t) + lmots_signature_len(lmots) + lms->h * lms->m;
+}
+
+#if RPC_CLIENT == RPC_CLIENT_LOCAL
+/* Given a key with most fields filled in, generate the lms private and
+ * public key components.
+ * Let the caller worry about storage.
+ */
+static hal_error_t lms_generate(lms_key_t *key)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || key->lms == NULL || key->lmots == NULL || key->lmots_keys == NULL || key->T == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ check(hal_uuid_gen((hal_uuid_t *)&key->I));
+ key->q = 0;
+
+ bytestring32 x[key->lmots->p];
+ lmots_key_t lmots_key = {
+ .type = HAL_KEY_TYPE_HASHSIG_LMOTS,
+ .lmots = key->lmots,
+ .x = x
+ };
+ memcpy(&lmots_key.I, &key->I, sizeof(key->I));
+
+ hal_pkey_slot_t slot = {
+ .type = HAL_KEY_TYPE_HASHSIG_LMOTS,
+ .curve = HAL_CURVE_NONE,
+ .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0)
+ };
+ hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
+
+ uint8_t statebuf[512];
+ hal_hash_state_t *state = NULL;
+ uint32_t l;
+ uint16_t s;
+ size_t h2 = (1 << key->lms->h);
+
+ /* private key - array of lmots key names */
+ for (size_t q = 0; q < h2; ++q) {
+ /* generate the lmots private and public key components */
+ lmots_key.q = q;
+ check(lmots_generate(&lmots_key));
+
+ /* store the lmots key */
+ uint8_t der[lmots_private_key_to_der_len(&lmots_key)];
+ size_t der_len;
+ check(lmots_private_key_to_der(&lmots_key, der, &der_len, sizeof(der)));
+ check(hal_uuid_gen(&slot.name));
+ hal_error_t err = hal_ks_store(ks, &slot, der, der_len);
+ memset(&x, 0, sizeof(x));
+ memset(der, 0, sizeof(der));
+ if (err != HAL_OK) return err;
+
+ /* record the lmots keystore name */
+ memcpy(&key->lmots_keys[q], &slot.name, sizeof(slot.name));
+
+ /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[r-2^h]) */
+ size_t r = h2 + q;
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)));
+ check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r])));
+ hal_task_yield_maybe();
+ }
+
+ /* generate the rest of T[r] = H(I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1]) */
+ for (size_t r = h2 - 1; r > 0; --r) {
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ check(hal_hash_update(state, (const uint8_t *)&key->T[2*r], sizeof(key->T[r])));
+ check(hal_hash_update(state, (const uint8_t *)&key->T[2*r+1], sizeof(key->T[r])));
+ check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r])));
+ hal_task_yield_maybe();
+ }
+
+ memcpy(&key->T1, &key->T[1], sizeof(key->T1));
+
+ /* generate the XDR encoding of the public key, which will be signed
+ * by the previous lms key
+ */
+ uint8_t *pubkey = key->pubkey;
+ const uint8_t * const publim = key->pubkey + key->pubkey_len;
+ // u32str(lms_type) || u32str(lmots_type) || I || T[1]
+ check(hal_xdr_encode_int(&pubkey, publim, key->lms->type));
+ check(hal_xdr_encode_int(&pubkey, publim, key->lmots->type));
+ check(hal_xdr_encode_bytestring16(&pubkey, publim, &key->I));
+ check(hal_xdr_encode_bytestring32(&pubkey, publim, &key->T1));
+
+ return HAL_OK;
+}
+
+static hal_error_t lms_delete(const lms_key_t * const key)
+{
+ hal_pkey_slot_t slot = {0};
+ hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
+
+ /* delete the lmots keys */
+ for (size_t i = 0; i < (1U << key->lms->h); ++i) {
+ memcpy(&slot.name, &key->lmots_keys[i], sizeof(slot.name));
+ check(hal_ks_delete(ks, &slot));
+ hal_task_yield_maybe();
+ }
+
+ /* delete the lms key */
+ memcpy(&slot.name, &key->I, sizeof(slot.name));
+ return hal_ks_delete(ks, &slot);
+}
+
+static hal_error_t lms_private_key_to_der(const lms_key_t * const key,
+ uint8_t *der, size_t *der_len, const size_t der_max);
+
+static hal_error_t lms_sign(lms_key_t * const key,
+ const uint8_t * const msg, const size_t msg_len,
+ uint8_t *sig, size_t *sig_len, const size_t sig_max)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || msg == NULL || sig == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ if (key->q >= (1U << key->lms->h))
+ return HAL_ERROR_HASHSIG_KEY_EXHAUSTED;
+
+ if (sig_max < lms_signature_len(key->lms, key->lmots))
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+ /* u32str(q) || ots_signature || u32str(lms_type) || path[0] || path[1] || ... || path[h-1] */
+
+ uint8_t *sigptr = sig;
+ const uint8_t * const siglim = sig + sig_max;
+ check(hal_xdr_encode_int(&sigptr, siglim, key->q));
+
+ /* fetch and decode the lmots signing key from the keystore */
+ hal_pkey_slot_t slot;
+ memset(&slot, 0, sizeof(slot));
+ memcpy(&slot.name, &key->lmots_keys[key->q], sizeof(slot.name));
+
+ lmots_key_t lmots_key;
+ memset(&lmots_key, 0, sizeof(lmots_key));
+ bytestring32 x[key->lmots->p];
+ memset(&x, 0, sizeof(x));
+ lmots_key.x = x;
+
+ uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
+ size_t der_len;
+ hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
+ check(hal_ks_fetch(ks, &slot, der, &der_len, sizeof(der)));
+ check(lmots_private_key_from_der(&lmots_key, der, der_len));
+ memset(&der, 0, sizeof(der));
+
+ //? check lmots_type and I vs. lms key?
+
+ /* generate the lmots signature */
+ size_t lmots_sig_len;
+ check(lmots_sign(&lmots_key, msg, msg_len, sigptr, &lmots_sig_len, sig_max - (sigptr - sig)));
+ memset(&x, 0, sizeof(x));
+ sigptr += lmots_sig_len;
+
+ check(hal_xdr_encode_int(&sigptr, siglim, key->lms->type));
+
+ /* generate the path array */
+ for (size_t r = (1 << key->lms->h) + key->q; r > 1; r /= 2)
+ check(hal_xdr_encode_bytestring32(&sigptr, siglim, ((r & 1) ? &key->T[r-1] : &key->T[r+1])));
+
+ if (sig_len != NULL)
+ *sig_len = sigptr - sig;
+
+ /* update and store q before returning the signature */
+ ++key->q;
+ check(lms_private_key_to_der(key, der, &der_len, sizeof(der)));
+ slot.type = HAL_KEY_TYPE_HASHSIG_LMS;
+ slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN : 0);
+ memcpy(&slot.name, &key->I, sizeof(slot.name));
+ check(hal_ks_rewrite_der(ks, &slot, der, der_len));
+
+ return HAL_OK;
+}
+#endif
+
+static hal_error_t lms_public_key_candidate(const lms_key_t * const key,
+ const uint8_t * const msg, const size_t msg_len,
+ const uint8_t * const sig, const size_t sig_len,
+ bytestring32 * Tc);
+
+static hal_error_t lms_verify(const lms_key_t * const key,
+ const uint8_t * const msg, const size_t msg_len,
+ const uint8_t * const sig, const size_t sig_len)
+{
+ if (key == NULL || msg == NULL || sig == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ /* We can do one length check right now, rather than the 3 in
+ * Algorithm 6b and 2 in Algorithm 4b, because the lms and lmots types
+ * in the signature have to match the key.
+ */
+ if (sig_len != lms_signature_len(key->lms, key->lmots))
+ return HAL_ERROR_INVALID_SIGNATURE;
+
+// Algorithm 6: LMS Signature Verification
+//
+// 1. if the public key is not at least eight bytes long, return
+// INVALID
+//
+// 2. parse pubtype, I, and T[1] from the public key as follows:
+//
+// a. pubtype = strTou32(first 4 bytes of public key)
+//
+// b. ots_typecode = strTou32(next 4 bytes of public key)
+//
+// c. set m according to pubtype, based on Table 2
+//
+// d. if the public key is not exactly 24 + m bytes
+// long, return INVALID
+//
+// e. I = next 16 bytes of the public key
+//
+// f. T[1] = next m bytes of the public key
+//
+// 3. compute the candidate LMS root value Tc from the signature,
+// message, identifier and pubtype using Algorithm 6b.
+
+ bytestring32 Tc;
+ check(lms_public_key_candidate(key, msg, msg_len, sig, sig_len, &Tc));
+
+// 4. if Tc is equal to T[1], return VALID; otherwise, return INVALID
+
+ return (memcmp(&Tc, &key->T1, sizeof(Tc)) ? HAL_ERROR_INVALID_SIGNATURE : HAL_OK);
+}
+
+static hal_error_t lms_public_key_candidate(const lms_key_t * const key,
+ const uint8_t * const msg, const size_t msg_len,
+ const uint8_t * const sig, const size_t sig_len,
+ bytestring32 * Tc)
+{
+// Algorithm 6b: Computing an LMS Public Key Candidate from a Signature,
+// Message, Identifier, and algorithm typecode
+ /* XXX and pubotstype */
+
+// 1. if the signature is not at least eight bytes long, return INVALID
+//
+// 2. parse sigtype, q, ots_signature, and path from the signature as
+// follows:
+//
+// a. q = strTou32(first 4 bytes of signature)
+
+ const uint8_t *sigptr = sig;
+ const uint8_t * const siglim = sig + sig_len;
+
+ uint32_t q;
+ check(hal_xdr_decode_int(&sigptr, siglim, &q));
+
+// b. otssigtype = strTou32(next 4 bytes of signature)
+
+ uint32_t otssigtype;
+ check(hal_xdr_decode_int_peek(&sigptr, siglim, &otssigtype));
+
+// c. if otssigtype is not the OTS typecode from the public key, return INVALID
+
+ if ((lmots_algorithm_t)otssigtype != key->lmots->type)
+ return HAL_ERROR_INVALID_SIGNATURE;
+
+// d. set n, p according to otssigtype and Table 1; if the
+// signature is not at least 12 + n * (p + 1) bytes long, return INVALID
+//
+// e. ots_signature = bytes 8 through 8 + n * (p + 1) - 1 of signature
+
+ /* XXX Technically, this is also wrong - this is the remainder of
+ * ots_signature after otssigtype. The full ots_signature would be
+ * bytes 4 through 8 + n * (p + 1) - 1.
+ */
+
+ const uint8_t * const ots_signature = sigptr;
+ sigptr += lmots_signature_len(key->lmots);
+
+// f. sigtype = strTou32(4 bytes of signature at location 8 + n * (p + 1))
+
+ uint32_t sigtype;
+ check(hal_xdr_decode_int(&sigptr, siglim, &sigtype));
+
+// f. if sigtype is not the LM typecode from the public key, return INVALID
+
+ if ((lms_algorithm_t)sigtype != key->lms->type)
+ return HAL_ERROR_INVALID_SIGNATURE;
+
+// g. set m, h according to sigtype and Table 2
+
+ size_t m = key->lms->m;
+ size_t h = key->lms->h;
+ size_t h2 = (1 << key->lms->h);
+
+// h. if q >= 2^h or the signature is not exactly 12 + n * (p + 1) + m * h bytes long, return INVALID
+
+ if (q >= h2)
+ return HAL_ERROR_INVALID_SIGNATURE;
+
+// i. set path as follows:
+// path[0] = next m bytes of signature
+// path[1] = next m bytes of signature
+// ...
