aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRob Austein <sra@hactrn.net>2015-10-03 18:12:20 -0400
committerRob Austein <sra@hactrn.net>2015-10-03 18:12:20 -0400
commit60cce0124f2fc3eddca03ed3950da9238247a612 (patch)
treefbc7fdf1ef17eca0d840bdd6c35847f5d755f049
parent27076d80252718dd0fba70ec9ab72f32f999061c (diff)
Use initializers for automatic variables of type fp_int because it's a
bit more obvious when we've forgotten to do this than when we've forgotten to call fp_init() or memset(). Convert rsa.c to use the one-element-array idiom so we can get stop prefixing every bignum reference with "&".
-rw-r--r--ecdsa.c92
-rw-r--r--rsa.c188
2 files changed, 154 insertions, 126 deletions
diff --git a/ecdsa.c b/ecdsa.c
index 32855df..e2da87e 100644
--- a/ecdsa.c
+++ b/ecdsa.c
@@ -161,15 +161,26 @@ struct hal_ecdsa_key {
const size_t hal_ecdsa_key_t_size = sizeof(struct hal_ecdsa_key);
/*
+ * Initializers. We want to be able to initialize automatic fp_int
+ * and ec_point_t variables to a sane value (less error prone), but
+ * picky compilers whine about the number of curly braces required.
+ * So we define macros which isolate that madness in one place, and
+ * use those macros everywhere.
+ */
+
+#define INIT_FP_INT {{{0}}}
+#define INIT_EC_POINT_T {{INIT_FP_INT}}
+
+/*
* Error handling.
*/
#define lose(_code_) do { err = _code_; goto fail; } while (0)
/*
- * We can't (usefully) initialize fp_int variables at compile time, so
- * instead we load all the curve parameters the first time anything
- * asks for any of them.
+ * We can't (usefully) initialize fp_int variables to non-zero values
+ * at compile time, so instead we load all the curve parameters the
+ * first time anything asks for any of them.
*/
static const ecdsa_curve_t * const get_curve(const hal_ecdsa_curve_t curve)
@@ -252,8 +263,7 @@ static inline void ff_add(const ecdsa_curve_t * const curve,
const fp_int * const b,
fp_int *c)
{
- fp_int t[2][1];
- memset(t, 0, sizeof(t));
+ fp_int t[2][1] = {INIT_FP_INT};
fp_add(unconst_fp_int(a), unconst_fp_int(b), t[0]);
fp_sub(t[0], unconst_fp_int(curve->q), t[1]);
@@ -268,8 +278,7 @@ static inline void ff_sub(const ecdsa_curve_t * const curve,
const fp_int * const b,
fp_int *c)
{
- fp_int t[2][1];
- memset(t, 0, sizeof(t));
+ fp_int t[2][1] = {INIT_FP_INT};
fp_sub(unconst_fp_int(a), unconst_fp_int(b), t[0]);
fp_add(t[0], unconst_fp_int(curve->q), t[1]);
@@ -393,8 +402,8 @@ static inline hal_error_t point_to_affine(ec_point_t *P,
hal_error_t err = HAL_ERROR_IMPOSSIBLE;
- fp_int t1[1]; fp_init(t1);
- fp_int t2[1]; fp_init(t2);
+ fp_int t1[1] = INIT_FP_INT;
+ fp_int t2[1] = INIT_FP_INT;
fp_int * const q = unconst_fp_int(curve->q);
@@ -438,9 +447,12 @@ static inline void point_double(const ec_point_t * const P,
const int was_infinite = point_is_infinite(P);
- fp_int alpha[1], beta[1], gamma[1], delta[1], t1[1], t2[1];
-
- fp_init(alpha); fp_init(beta); fp_init(gamma); fp_init(delta); fp_init(t1); fp_init(t2);
+ fp_int alpha[1] = INIT_FP_INT;
+ fp_int beta[1] = INIT_FP_INT;
+ fp_int gamma[1] = INIT_FP_INT;
+ fp_int delta[1] = INIT_FP_INT;
+ fp_int t1[1] = INIT_FP_INT;
+ fp_int t2[1] = INIT_FP_INT;
ff_sqr (curve, P->z, delta); /* delta = Pz ** 2 */
ff_sqr (curve, P->y, gamma); /* gamma = Py ** 2 */
@@ -528,8 +540,7 @@ static inline void point_add(const ec_point_t * const P,
const int P_was_infinite = point_is_infinite(P);
- fp_int Qy_neg[1];
- fp_init(Qy_neg);
+ fp_int Qy_neg[1] = INIT_FP_INT;
fp_sub(unconst_fp_int(curve->q), unconst_fp_int(Q->y), Qy_neg);
const int result_is_infinite = fp_cmp(unconst_fp_int(P->y), Qy_neg) == FP_EQ && same_xz;
fp_zero(Qy_neg);
@@ -538,9 +549,14 @@ static inline void point_add(const ec_point_t * const P,
* Main point addition algorithm.
