diff options
author | Rob Austein <sra@hactrn.net> | 2015-10-02 01:15:21 -0400 |
---|---|---|
committer | Rob Austein <sra@hactrn.net> | 2015-10-02 01:15:21 -0400 |
commit | 92f539d0a2c312a7d5cacc78d03c5b4ff47c4239 (patch) | |
tree | 295d244ca9a541e29b7cccbd5229dea8fa1e456d | |
parent | a16bdf7bd57e2a3c68e7f14acad32ce3740600a8 (diff) |
Revise point addition and point scalar multiplication routines to use
mixed Jacobian-affine coordinates, per a suggestion from Pavel. Old
code still present under compile time conditional for easy comparison,
but will probably go away soon along with a bit of minor cleanup.
-rw-r--r-- | ecdsa.c | 266 |
1 files changed, 257 insertions, 9 deletions
@@ -77,6 +77,17 @@ #include "asn1_internal.h" /* + * Whether to use the new mixed Jacobian-affine point addition and + * point scalar multiplication algorithms. In theory these are both + * faster and simpler than the previous approach, so this conditional + * will probably go away soon. + */ + +#ifndef HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION +#define HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION 1 +#endif + +/* * Whether we're using static test vectors instead of the random * number generator. Do NOT enable this in production (doh). */ @@ -303,14 +314,26 @@ static inline int point_is_infinite(const ec_point_t * const P) * Set a point to be the point at infinity. For Jacobian projective * coordinates, it's customary to use (1 : 1 : 0) as the * representitive value. + * + * If a curve is supplied, we want the Montgomery form of the point at + * infinity for that curve. */ -static inline void point_set_infinite(ec_point_t *P) +static inline void point_set_infinite(ec_point_t *P, const ecdsa_curve_t * const curve) { assert(P != NULL); - fp_set(P->x, 1); - fp_set(P->y, 1); - fp_set(P->z, 0); + + if (curve != NULL) { + fp_copy(unconst_fp_int(curve->mu), P->x); + fp_copy(unconst_fp_int(curve->mu), P->y); + fp_zero(P->z); + } + + else { + fp_set(P->x, 1); + fp_set(P->y, 1); + fp_zero(P->z); + } } /* @@ -339,7 +362,7 @@ static inline void point_double(const ec_point_t * const P, { assert(P != NULL && R != NULL && curve != NULL); - assert(!point_is_infinite(P)); + const int was_infinite = point_is_infinite(P); fp_int alpha[1], beta[1], gamma[1], delta[1], t1[1], t2[1]; @@ -375,9 +398,127 @@ static inline void point_double(const ec_point_t * const P, ff_add (curve, t2, t2, t2); ff_sub (curve, t1, t2, R->y); + assert(was_infinite == point_is_infinite(P)); + fp_zero(alpha); fp_zero(beta); fp_zero(gamma); fp_zero(delta); fp_zero(t1); fp_zero(t2); } +#if HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION + +/** + * Add two EC points + * @param P The point to add + * @param Q The point to add + * @param R [out] The destination of the double + * @param curve The curve parameters structure + * + * Algorithm is madd-2007-bl from + * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html + * + * The special cases are unfortunate, but are probably unavoidable for + * this type of curve. We do what we can to make this constant-time + * in spite of the special cases. The one we really can't do much + * about is P == Q, because in that case we have to switch to the + * point doubling algorithm. + */ + +static inline void point_add(const ec_point_t * const P, + const ec_point_t * const Q, + ec_point_t *R, + const ecdsa_curve_t * const curve) +{ + assert(P != NULL && Q != NULL && R != NULL && curve != NULL); + + /* + * Q must be in affine form. + */ + + assert(fp_cmp(unconst_fp_int(Q->z), unconst_fp_int(curve->mu)) == FP_EQ); + +#warning What happens here if P and Q are not equal but map to the same point in affine space? + + const int same_xz = (fp_cmp(unconst_fp_int(P->z), unconst_fp_int(Q->z)) == FP_EQ && + fp_cmp(unconst_fp_int(P->x), unconst_fp_int(Q->x)) == FP_EQ); + + /* + * If P == Q, we must use point doubling instead of point addition, + * and there's nothing we can do to mask the timing differences. + * So just do it, right away. + */ + + if (same_xz && fp_cmp(unconst_fp_int(P->y), unconst_fp_int(Q->y)) == FP_EQ) + return point_double(P, R, curve); + + /* + * Check now for the other special cases, but defer handling them + * until the end, to mask timing differences. + */ + + const int P_was_infinite = point_is_infinite(P); + + fp_int Qy_neg[1]; + fp_sub(unconst_fp_int(curve->q), unconst_fp_int(Q->y), Qy_neg); + const int result_is_infinite = fp_cmp(unconst_fp_int(P->y), Qy_neg) == FP_EQ && same_xz; + fp_zero(Qy_neg); + + /* + * Main point addition algorithm. + */ + + fp_int Z1Z1[1], H[1], HH[1], I[1], J[1], r[1], V[1], t[1]; + + fp_init(Z1Z1), fp_init(H), fp_init(HH), fp_init(I), fp_init(J), fp_init(r), fp_init(V), fp_init(t); + + ff_sqr (curve, P->z, Z1Z1); /* Z1Z1 = Pz ** 2 */ + + ff_mul (curve, Q->x, Z1Z1, H); /* H = (Qx * Z1Z1) - Px */ + ff_sub (curve, H, P->x, H); + + ff_sqr (curve, H, HH); /* HH = H ** 2 */ + + ff_add (curve, HH, HH, I); /* I = 4 * HH */ + ff_add (curve, I, I, I); + + ff_mul (curve, H, I, J); /* J = H * I */ + + ff_mul (curve, P->z, Z1Z1, r); /* r = 2 * ((Qy * Pz * Z1Z1) - Py) */ + ff_mul (curve, Q->y, r, r); + ff_sub (curve, r, P->y, r); + ff_add (curve, r, r, r); + + ff_mul (curve, P->x, I, V); /* V = Px * I */ + + ff_sqr (curve, r, R->x); /* Rx = (r ** 2) - J - (2 * V) */ + ff_sub (curve, R->x, J, R->x); + ff_sub (curve, R->x, V, R->x); + ff_sub (curve, R->x, V, R->x); + + ff_mul (curve, P->y, J, t); /* Ry = (r * (V - Rx)) - (2 * Py * J) */ + ff_sub (curve, V, R->x, R->y); + ff_mul (curve, r, R->y, R->y); + ff_sub (curve, R->y, t, R->y); + ff_sub (curve, R->y, t, R->y); + + ff_add (curve, P->z, H, R->z); /* Rz = ((Pz + H) ** 2) - Z1Z1 - HH */ + ff_sqr (curve, R->z, R->z); + ff_sub (curve, R->z, Z1Z1, R->z); + ff_sub (curve, R->z, HH, R->z); + + fp_zero(Z1Z1), fp_zero(H), fp_zero(HH), fp_zero(I), fp_zero(J), fp_zero(r), fp_zero(V), fp_zero(t); + + /* + * Handle deferred special cases, then we're done. + */ + + if (P_was_infinite) + point_copy(Q, R); + + else if (result_is_infinite) + point_set_infinite(R, curve); +} + +#else /* HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION */ + /** * Add two EC points * @param P The point to add @@ -399,6 +540,16 @@ static inline void point_add(const ec_point_t * const P, { assert(P != NULL && Q != NULL && R != NULL && curve != NULL); + if (point_is_infinite(P)) { + point_copy(Q, R); + return; + } + if (point_is_infinite(Q)) { + point_copy(P, R); + return; + } + + if (fp_cmp(unconst_fp_int(P->x), unconst_fp_int(Q->x)) == FP_EQ && fp_cmp(unconst_fp_int(P->z), unconst_fp_int(Q->z)) == FP_EQ) { @@ -421,7 +572,7 @@ static inline void point_add(const ec_point_t * const P, */ if (zero_sum) - return point_set_infinite(R); + return point_set_infinite(R, curve); } fp_int Z1Z1[1], Z2Z2[1], U1[1], U2[1], S1[1], S2[1], H[1], I[1], J[1], r[1], V[1], t[1]; @@ -476,6 +627,8 @@ static inline void point_add(const ec_point_t * const P, fp_zero(H), fp_zero(I), fp_zero(J), fp_zero(r), fp_zero(V), fp_zero(t); } +#endif /* HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION */ + /** * Map a point in projective Jacbobian coordinates back to affine space * @param P [in/out] The point to map @@ -524,6 +677,94 @@ static inline hal_error_t point_to_affine(ec_point_t *P, return err; } +#if HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION + +/** + * Perform a point multiplication. + * @param k The scalar to multiply by + * @param P The base point + * @param R [out] Destination for kP + * @param curve Curve parameters + * @param map Boolean whether to map back to affine (1: map, 0: leave projective) + * @return HAL_OK on success + * + * P must be in affine form. + */ + +static hal_error_t point_scalar_multiply(const fp_int * const k, + const ec_point_t * const P_, + ec_point_t *R, + const ecdsa_curve_t * const curve, + const int map) +{ + assert(k != NULL && P_ != NULL && R != NULL && curve != NULL); + + if (fp_iszero(k) || fp_cmp_d(unconst_fp_int(P_->z), 1) != FP_EQ) + return HAL_ERROR_BAD_ARGUMENTS; + + /* + * Convert P to Montgomery form. + */ + + ec_point_t P[1]; + memset(P, 0, sizeof(P)); + + if (fp_mulmod(unconst_fp_int(P_->x), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->x) != FP_OKAY || + fp_mulmod(unconst_fp_int(P_->y), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), P->y) != FP_OKAY) { + memset(P, 0, sizeof(P)); + return HAL_ERROR_IMPOSSIBLE; + } + + fp_copy(unconst_fp_int(curve->mu), P->z); + + /* + * Initialize table. + * M[0] is a dummy for constant timing. + * M[1] is where we accumulate the result. + */ + + ec_point_t M[2][1]; + memset(M, 0, sizeof(M)); + point_set_infinite(M[0], curve); + point_set_infinite(M[1], curve); + + /* + * Walk down bits of the scalar, performing dummy operations to mask + * timing. + * + * Note that, in order for the timing protection to work, the + * number of iterations in the loop has to depend on the order of + * the base point rather than on the scalar. + */ + + for (int bit_index = fp_count_bits(unconst_fp_int(curve->n)) - 1; bit_index >= 0; bit_index--) { + + const int digit_index = bit_index / DIGIT_BIT; + const fp_digit digit = digit_index < k->used ? k->dp[digit_index] : 0; + const fp_digit mask = ((fp_digit) 1) << (bit_index % DIGIT_BIT); + const int bit = (digit & mask) != 0; + + point_double (M[1], M[1], curve); + point_add (M[bit], P, M[bit], curve); + + } + + /* + * Copy result, map back to affine if requested, then done. + */ + + point_copy(M[1], R); + + hal_error_t err = map ? point_to_affine(R, curve) : HAL_OK; + + memset(P, 0, sizeof(P)); + memset(M, 0, sizeof(M)); + + return err; +} + +#else /* HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION */ + /** * Perform a point multiplication. * @param k The scalar to multiply by @@ -609,6 +850,8 @@ static hal_error_t point_scalar_multiply(const fp_int * const k, return err; } +#endif /* HAL_ECDSA_USE_MIXED_JACOBIAN_AFFINE_ADDITION */ + /* * Testing only: ECDSA key generation and signature both have a * critical dependency on random numbers, but we can't use the random @@ -1509,16 +1752,21 @@ hal_error_t hal_ecdsa_verify(const hal_ecdsa_key_t * const key, fp_copy(unconst_fp_int(curve->Gy), u1G->y); fp_set(u1G->z, 1); - if ((err = point_scalar_multiply(u1, u1G, u1G, curve, 0)) != HAL_OK || - (err = point_scalar_multiply(u2, key->Q, u2Q, curve, 0)) != HAL_OK) + if ((err = point_scalar_multiply(u1, u1G, u1G, curve, 1)) != HAL_OK || + (err = point_scalar_multiply(u2, key->Q, u2Q, curve, 1)) != HAL_OK) return err; if (point_is_infinite(u1G)) point_copy(u2Q, R); else if (point_is_infinite(u2Q)) point_copy(u1G, R); + else if (fp_mulmod(unconst_fp_int(u1G->x), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), u1G->x) != FP_OKAY || + fp_mulmod(unconst_fp_int(u1G->y), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), u1G->y) != FP_OKAY || + fp_mulmod(unconst_fp_int(u2Q->x), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), u2Q->x) != FP_OKAY || + fp_mulmod(unconst_fp_int(u2Q->y), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), u2Q->y) != FP_OKAY) + return HAL_ERROR_IMPOSSIBLE; else - point_add(u1G, u2Q, R, curve); + fp_copy(unconst_fp_int(curve->mu), u1G->z), fp_copy(unconst_fp_int(curve->mu), u2Q->z), point_add(u1G, u2Q, R, curve); /* * Signature is OK if |