+// path[h-1] = next m bytes of signature
+
+ bytestring32 path[h];
+ for (size_t i = 0; i < h; ++i)
+ check(hal_xdr_decode_bytestring32(&sigptr, siglim, &path[i]));
+
+// 3. Kc = candidate public key computed by applying Algorithm 4b
+// to the signature ots_signature, the message, and the
+// identifiers I, q
+
+ lmots_key_t lmots_key = {
+ .type = HAL_KEY_TYPE_HASHSIG_LMOTS,
+ .lmots = key->lmots,
+ .q = q
+ };
+ memcpy(&lmots_key.I, &key->I, sizeof(lmots_key.I));
+ check(lmots_public_key_candidate(&lmots_key, msg, msg_len, ots_signature, lmots_signature_len(key->lmots)));
+
+// 4. compute the candidate LMS root value Tc as follows:
+
+ uint8_t statebuf[512];
+ hal_hash_state_t *state = NULL;
+ uint32_t l;
+ uint16_t s;
+
+// node_num = 2^h + q
+ size_t r = h2 + q;
+
+// tmp = H(I || u32str(node_num) || u16str(D_LEAF) || Kc)
+ bytestring32 tmp;
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&lmots_key.I, sizeof(lmots_key.I)));
+ l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)));
+ check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
+
+// i = 0
+// while (node_num > 1) {
+// if (node_num is odd):
+// tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || path[i] || tmp)
+// else:
+// tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || tmp || path[i])
+// node_num = node_num/2
+// i = i + 1
+// }
+ for (size_t i = 0; r > 1; r /= 2, ++i) {
+ check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
+ check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
+ l = u32str(r/2); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
+ s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ if (r & 1) {
+ check(hal_hash_update(state, (const uint8_t *)&path[i], m));
+ check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
+ }
+ else {
+ check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
+ check(hal_hash_update(state, (const uint8_t *)&path[i], m));
+ }
+ check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
+ }
+
+// Tc = tmp
+ memcpy(Tc, &tmp, sizeof(*Tc));
+
+ return HAL_OK;
+}
+
+#if RPC_CLIENT == RPC_CLIENT_LOCAL
+static hal_error_t lms_private_key_to_der(const lms_key_t * const key,
+ uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ /*
+ * Calculate data length.
+ */
+
+ // u32str(lms_type) || u32str(lmots_type) || I || q
+
+ size_t len, vlen = 0, hlen;
+
+ check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len;
+
+ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
+
+ check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
+ NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
+
+ if (der == NULL)
+ return HAL_OK;
+
+ /*
+ * Encode data.
+ */
+
+ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
+
+ uint8_t *d = der + hlen;
+ memset(d, 0, vlen);
+
+ check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len;
+
+ return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
+ NULL, 0, der, d - der, der, der_len, der_max);
+}
+
+static size_t lms_private_key_to_der_len(const lms_key_t * const key)
+{
+ size_t len = 0;
+ return lms_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
+}
+
+static hal_error_t lms_private_key_from_der(lms_key_t *key,
+ const uint8_t *der, const size_t der_len)
+{
+ if (key == NULL || der == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ key->type = HAL_KEY_TYPE_HASHSIG_LMS;
+
+ size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
+ const uint8_t *alg_oid, *curve_oid, *privkey;
+
+ check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
+ &curve_oid, &curve_oid_len,
+ &privkey, &privkey_len,
+ der, der_len));
+
+ if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
+ memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
+ curve_oid_len != 0)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen));
+
+ const uint8_t *d = privkey + hlen;
+ size_t n;
+
+ // u32str(lms_type) || u32str(lmots_type) || I || q
+
+ lms_algorithm_t lms_type;
+ check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n;
+ key->lms = lms_select_parameter_set(lms_type);
+ lmots_algorithm_t lmots_type;
+ check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n;
+ key->lmots = lmots_select_parameter_set(lmots_type);
+ check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n;
+ check(hal_asn1_decode_size_t(&key->q, d, &n, vlen)); d += n; vlen -= n;
+
+ if (d != privkey + privkey_len)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ return HAL_OK;
+}
+#endif
+
+/* ---------------------------------------------------------------- */
+
+/*
+ * HSS
+ */
+
+/* For purposes of the external API, the key type is "hal_hashsig_key_t".
+ * Internally, we refer to it as "hss_key_t".
+ */
+
+typedef struct hal_hashsig_key hss_key_t;
+
+struct hal_hashsig_key {
+ hal_key_type_t type;
+ hss_key_t *next;
+ hal_uuid_t name;
+ size_t L;
+ lms_parameter_t *lms;
+ lmots_parameter_t *lmots;
+ bytestring16 I;
+ bytestring32 T1;
+ lms_key_t *lms_keys;
+};
+
+const size_t hal_hashsig_key_t_size = sizeof(hss_key_t);
+
+static hss_key_t *hss_keys = NULL;
+
+static inline size_t hss_public_key_len(lms_parameter_t * const lms)
+{
+ /* L || pub[0] */
+ return sizeof(uint32_t) + lms_public_key_len(lms);
+}
+
+static inline size_t hss_signature_len(const size_t L, lms_parameter_t * const lms, lmots_parameter_t * const lmots)
+{
+ /* u32str(Nspk) || sig[0] || pub[1] || ... || sig[Nspk-1] || pub[Nspk] || sig[Nspk] */
+ return sizeof(uint32_t) + L * lms_signature_len(lms, lmots) + (L - 1) * lms_public_key_len(lms);
+}
+
+size_t hal_hashsig_signature_len(const size_t L,
+ const lms_algorithm_t lms_type,
+ const lmots_algorithm_t lmots_type)
+{
+ lms_parameter_t * const lms = lms_select_parameter_set(lms_type);
+ if (lms == NULL)
+ return 0;
+
+ lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type);
+ if (lmots == NULL)
+ return 0;
+
+ return hss_signature_len(L, lms, lmots);
+}
+
+size_t hal_hashsig_lmots_private_key_len(const lmots_algorithm_t lmots_type)
+{
+ lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type);
+ if (lmots == NULL)
+ return 0;
+
+ return lmots_private_key_len(lmots);
+}
+
+#if RPC_CLIENT == RPC_CLIENT_LOCAL
+static int restart_in_progress = 0;
+
+static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
+{
+ if (mem == NULL || *mem == NULL || len == NULL || size > *len)
+ return NULL;
+ void *ret = *mem;
+ *mem += size;
+ *len -= size;
+ return ret;
+}
+
+static hal_error_t hss_alloc(hal_hashsig_key_t **key_,
+ const size_t L,
+ const lms_algorithm_t lms_type,
+ const lmots_algorithm_t lmots_type)
+{
+ if (key_ == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ if (L == 0 || L > 8)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ lms_parameter_t *lms = lms_select_parameter_set(lms_type);
+ if (lms == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+ size_t h2 = (1 << lms->h);
+
+ lmots_parameter_t *lmots = lmots_select_parameter_set(lmots_type);
+ if (lmots == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ /* w=1 fails on the Alpha, because the key exceeds the keystore block
+ * size. The XDR encoding of the key is going to differ from the DER
+ * encoding, but it's at least in the ballpark to tell us whether the key
+ * will fit.