*/
- fp_int Z1Z1[1], H[1], HH[1], I[1], J[1], r[1], V[1], t[1];
-
- fp_init(Z1Z1), fp_init(H), fp_init(HH), fp_init(I), fp_init(J), fp_init(r), fp_init(V), fp_init(t);
+ fp_int Z1Z1[1] = INIT_FP_INT;
+ fp_int H[1] = INIT_FP_INT;
+ fp_int HH[1] = INIT_FP_INT;
+ fp_int I[1] = INIT_FP_INT;
+ fp_int J[1] = INIT_FP_INT;
+ fp_int r[1] = INIT_FP_INT;
+ fp_int V[1] = INIT_FP_INT;
+ fp_int t[1] = INIT_FP_INT;
ff_sqr (curve, P->z, Z1Z1); /* Z1Z1 = Pz ** 2 */
@@ -618,7 +634,7 @@ static hal_error_t point_scalar_multiply(const fp_int * const k,
*/
ec_point_t P[1];
- memcpy(P, P_, sizeof(P));
+ point_copy(P_, P);
if ((err = point_to_montgomery(P, curve)) != HAL_OK) {
memset(P, 0, sizeof(P));
@@ -631,8 +647,8 @@ static hal_error_t point_scalar_multiply(const fp_int * const k,
* M[1] is where we accumulate the result.
*/
- ec_point_t M[2][1];
- memset(M, 0, sizeof(M));
+ ec_point_t M[2][1] = {INIT_EC_POINT_T};
+
point_set_infinite(M[0], curve);
point_set_infinite(M[1], curve);
@@ -779,8 +795,8 @@ static int point_is_on_curve(const ec_point_t * const P,
{
assert(P != NULL && curve != NULL);
- fp_int t1[1]; fp_init(t1);
- fp_int t2[1]; fp_init(t2);
+ fp_int t1[1] = INIT_FP_INT;
+ fp_int t2[1] = INIT_FP_INT;
/*
* Compute y**2 - x**3 + 3*x.