+ */
+ if (lmots_private_key_len(lmots) > HAL_KS_BLOCK_SIZE)
+ return HAL_ERROR_UNSUPPORTED_KEY;
+
+ if (hss_signature_len(L, lms, lmots) > HAL_RPC_MAX_PKT_SIZE)
+ return HAL_ERROR_UNSUPPORTED_KEY;
+
+ /* check volatile keystore for space to store the lower-level trees */
+ size_t available;
+ check(hal_ks_available(hal_ks_volatile, &available));
+ if (available < (L - 1) * (h2 + 1))
+ return HAL_ERROR_NO_KEY_INDEX_SLOTS;
+
+ size_t lms_sig_len = lms_signature_len(lms, lmots);
+ size_t lms_pub_len = lms_public_key_len(lms);
+
+ /* allocate lms tree nodes and lmots key names, atomically */
+ size_t len = (sizeof(hss_key_t) +
+ L * sizeof(lms_key_t) +
+ L * lms_sig_len +
+ L * lms_pub_len +
+ L * h2 * sizeof(hal_uuid_t) +
+ L * (2 * h2) * sizeof(bytestring32));
+ uint8_t *mem = hal_allocate_static_memory(len);
+ if (mem == NULL)
+ return HAL_ERROR_ALLOCATION_FAILURE;
+ memset(mem, 0, len);
+
+ /* allocate the key that will stay in working memory */
+ hss_key_t *key = gnaw(&mem, &len, sizeof(hss_key_t));
+ *key_ = key;
+ key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE;
+ key->L = L;
+ key->lms = lms;
+ key->lmots = lmots;
+
+ /* add to the list of active keys */
+ key->next = hss_keys;
+ hss_keys = key;
+
+ /* allocate the list of lms trees */
+ key->lms_keys = gnaw(&mem, &len, L * sizeof(lms_key_t));
+ for (size_t i = 0; i < L; ++i) {
+ /* XXX some of this is redundant to lms_private_key_from_der */
+ lms_key_t * lms_key = &key->lms_keys[i];
+ lms_key->type = HAL_KEY_TYPE_HASHSIG_LMS;
+ lms_key->lms = lms;
+ lms_key->lmots = lmots;
+ lms_key->level = i;
+ lms_key->lmots_keys = (hal_uuid_t *)gnaw(&mem, &len, h2 * sizeof(hal_uuid_t));
+ lms_key->T = gnaw(&mem, &len, (2 * h2) * sizeof(bytestring32));
+ lms_key->signature = gnaw(&mem, &len, lms_sig_len);
+ lms_key->signature_len = lms_sig_len;
+ lms_key->pubkey = gnaw(&mem, &len, lms_pub_len);
+ lms_key->pubkey_len = lms_pub_len;
+ }
+
+ return HAL_OK;
+}
+
+/* called from pkey_local_generate_hashsig */
+hal_error_t hal_hashsig_key_gen(hal_core_t *core,
+ hal_hashsig_key_t **key_,
+ const size_t L,
+ const lms_algorithm_t lms_type,
+ const lmots_algorithm_t lmots_type)
+{
+ /* hss_alloc does most of the checks */
+
+ if (restart_in_progress)
+ return HAL_ERROR_NOT_READY;
+
+ /* check flash keystore for space to store the root tree */
+ lms_parameter_t *lms = lms_select_parameter_set(lms_type);
+ if (lms == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+ size_t available;
+ check(hal_ks_available(hal_ks_token, &available));
+ if (available < (1U << lms->h) + 2)
+ return HAL_ERROR_NO_KEY_INDEX_SLOTS;
+
+ check(hss_alloc(key_, L, lms_type, lmots_type));
+ hss_key_t *key = *key_;
+
+ /* generate the lms trees */
+ for (size_t i = 0; i < L; ++i) {
+ lms_key_t * lms_key = &key->lms_keys[i];
+
+ check(lms_generate(lms_key));
+
+ if (i > 0)
+ /* sign this tree with the previous */
+ check(lms_sign(&key->lms_keys[i-1],
+ (const uint8_t * const)lms_key->pubkey, lms_public_key_len(key->lms),
+ lms_key->signature, NULL, lms_signature_len(key->lms, key->lmots)));
+
+ /* store the lms key */
+ hal_pkey_slot_t slot = {
+ .type = HAL_KEY_TYPE_HASHSIG_LMS,
+ .curve = HAL_CURVE_NONE,
+ .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((i == 0) ? HAL_KEY_FLAG_TOKEN: 0)
+ };
+ hal_ks_t *ks = (i == 0) ? hal_ks_token : hal_ks_volatile;
+ uint8_t der[lms_private_key_to_der_len(lms_key)];
+ size_t der_len;
+
+ memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
+ check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)));
+ check(hal_ks_store(ks, &slot, der, der_len));
+ }
+
+ memcpy(&key->I, &key->lms_keys[0].I, sizeof(key->I));
+ memcpy(&key->T1, &key->lms_keys[0].T1, sizeof(key->T1));
+
+ /* pkey_local_generate_hashsig stores the key */
+
+ return HAL_OK;
+}
+
+/* caller will delete the hss key from the keystore */
+hal_error_t hal_hashsig_key_delete(const hal_hashsig_key_t * const key)
+{
+ if (restart_in_progress)
+ return HAL_ERROR_NOT_READY;
+
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ /* delete the lms trees and their lmots keys */
+ for (size_t level = 0; level < key->L; ++level)
+ check(lms_delete(&key->lms_keys[level]));
+
+ /* XXX free memory, if supported */
+ (void)hal_free_static_memory(key);
+
+ /* remove from global hss_keys linked list */
+ /* XXX or mark it unused, for possible re-use */
+ if (hss_keys == key) {
+ hss_keys = key->next;
+ }
+ else {
+ for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) {
+ if (prev->next == key) {
+ prev->next = key->next;
+ break;
+ }
+ }
+ }
+
+ return HAL_OK;
+}
+
+hal_error_t hal_hashsig_sign(hal_core_t *core,
+ const hal_hashsig_key_t * const key,
+ const uint8_t * const msg, const size_t msg_len,
+ uint8_t *sig, size_t *sig_len, const size_t sig_max)
+{
+ if (restart_in_progress)
+ return HAL_ERROR_NOT_READY;
+
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE || msg == NULL || sig == NULL || sig_len == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ if (sig_max < hss_signature_len(key->L, key->lms, key->lmots))
+ return HAL_ERROR_RESULT_TOO_LONG;
+
+// To sign a message using the private key prv, the following steps are
+// performed:
+//
+// If prv[L-1] is exhausted, then determine the smallest integer d
+// such that all of the private keys prv[d], prv[d+1], ... , prv[L-1]
+// are exhausted. If d is equal to zero, then the HSS key pair is
+// exhausted, and it MUST NOT generate any more signatures.
+// Otherwise, the key pairs for levels d through L-1 must be
+// regenerated during the signature generation process, as follows.
+// For i from d to L-1, a new LMS public and private key pair with a
+// new identifier is generated, pub[i] and prv[i] are set to those
+// values, then the public key pub[i] is signed with prv[i-1], and
+// sig[i-1] is set to the resulting value.
+
+ size_t h2 = (1 << key->lms->h);
+ if (key->lms_keys[key->L-1].q >= h2) {
+ size_t d;
+ for (d = key->L-1; d > 0 && key->lms_keys[d-1].q >= h2; --d) {
+ }
+ if (d == 0)
+ return HAL_ERROR_HASHSIG_KEY_EXHAUSTED;
+ for ( ; d < key->L; ++d) {
+ lms_key_t *lms_key = &key->lms_keys[d];
+ /* Delete then regenerate the LMS key. We don't worry about
+ * power-cycling in the middle, because the lower-level trees are
+ * all stored in the volatile keystore, so we'd have to regenerate
+ * them anyway on restart; and this way we don't have to allocate
+ * any additional memory.
+ */
+ check(lms_delete(lms_key));
+ check(lms_generate(lms_key));
+ check(lms_sign(&key->lms_keys[d-1],
+ (const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len,
+ lms_key->signature, NULL, lms_key->signature_len));
+
+ hal_pkey_slot_t slot = {
+ .type = HAL_KEY_TYPE_HASHSIG_LMS,
+ .curve = HAL_CURVE_NONE,
+ .flags = (lms_key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0
+ };
+ hal_ks_t *ks = (lms_key->level == 0) ? hal_ks_token : hal_ks_volatile;
+ uint8_t der[lms_private_key_to_der_len(lms_key)];
+ size_t der_len;
+
+ memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
+ check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)));
+ check(hal_ks_store(ks, &slot, der, der_len));
+ }
+ }
+
+// The message is signed with prv[L-1], and the value sig[L-1] is set
+// to that result.
+//
+// The value of the HSS signature is set as follows. We let
+// signed_pub_key denote an array of octet strings, where
+// signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and Nspk-
+// 1, inclusive, where Nspk = L-1 denotes the number of signed public
+// keys. Then the HSS signature is u32str(Nspk) ||
+// signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk].
+
+ uint8_t *sigptr = sig;
+ const uint8_t * const siglim = sig + sig_max;
+ check(hal_xdr_encode_int(&sigptr, siglim, key->L - 1));
+
+ /* copy the lms signed public keys into the signature */
+ for (size_t i = 1; i < key->L; ++i) {
+ lms_key_t *lms_key = &key->lms_keys[i];
+ check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->signature, lms_key->signature_len));
+ check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->pubkey, lms_key->pubkey_len));
+ }
+
+ /* sign the message with the last lms private key */
+ size_t len;
+ check(lms_sign(&key->lms_keys[key->L-1], msg, msg_len, sigptr, &len, sig_max - (sigptr - sig)));
+ sigptr += len;
+ *sig_len = sigptr - sig;
+
+ return HAL_OK;
+}
+#endif
+
+hal_error_t hal_hashsig_verify(hal_core_t *core,
+ const hal_hashsig_key_t * const key,
+ const uint8_t * const msg, const size_t msg_len,
+ const uint8_t * const sig, const size_t sig_len)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC || msg == NULL || sig == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ core = core;
+
+// To verify a signature sig and message using the public key pub, the
+// following steps are performed:
+//
+// The signature S is parsed into its components as follows:
+//
+// Nspk = strTou32(first four bytes of S)
+// if Nspk+1 is not equal to the number of levels L in pub:
+// return INVALID
+
+ const uint8_t *sigptr = sig;
+ const uint8_t * const siglim = sig + sig_len;
+
+ uint32_t Nspk;
+ check(hal_xdr_decode_int(&sigptr, siglim, &Nspk));
+ if (Nspk + 1 != key->L)
+ return HAL_ERROR_INVALID_SIGNATURE;
+
+// key = pub
+// for (i = 0; i < Nspk; i = i + 1) {
+// sig = next LMS signature parsed from S
+// msg = next LMS public key parsed from S
+// if (lms_verify(msg, key, sig) != VALID):
+// return INVALID
+// key = msg
+// }
+
+ lms_key_t pub = {
+ .type = HAL_KEY_TYPE_HASHSIG_LMS,
+ .lms = key->lms,
+ .lmots = key->lmots
+ };
+ memcpy(&pub.I, &key->I, sizeof(pub.I));
+ memcpy(&pub.T1, &key->T1, sizeof(pub.T1));
+
+ for (size_t i = 0; i < Nspk; ++i) {
+ const uint8_t * const lms_sig = sigptr;
+ /* peek into the signature for the lmots and lms types */
+ /* XXX The structure of the LMS signature makes this a bigger pain
+ * in the ass than necessary.