@@ -1104,7 +1120,7 @@ hal_error_t hal_ecdsa_key_to_der(const hal_ecdsa_key_t * const key,
const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
assert(q_len >= d_len && q_len >= Qx_len && q_len >= Qy_len);
- fp_int version[1];
+ fp_int version[1] = INIT_FP_INT;
fp_set(version, 1);
hal_error_t err;
@@ -1211,7 +1227,7 @@ hal_error_t hal_ecdsa_key_from_der(hal_ecdsa_key_t **key_,
const uint8_t * const der_end = der + hlen + vlen;
const uint8_t *d = der + hlen;
const ecdsa_curve_t *curve = NULL;
- fp_int version[1];
+ fp_int version[1] = INIT_FP_INT;
if ((err = hal_asn1_decode_integer(version, d, &hlen, vlen)) != HAL_OK)
goto fail;
@@ -1418,16 +1434,15 @@ hal_error_t hal_ecdsa_sign(const hal_ecdsa_key_t * const key,
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
- fp_int k[1]; fp_init(k);
- fp_int r[1]; fp_init(r);
- fp_int s[1]; fp_init(s);
- fp_int e[1]; fp_init(e);
+ fp_int k[1] = INIT_FP_INT;
+ fp_int r[1] = INIT_FP_INT;
+ fp_int s[1] = INIT_FP_INT;
+ fp_int e[1] = INIT_FP_INT;
fp_int * const n = unconst_fp_int(curve->n);
fp_int * const d = unconst_fp_int(key->d);
- ec_point_t R[1];
- memset(R, 0, sizeof(R));
+ ec_point_t R[1] = INIT_EC_POINT_T;
hal_error_t err;
@@ -1518,13 +1533,18 @@ hal_error_t hal_ecdsa_verify(const hal_ecdsa_key_t * const key,
fp_int * const n = unconst_fp_int(curve->n);
hal_error_t err;
- fp_int r[1], s[1], e[1], w[1], u1[1], u2[1], v[1];
- ec_point_t u1G[1], u2Q[1], R[1];
- fp_init(w); fp_init(u1); fp_init(u2); fp_init(v);
- memset(u1G, 0, sizeof(u1G));
- memset(u2Q, 0, sizeof(u2Q));
- memset(R, 0, sizeof(R));
+ fp_int r[1] = INIT_FP_INT;
+ fp_int s[1] = INIT_FP_INT;
+ fp_int e[1] = INIT_FP_INT;
+ fp_int w[1] = INIT_FP_INT;
+ fp_int u1[1] = INIT_FP_INT;
+ fp_int u2[1] = INIT_FP_INT;
+ fp_int v[1] = INIT_FP_INT;
+
+ ec_point_t u1G[1] = INIT_EC_POINT_T;
+ ec_point_t u2Q[1] = INIT_EC_POINT_T;
+ ec_point_t R[1] = INIT_EC_POINT_T;
/*
* Start by decoding the signature.
diff --git a/rsa.c b/rsa.c
index 3962a74..2483509 100644
--- a/rsa.c
+++ b/rsa.c
@@ -53,6 +53,10 @@
* configured to know about the largest bignum one wants it to be able
* to support at compile time. This should not be a serious problem.
*
+ * We use a lot of one-element arrays (fp_int[1] instead of plain
+ * fp_int) to avoid having to prefix every use of an fp_int with "&".
+ * Perhaps we should encapsulate this idiom in a typedef.
+ *
* Unfortunately, libtfm is bad about const-ification, but we want to
* hide that from our users, so our public API uses const as
* appropriate and we use inline functions to remove const constraints
@@ -110,19 +114,28 @@ void hal_rsa_set_blinding(const int onoff)
struct hal_rsa_key {
hal_rsa_key_type_t type; /* What kind of key this is */
- fp_int n; /* The modulus */
- fp_int e; /* Public exponent */
- fp_int d; /* Private exponent */
- fp_int p; /* 1st prime factor */
- fp_int q; /* 2nd prime factor */
- fp_int u; /* 1/q mod p */
- fp_int dP; /* d mod (p - 1) */
- fp_int dQ; /* d mod (q - 1) */
+ fp_int n[1]; /* The modulus */
+ fp_int e[1]; /* Public exponent */
+ fp_int d[1]; /* Private exponent */
+ fp_int p[1]; /* 1st prime factor */
+ fp_int q[1]; /* 2nd prime factor */
+ fp_int u[1]; /* 1/q mod p */
+ fp_int dP[1]; /* d mod (p - 1) */
+ fp_int dQ[1]; /* d mod (q - 1) */
};
const size_t hal_rsa_key_t_size = sizeof(hal_rsa_key_t);
/*
+ * Initializers. We want to be able to initialize automatic fp_int
+ * variables a sane value (less error prone), but picky compilers
+ * whine about the number of curly braces required. So we define a
+ * macro which isolates that madness in one place.
+ */
+
+#define INIT_FP_INT {{{0}}}
+
+/*
* Error handling.
*/
@@ -178,12 +191,12 @@ static hal_error_t modexp(const fp_int * msg,
assert(msg != NULL && exp != NULL && mod != NULL && res != NULL);
- fp_int reduced_msg;
+ fp_int reduced_msg[1] = INIT_FP_INT;
if (fp_cmp_mag(unconst_fp_int(msg), unconst_fp_int(mod)) != FP_LT) {
- fp_init(&reduced_msg);
- fp_mod(unconst_fp_int(msg), unconst_fp_int(mod), &reduced_msg);
- msg = &reduced_msg;
+ fp_init(reduced_msg);
+ fp_mod(unconst_fp_int(msg), unconst_fp_int(mod), reduced_msg);
+ msg = reduced_msg;
}
const size_t exp_len = (fp_unsigned_bin_size(unconst_fp_int(exp)) + 3) & ~3;
@@ -258,7 +271,7 @@ static hal_error_t create_blinding_factors(const hal_rsa_key_t * const key, fp_i
{
assert(key != NULL && bf != NULL && ubf != NULL);
- uint8_t rnd[fp_unsigned_bin_size(unconst_fp_int(&key->n))];
+ uint8_t rnd[fp_unsigned_bin_size(unconst_fp_int(key->n))];
hal_error_t err = HAL_OK;
if ((err = hal_get_random(rnd, sizeof(rnd))) != HAL_OK)
@@ -268,10 +281,10 @@ static hal_error_t create_blinding_factors(const hal_rsa_key_t * const key, fp_i
fp_read_unsigned_bin(bf, rnd, sizeof(rnd));
fp_copy(bf, ubf);
- if ((err = modexp(bf, &key->e, &key->n, bf)) != HAL_OK)
+ if ((err = modexp(bf, key->e, key->n, bf)) != HAL_OK)
goto fail;
- FP_CHECK(fp_invmod(ubf, unconst_fp_int(&key->n), ubf));
+ FP_CHECK(fp_invmod(ubf, unconst_fp_int(key->n), ubf));
fail:
memset(rnd, 0, sizeof(rnd));
@@ -287,62 +300,62 @@ static hal_error_t rsa_crt(const hal_rsa_key_t * const key, fp_int *msg, fp_int
assert(key != NULL && msg != NULL && sig != NULL);
hal_error_t err = HAL_OK;
- fp_int t, m1, m2, bf, ubf;
-
- fp_init(&t);
- fp_init(&m1);
- fp_init(&m2);
+ fp_int t[1] = INIT_FP_INT;
+ fp_int m1[1] = INIT_FP_INT;
+ fp_int m2[1] = INIT_FP_INT;
+ fp_int bf[1] = INIT_FP_INT;
+ fp_int ubf[1] = INIT_FP_INT;
/*
* Handle blinding if requested.
*/
if (blinding) {
- if ((err = create_blinding_factors(key, &bf, &ubf)) != HAL_OK)
+ if ((err = create_blinding_factors(key, bf, ubf)) != HAL_OK)
goto fail;
- FP_CHECK(fp_mulmod(msg, &bf, unconst_fp_int(&key->n), msg));
+ FP_CHECK(fp_mulmod(msg, bf, unconst_fp_int(key->n), msg));
}
/*
* m1 = msg ** dP mod p
* m2 = msg ** dQ mod q
*/
- if ((err = modexp(msg, &key->dP, &key->p, &m1)) != HAL_OK ||
- (err = modexp(msg, &key->dQ, &key->q, &m2)) != HAL_OK)
+ if ((err = modexp(msg, key->dP, key->p, m1)) != HAL_OK ||
+ (err = modexp(msg, key->dQ, key->q, m2)) != HAL_OK)
goto fail;
/*
* t = m1 - m2.