+ */
+ /* skip over q */
+ sigptr += 4;
+ /* read lmots_type out of the ots_signature */
+ uint32_t lmots_type;
+ check(hal_xdr_decode_int_peek(&sigptr, siglim, &lmots_type));
+ lmots_parameter_t *lmots = lmots_select_parameter_set((lmots_algorithm_t)lmots_type);
+ if (lmots == NULL)
+ return HAL_ERROR_INVALID_SIGNATURE;
+ /* skip over ots_signature */
+ sigptr += lmots_signature_len(lmots);
+ /* read lms_type after ots_signature */
+ uint32_t lms_type;
+ check(hal_xdr_decode_int(&sigptr, siglim, &lms_type));
+ lms_parameter_t *lms = lms_select_parameter_set((lms_algorithm_t)lms_type);
+ if (lms == NULL)
+ return HAL_ERROR_INVALID_SIGNATURE;
+ /* skip over the path elements of the lms signature */
+ sigptr += lms->h * lms->m;
+ /*XXX sigptr = lms_sig + lms_signature_len(lms, lmots); */
+
+ /* verify the signature over the bytestring version of the signed public key */
+ check(lms_verify(&pub, sigptr, lms_public_key_len(lms), lms_sig, sigptr - lms_sig));
+
+ /* parse the signed public key */
+ check(hal_xdr_decode_int(&sigptr, siglim, &lms_type));
+ pub.lms = lms_select_parameter_set((lmots_algorithm_t)lms_type);
+ if (pub.lms == NULL)
+ return HAL_ERROR_INVALID_SIGNATURE;
+ check(hal_xdr_decode_int(&sigptr, siglim, &lmots_type));
+ pub.lmots = lmots_select_parameter_set((lmots_algorithm_t)lmots_type);
+ if (pub.lmots == NULL)
+ return HAL_ERROR_INVALID_SIGNATURE;
+ check(hal_xdr_decode_bytestring16(&sigptr, siglim, &pub.I));
+ check(hal_xdr_decode_bytestring32(&sigptr, siglim, &pub.T1));
+ }
+
+ /* verify the final signature over the message */
+ return lms_verify(&pub, msg, msg_len, sigptr, sig_len - (sigptr - sig));
+}
+
+hal_error_t hal_hashsig_private_key_to_der(const hal_hashsig_key_t * const key,
+ uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ /*
+ * Calculate data length.
+ */
+
+ size_t len, vlen = 0, hlen;
+
+ check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len;
+
+ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
+
+ check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
+ NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
+
+ if (der == NULL)
+ return HAL_OK;
+
+ /*
+ * Encode data.
+ */
+
+ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
+
+ uint8_t *d = der + hlen;
+ memset(d, 0, vlen);
+
+ check(hal_asn1_encode_size_t(key->L, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
+ check(hal_asn1_encode_bytestring32(&key->T1, d, &len, vlen)); d += len; vlen -= len;
+
+ return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
+ NULL, 0, der, d - der, der, der_len, der_max);
+}
+
+size_t hal_hashsig_private_key_to_der_len(const hal_hashsig_key_t * const key)
+{
+ size_t len = 0;
+ return hal_hashsig_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
+}
+
+hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_,
+ void *keybuf, const size_t keybuf_len,
+ const uint8_t *der, const size_t der_len)
+{
+ if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) || der == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ memset(keybuf, 0, keybuf_len);
+
+ hss_key_t *key = *key_ = keybuf;
+
+ key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE;
+
+ size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
+ const uint8_t *alg_oid, *curve_oid, *privkey;
+ hal_error_t err;
+
+ if ((err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
+ &curve_oid, &curve_oid_len,
+ &privkey, &privkey_len,
+ der, der_len)) != HAL_OK)
+ return err;
+
+ if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
+ memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
+ curve_oid_len != 0)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)) != HAL_OK)
+ return err;
+
+ const uint8_t *d = privkey + hlen;
+ size_t n;
+
+ check(hal_asn1_decode_size_t(&key->L, d, &n, vlen)); d += n; vlen -= n;
+ lms_algorithm_t lms_type;
+ check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n;
+ key->lms = lms_select_parameter_set(lms_type);
+ lmots_algorithm_t lmots_type;
+ check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n;
+ key->lmots = lmots_select_parameter_set(lmots_type);
+ check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n;
+ check(hal_asn1_decode_bytestring32(&key->T1, d, &n, vlen)); d += n; vlen -= n;
+
+ if (d != privkey + privkey_len)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ /* Find this key in the list of active hashsig keys, and return a
+ * pointer to that key structure, rather than the caller-provided key
+ * structure. (The caller will wipe his own key structure when done,
+ * and not molest ours.)
+ */
+ for (hss_key_t *hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
+ if (memcmp(&key->I, &hss_key->lms_keys[0].I, sizeof(key->I)) == 0) {
+ *key_ = hss_key;
+ }
+ }
+
+ return HAL_OK;
+}
+
+hal_error_t hal_hashsig_public_key_to_der(const hal_hashsig_key_t * const key,
+ uint8_t *der, size_t *der_len, const size_t der_max)
+{
+ if (key == NULL || (key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE &&
+ key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC))
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ // L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
+
+ size_t len, vlen = 0, hlen;
+
+ check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
+ check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len;
+
+ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
+
+ if (der != NULL) {
+ uint8_t *d = der + hlen;
+ size_t dlen = vlen;
+ memset(d, 0, vlen);
+
+ check(hal_asn1_encode_size_t(key->L, d, &len, dlen)); d += len; dlen -= len;
+ check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, dlen)); d += len; dlen -= len;
+ check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, dlen)); d += len; dlen -= len;
+ check(hal_asn1_encode_bytestring16(&key->I, d, &len, dlen)); d += len; dlen -= len;
+ check(hal_asn1_encode_bytestring32(&key->T1, d, &len, dlen)); d += len; dlen -= len;
+ }
+
+ return hal_asn1_encode_spki(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
+ NULL, 0, der, hlen + vlen,
+ der, der_len, der_max);
+
+}
+
+size_t hal_hashsig_public_key_to_der_len(const hal_hashsig_key_t * const key)
+{
+ size_t len = 0;