*/
- fp_sub(&m1, &m2, &t);
+ fp_sub(m1, m2, t);
/*
* Add zero (mod p) if needed to make t positive. If doing this
* once or twice doesn't help, something is very wrong.
*/
- if (fp_cmp_d(&t, 0) == FP_LT)
- fp_add(&t, unconst_fp_int(&key->p), &t);
- if (fp_cmp_d(&t, 0) == FP_LT)
- fp_add(&t, unconst_fp_int(&key->p), &t);
- if (fp_cmp_d(&t, 0) == FP_LT)
+ if (fp_cmp_d(t, 0) == FP_LT)
+ fp_add(t, unconst_fp_int(key->p), t);
+ if (fp_cmp_d(t, 0) == FP_LT)
+ fp_add(t, unconst_fp_int(key->p), t);
+ if (fp_cmp_d(t, 0) == FP_LT)
lose(HAL_ERROR_IMPOSSIBLE);
/*
* sig = (t * u mod p) * q + m2
*/
- FP_CHECK(fp_mulmod(&t, unconst_fp_int(&key->u), unconst_fp_int(&key->p), &t));
- fp_mul(&t, unconst_fp_int(&key->q), &t);
- fp_add(&t, &m2, sig);
+ FP_CHECK(fp_mulmod(t, unconst_fp_int(key->u), unconst_fp_int(key->p), t));
+ fp_mul(t, unconst_fp_int(key->q), t);
+ fp_add(t, m2, sig);
/*
* Unblind if necessary.
*/
if (blinding)
- FP_CHECK(fp_mulmod(sig, &ubf, unconst_fp_int(&key->n), sig));
+ FP_CHECK(fp_mulmod(sig, ubf, unconst_fp_int(key->n), sig));
fail:
- fp_zero(&t);
- fp_zero(&m1);
- fp_zero(&m2);
+ fp_zero(t);
+ fp_zero(m1);
+ fp_zero(m2);
return err;
}
@@ -362,19 +375,18 @@ hal_error_t hal_rsa_encrypt(const hal_rsa_key_t * const key,
if (key == NULL || input == NULL || output == NULL || input_len > output_len)
return HAL_ERROR_BAD_ARGUMENTS;
- fp_int i, o;
- fp_init(&i);
- fp_init(&o);
+ fp_int i[1] = INIT_FP_INT;
+ fp_int o[1] = INIT_FP_INT;
- fp_read_unsigned_bin(&i, unconst_uint8_t(input), input_len);
+ fp_read_unsigned_bin(i, unconst_uint8_t(input), input_len);
- if ((err = modexp(&i, &key->e, &key->n, &o)) != HAL_OK ||
- (err = unpack_fp(&o, output, output_len)) != HAL_OK)
+ if ((err = modexp(i, key->e, key->n, o)) != HAL_OK ||
+ (err = unpack_fp(o, output, output_len)) != HAL_OK)
goto fail;
fail:
- fp_zero(&i);
- fp_zero(&o);
+ fp_zero(i);
+ fp_zero(o);
return err;
}
@@ -387,28 +399,27 @@ hal_error_t hal_rsa_decrypt(const hal_rsa_key_t * const key,
if (key == NULL || input == NULL || output == NULL || input_len > output_len)
return HAL_ERROR_BAD_ARGUMENTS;
- fp_int i, o;
- fp_init(&i);
- fp_init(&o);
+ fp_int i[1] = INIT_FP_INT;
+ fp_int o[1] = INIT_FP_INT;
- fp_read_unsigned_bin(&i, unconst_uint8_t(input), input_len);
+ fp_read_unsigned_bin(i, unconst_uint8_t(input), input_len);
/*
* Do CRT if we have all the necessary key components, otherwise
* just do brute force ModExp.