+ return hal_hashsig_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
+}
+
+hal_error_t hal_hashsig_public_key_from_der(hal_hashsig_key_t **key_,
+ void *keybuf, const size_t keybuf_len,
+ const uint8_t * const der, const size_t der_len)
+{
+ if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hss_key_t) || der == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ hss_key_t *key = keybuf;
+
+ memset(keybuf, 0, keybuf_len);
+ *key_ = key;
+
+ key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC;
+
+ const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
+ size_t alg_oid_len, null_len, pubkey_len;
+
+ check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len));
+
+ if (null != NULL || null_len != 0 || alg_oid == NULL ||
+ alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ size_t len, hlen, vlen;
+
+ check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen));
+
+ const uint8_t * const pubkey_end = pubkey + hlen + vlen;
+ const uint8_t *d = pubkey + hlen;
+
+ // L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
+
+ lms_algorithm_t lms_type;
+ lmots_algorithm_t lmots_type;
+
+ check(hal_asn1_decode_size_t(&key->L, d, &len, pubkey_end - d)); d += len;
+ check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len;
+ key->lms = lms_select_parameter_set(lms_type);
+ check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len;
+ key->lmots = lmots_select_parameter_set(lmots_type);
+ check(hal_asn1_decode_bytestring16(&key->I, d, &len, pubkey_end - d)); d += len;
+ check(hal_asn1_decode_bytestring32(&key->T1, d, &len, pubkey_end - d)); d += len;
+
+ if (d != pubkey_end)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+
+ return HAL_OK;
+}
+
+hal_error_t hal_hashsig_key_load_public(hal_hashsig_key_t **key_,
+ void *keybuf, const size_t keybuf_len,
+ const size_t L,
+ const lms_algorithm_t lms_type,
+ const lmots_algorithm_t lmots_type,
+ const uint8_t * const I, const size_t I_len,
+ const uint8_t * const T1, const size_t T1_len)
+{
+ if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) ||
+ I == NULL || I_len != sizeof(bytestring16) ||
+ T1 == NULL || T1_len != sizeof(bytestring32))
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ memset(keybuf, 0, keybuf_len);
+
+ hal_hashsig_key_t *key = keybuf;
+
+ key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC;
+
+ key->L = L;
+ key->lms = lms_select_parameter_set(lms_type);
+ key->lmots = lmots_select_parameter_set(lmots_type);
+ if (key->lms == NULL || key->lmots == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ memcpy(&key->I, I, I_len);
+ memcpy(&key->T1, T1, T1_len);
+
+ *key_ = key;
+
+ return HAL_OK;
+}
+
+
+hal_error_t hal_hashsig_key_load_public_xdr(hal_hashsig_key_t **key_,
+ void *keybuf, const size_t keybuf_len,
+ const uint8_t * const xdr, const size_t xdr_len)
+{
+ const uint8_t *xdrptr = xdr;
+ const uint8_t * const xdrlim = xdr + xdr_len;
+
+ /* L || u32str(lms_type) || u32str(lmots_type) || I || T[1] */
+
+ uint32_t L, lms_type, lmots_type;
+ bytestring16 *I;
+ bytestring32 *T1;
+
+ check(hal_xdr_decode_int(&xdrptr, xdrlim, &L));
+ check(hal_xdr_decode_int(&xdrptr, xdrlim, &lms_type));
+ check(hal_xdr_decode_int(&xdrptr, xdrlim, &lmots_type));
+ check(hal_xdr_decode_bytestring16_ptr(&xdrptr, xdrlim, &I));
+ check(hal_xdr_decode_bytestring32_ptr(&xdrptr, xdrlim, &T1));
+
+ return hal_hashsig_key_load_public(key_, keybuf, keybuf_len, L, lms_type, lmots_type,
+ (const uint8_t * const)I, sizeof(bytestring16),
+ (const uint8_t * const)T1, sizeof(bytestring32));
+}
+
+hal_error_t hal_hashsig_public_key_der_to_xdr(const uint8_t * const der, const size_t der_len,
+ uint8_t * const xdr, size_t * const xdr_len , const size_t xdr_max)
+{
+ if (der == NULL || xdr == NULL)
+ return HAL_ERROR_BAD_ARGUMENTS;
+
+ const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
+ size_t alg_oid_len, null_len, pubkey_len;
+
+ check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len));
+
+ if (null != NULL || null_len != 0 || alg_oid == NULL ||
+ alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ size_t len, hlen, vlen;
+
+ check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen));
+
+ const uint8_t * const pubkey_end = pubkey + hlen + vlen;
+ const uint8_t *d = pubkey + hlen;
+
+ // L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
+
+ size_t L;
+ lms_algorithm_t lms_type;
+ lmots_algorithm_t lmots_type;
+ bytestring16 I;
+ bytestring32 T1;
+
+ check(hal_asn1_decode_size_t(&L, d, &len, pubkey_end - d)); d += len;
+ check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len;
+ check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len;
+ check(hal_asn1_decode_bytestring16(&I, d, &len, pubkey_end - d)); d += len;
+ check(hal_asn1_decode_bytestring32(&T1, d, &len, pubkey_end - d)); d += len;
+
+ if (d != pubkey_end)
+ return HAL_ERROR_ASN1_PARSE_FAILED;
+
+ uint8_t * xdrptr = xdr;
+ const uint8_t * const xdrlim = xdr + xdr_max;
+
+ check(hal_xdr_encode_int(&xdrptr, xdrlim, L));
+ check(hal_xdr_encode_int(&xdrptr, xdrlim, lms_type));
+ check(hal_xdr_encode_int(&xdrptr, xdrlim, lmots_type));
+ check(hal_xdr_encode_bytestring16(&xdrptr, xdrlim, &I));
+ check(hal_xdr_encode_bytestring32(&xdrptr, xdrlim, &T1));
+
+ if (xdr_len != NULL)
+ *xdr_len = xdrptr - xdr;
+
+ return HAL_OK;
+}
+
+#if RPC_CLIENT == RPC_CLIENT_LOCAL
+/* Reinitialize the hashsig key structures after a device restart */
+hal_error_t hal_hashsig_ks_init(void)
+{
+ const hal_client_handle_t client = { -1 };
+ const hal_session_handle_t session = { HAL_HANDLE_NONE };
+ hal_uuid_t prev_name = {{0}};
+ unsigned len;
+ hal_pkey_slot_t slot = {0};
+ uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
+ size_t der_len;
+
+ restart_in_progress = 1;
+
+ /* Find all hss private keys */
+ while ((hal_ks_match(hal_ks_token, client, session,
+ HAL_KEY_TYPE_HASHSIG_PRIVATE, HAL_CURVE_NONE, 0, 0, NULL, 0,
+ &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
+ hal_hashsig_key_t keybuf, *key;
+ if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK ||
+ hal_hashsig_private_key_from_der(&key, (void *)&keybuf, sizeof(keybuf), der, der_len) != HAL_OK) {
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ continue;
+ }
+
+ /* Make sure we have the lms key */
+ hal_pkey_slot_t lms_slot = {0};
+ lms_key_t lms_key;
+ memcpy(&lms_slot.name, &key->I, sizeof(lms_slot.name));
+ if (hal_ks_fetch(hal_ks_token, &lms_slot, der, &der_len, sizeof(der)) != HAL_OK ||
+ lms_private_key_from_der(&lms_key, der, der_len) != HAL_OK ||
+ /* check keys for consistency */
+ lms_key.lms != key->lms ||
+ lms_key.lmots != key->lmots ||
+ memcmp(&lms_key.I, &key->I, sizeof(lms_key.I)) != 0 ||
+ /* optimistically allocate the full hss key structure */
+ hss_alloc(&key, key->L, key->lms->type, key->lmots->type) != HAL_OK) {
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ (void)hal_ks_delete(hal_ks_token, &lms_slot);
+ continue;
+ }
+
+ /* hss_alloc redefines key, so copy fields from the old version of the key */
+ memcpy(&key->I, &keybuf.I, sizeof(key->I));
+ memcpy(&key->T1, &keybuf.T1, sizeof(key->T1));
+ key->name = slot.name;
+
+ /* initialize top-level lms key (beyond what hss_alloc did) */
+ memcpy(&key->lms_keys[0].I, &lms_key.I, sizeof(lms_key.I));
+ key->lms_keys[0].q = lms_key.q;
+
+ prev_name = slot.name;
+ }
+
+ /* Delete orphaned lms keys */
+ memset(&prev_name, 0, sizeof(prev_name));
+ while ((hal_ks_match(hal_ks_token, client, session,
+ HAL_KEY_TYPE_HASHSIG_LMS, HAL_CURVE_NONE, 0, 0, NULL, 0,
+ &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
+ hss_key_t *hss_key;
+ for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
+ if (memcmp(&slot.name, &hss_key->I, sizeof(slot.name)) == 0)
+ break;
+ }
+ if (hss_key == NULL) {
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ continue;
+ }
+
+ prev_name = slot.name;
+ }
+
+ /* Find all lmots keys */
+ memset(&prev_name, 0, sizeof(prev_name));
+ while ((hal_ks_match(hal_ks_token, client, session,
+ HAL_KEY_TYPE_HASHSIG_LMOTS, HAL_CURVE_NONE, 0, 0, NULL, 0,
+ &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
+ if (hss_keys == NULL) {
+ /* if no hss keys were recovered, all lmots keys are orphaned */
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ continue;
+ }
+
+ lmots_key_t lmots_key = {0};
+ if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK ||
+ lmots_private_key_from_der(&lmots_key, der, der_len) != HAL_OK) {
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ continue;
+ }
+
+ hss_key_t *hss_key;
+ for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
+ if (memcmp(&hss_key->I, &lmots_key.I, sizeof(lmots_key.I)) == 0)
+ break;
+ }
+ if (hss_key == NULL) {
+ /* delete orphaned key */
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ continue;
+ }
+
+ /* record this lmots key in the top-level lms key */
+ memcpy(&hss_key->lms_keys[0].lmots_keys[lmots_key.q], &slot.name, sizeof(slot.name));
+
+ /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */
+ size_t r = (1U << hss_key->lms->h) + lmots_key.q;
+ uint8_t statebuf[512];
+ hal_hash_state_t *state = NULL;
+ hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf));
+ hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I));
+ uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l));
+ uint16_t s = u16str(D_LEAF); hal_hash_update(state, (const uint8_t *)&s, sizeof(s));
+ hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K));
+ hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r]));
+
+ prev_name = slot.name;
+ }
+
+ /* After all keys have been read, scan for completeness. */
+ hal_uuid_t uuid_0 = {{0}};
+ hss_key_t *hss_key, *hss_next = NULL;
+ for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_next) {
+ hss_next = hss_key->next;
+ int fail = 0;
+ for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) {
+ if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) == 0) {
+ fail = 1;
+ break;
+ }
+ }
+ if (fail) {
+ fail:
+ /* lms key is incomplete, give up on it */
+ /* delete lmots keys */
+ for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) {
+ if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) != 0) {
+ memcpy(&slot.name, &hss_key->lms_keys[0].lmots_keys[i], sizeof(slot.name));
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ }
+ }
+ /* delete lms key */
+ memcpy(&slot.name, &hss_key->I, sizeof(slot.name));
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ /* delete hss key */
+ slot.name = hss_key->name;
+ (void)hal_ks_delete(hal_ks_token, &slot);
+ /* remove the hss key from the key list */
+ if (hss_keys == hss_key) {
+ hss_keys = hss_key->next;
+ }
+ else {
+ for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) {
+ if (prev->next == hss_key) {
+ prev->next = hss_key->next;
+ break;
+ }
+ }
+ }
+ (void)hal_free_static_memory(hss_key);
+ continue;
+ }
+
+ /* generate the rest of T[] */
+ for (size_t r = (1U << hss_key->lms->h) - 1; r > 0; --r) {
+ uint8_t statebuf[512];
+ hal_hash_state_t *state = NULL;
+ hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf));
+ hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I));
+ uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l));
+ uint16_t s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
+ hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r], sizeof(hss_key->lms_keys[0].T[r]));
+ hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r+1], sizeof(hss_key->lms_keys[0].T[r]));
+ hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r]));
+ }
+ if (memcmp(&hss_key->lms_keys[0].T[1], &hss_key->T1, sizeof(hss_key->lms_keys[0].T[1])) != 0)
+ goto fail;
+
+ /* generate the lower-level lms keys */
+ for (size_t i = 1; i < hss_key->L; ++i) {
+ lms_key_t * lms_key = &hss_key->lms_keys[i];
+ if (lms_generate(lms_key) != HAL_OK)
+ goto fail;
+
+ /* store the lms key */
+ slot.type = HAL_KEY_TYPE_HASHSIG_LMS;
+ slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE;
+ memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
+ if (lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)) != HAL_OK ||
+ hal_ks_store(hal_ks_volatile, &slot, der, der_len) != HAL_OK ||
+ /* sign this lms key with the previous */
+ lms_sign(&hss_key->lms_keys[i-1],
+ (const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len,
+ lms_key->signature, NULL, lms_key->signature_len) != HAL_OK)
+ goto fail;
+ }
+ }
+
+ restart_in_progress = 0;
+ return HAL_OK;
+}
+#endif