*/
- if (fp_iszero(&key->p) || fp_iszero(&key->q) || fp_iszero(&key->u) || fp_iszero(&key->dP) || fp_iszero(&key->dQ))
- err = modexp(&i, &key->d, &key->n, &o);
+ if (fp_iszero(key->p) || fp_iszero(key->q) || fp_iszero(key->u) || fp_iszero(key->dP) || fp_iszero(key->dQ))
+ err = modexp(i, key->d, key->n, o);
else
- err = rsa_crt(key, &i, &o);
+ err = rsa_crt(key, i, o);
- if (err != HAL_OK || (err = unpack_fp(&o, output, output_len)) != HAL_OK)
+ if (err != HAL_OK || (err = unpack_fp(o, output, output_len)) != HAL_OK)
goto fail;
fail:
- fp_zero(&i);
- fp_zero(&o);
+ fp_zero(i);
+ fp_zero(o);
return err;
}
@@ -454,7 +465,7 @@ static hal_error_t load_key(const hal_rsa_key_type_t type,
key->type = type;
-#define _(x) do { fp_init(&key->x); if (x == NULL) goto fail; fp_read_unsigned_bin(&key->x, unconst_uint8_t(x), x##_len); } while (0)
+#define _(x) do { fp_init(key->x); if (x == NULL) goto fail; fp_read_unsigned_bin(key->x, unconst_uint8_t(x), x##_len); } while (0)
switch (type) {
case HAL_RSA_PRIVATE:
_(d); _(p); _(q); _(u); _(dP); _(dQ);
@@ -569,9 +580,7 @@ static hal_error_t find_prime(const unsigned prime_length,
{
uint8_t buffer[prime_length];
hal_error_t err;
- fp_int t;
-
- fp_init(&t);
+ fp_int t[1] = INIT_FP_INT;
do {
if ((err = hal_get_random(buffer, sizeof(buffer))) != HAL_OK)
@@ -581,9 +590,9 @@ static hal_error_t find_prime(const unsigned prime_length,
fp_read_unsigned_bin(result, buffer, sizeof(buffer));
} while (!fp_isprime(result) ||
- (fp_sub_d(result, 1, &t), fp_gcd(&t, unconst_fp_int(e), &t), fp_cmp_d(&t, 1) != FP_EQ));
+ (fp_sub_d(result, 1, t), fp_gcd(t, unconst_fp_int(e), t), fp_cmp_d(t, 1) != FP_EQ));
- fp_zero(&t);
+ fp_zero(t);
return HAL_OK;
}
@@ -598,41 +607,42 @@ hal_error_t hal_rsa_key_gen(hal_rsa_key_t **key_,
{
hal_rsa_key_t *key = keybuf;
hal_error_t err = HAL_OK;
- fp_int p_1, q_1;
+ fp_int p_1[1] = INIT_FP_INT;
+ fp_int q_1[1] = INIT_FP_INT;
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_RSA_PRIVATE;
- fp_read_unsigned_bin(&key->e, (uint8_t *) public_exponent, public_exponent_len);
+ fp_read_unsigned_bin(key->e, (uint8_t *) public_exponent, public_exponent_len);
if (key_length < bitsToBytes(1024) || key_length > bitsToBytes(8192))
return HAL_ERROR_UNSUPPORTED_KEY;
- if (fp_cmp_d(&key->e, 0x010001) != FP_EQ)
+ if (fp_cmp_d(key->e, 0x010001) != FP_EQ)
return HAL_ERROR_UNSUPPORTED_KEY;
/*
* Find a good pair of prime numbers.
*/
- if ((err = find_prime(key_length / 2, &key->e, &key->p)) != HAL_OK ||
- (err = find_prime(key_length / 2, &key->e, &key->q)) != HAL_OK)
+ if ((err = find_prime(key_length / 2, key->e, key->p)) != HAL_OK ||
+ (err = find_prime(key_length / 2, key->e, key->q)) != HAL_OK)
return err;
/*
* Calculate remaining key components.
*/
- fp_init(&p_1); fp_sub_d(&key->p, 1, &p_1);
- fp_init(&q_1); fp_sub_d(&key->q, 1, &q_1);
- fp_mul(&key->p, &key->q, &key->n); /* n = p * q */
- fp_lcm(&p_1, &q_1, &key->d);
- FP_CHECK(fp_invmod(&key->e, &key->d, &key->d)); /* d = (1/e) % lcm(p-1, q-1) */
- FP_CHECK(fp_mod(&key->d, &p_1, &key->dP)); /* dP = d % (p-1) */
- FP_CHECK(fp_mod(&key->d, &q_1, &key->dQ)); /* dQ = d % (q-1) */
- FP_CHECK(fp_invmod(&key->q, &key->p, &key->u)); /* u = (1/q) % p */
+ fp_init(p_1); fp_sub_d(key->p, 1, p_1);
+ fp_init(q_1); fp_sub_d(key->q, 1, q_1);
+ fp_mul(key->p, key->q, key->n); /* n = p * q */
+ fp_lcm(p_1, q_1, key->d);
+ FP_CHECK(fp_invmod(key->e, key->d, key->d)); /* d = (1/e) % lcm(p-1, q-1) */
+ FP_CHECK(fp_mod(key->d, p_1, key->dP)); /* dP = d % (p-1) */
+ FP_CHECK(fp_mod(key->d, q_1, key->dQ)); /* dQ = d % (q-1) */
+ FP_CHECK(fp_invmod(key->q, key->p, key->u)); /* u = (1/q) % p */
*key_ = key;
@@ -641,8 +651,8 @@ hal_error_t hal_rsa_key_gen(hal_rsa_key_t **key_,
fail:
if (err != HAL_OK)
memset(keybuf, 0, keybuf_len);
- fp_zero(&p_1);
- fp_zero(&q_1);
+ fp_zero(p_1);
+ fp_zero(q_1);
return err;
}
@@ -654,15 +664,15 @@ hal_error_t hal_rsa_key_gen(hal_rsa_key_t **key_,
*/
#define RSAPrivateKey_fields \
- _(&version); \
- _(&key->n); \
- _(&key->e); \
- _(&key->d); \
- _(&key->p); \
- _(&key->q); \
- _(&key->dP); \
- _(&key->dQ); \
- _(&key->u);
+ _(version); \
+ _(key->n); \
+ _(key->e); \
+ _(key->d); \
+ _(key->p); \
+ _(key->q); \
+ _(key->dP); \
+ _(key->dQ); \
+ _(key->u);
hal_error_t hal_rsa_key_to_der(const hal_rsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
@@ -672,8 +682,7 @@ hal_error_t hal_rsa_key_to_der(const hal_rsa_key_t * const key,
if (key == NULL || der_len == NULL || key->type != HAL_RSA_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
- fp_int version;
- fp_zero(&version);
+ fp_int version[1] = INIT_FP_INT;
/*
* Calculate data length.
@@ -738,14 +747,13 @@ hal_error_t hal_rsa_key_from_der(hal_rsa_key_t **key_,
der += hlen;
- fp_int version;
- fp_init(&version);
+ fp_int version[1] = INIT_FP_INT;
#define _(x) { size_t i; if ((err = hal_asn1_decode_integer(x, der, &i, vlen)) != HAL_OK) return err; der += i; vlen -= i; }
RSAPrivateKey_fields;
#undef _
- if (fp_cmp_d(&version, 0) != FP_EQ)
+ if (fp_cmp_d(version, 0) != FP_EQ)
return HAL_ERROR_ASN1_PARSE_FAILED;
*key_ = key;