/*
* test-ecdsa.c
* ------------
* Test harness for Cryptech ECDSA code.
*
* At the moment, the ECDSA code is a pure software implementation,
* Verilog will be along eventually.
*
* Testing ECDSA is a bit tricky because ECDSA depends heavily on
* using a new random secret for each signature. So we can test some
* things against the normal ECDSA implemenation, but some tests
* require a side door replacement of the random number generator so
* that we can use a known values from our test vector in place of the
* random secret that would be used in real operation. Test code for
* the latter mode depends on the library having been compiled with
* the testing hook enable, which it should not be for production use.
*
* Authors: Rob Austein
* Copyright (c) 2015, SUNET
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <sys/time.h>
#include <hal.h>
#include "test-ecdsa.h"
#if HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM
/*
* Code to let us replace ECDSA's random numbers with test data, if
* the ECDSA library code has been compiled with support for this.
*/
typedef hal_error_t (*rng_override_test_function_t)(void *, const size_t);
extern rng_override_test_function_t hal_ecdsa_set_rng_override_test_function(rng_override_test_function_t new_func);
static const uint8_t *next_random_value = NULL;
static size_t next_random_length = 0;
static hal_error_t next_random_handler(void *data, const size_t length)
{
if (data == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (next_random_value == NULL || length < next_random_length)
return HAL_ERROR_IMPOSSIBLE;
memset(data, 0, length);
memcpy(data + length - next_random_length, next_random_value, next_random_length);
next_random_value = NULL;
next_random_length = 0;
(void) hal_ecdsa_set_rng_override_test_function(0);
return HAL_OK;
}
static void set_next_random(const uint8_t * const data, const size_t length)
{
(void) hal_ecdsa_set_rng_override_test_function(next_random_handler);
next_random_value = data;
next_random_length = length;
}
/*
* Run one keygen test from test vectors.
*/
static int test_against_static_vectors(const ecdsa_tc_t * const tc)
{
hal_error_t err;
printf("Starting static test vector tests for P-%lu\n", (unsigned long) (tc->d_len * 8));
set_next_random(tc->d, tc->d_len);
uint8_t keybuf1[hal_ecdsa_key_t_size];
hal_ecdsa_key_t *key1 = NULL;
if ((err = hal_ecdsa_key_gen(NULL, &key1, keybuf1, sizeof(keybuf1), tc->curve)) != HAL_OK)
return printf("hal_ecdsa_key_gen() failed: %s\n", hal_error_string(err)), 0;
uint8_t Qx[tc->Qx_len], Qy[tc->Qy_len];
size_t Qx_len, Qy_len;
if ((err = hal_ecdsa_key_get_public(key1, Qx, &Qx_len, sizeof(Qx), Qy, &Qy_len, sizeof(Qy))) != HAL_OK)
return printf("hal_ecdsa_key_get_public() failed: %s\n", hal_error_string(err)), 0;
if (tc->Qx_len != Qx_len || memcmp(tc->Qx, Qx, Qx_len) != 0)
return printf("Qx mismatch\n"), 0;
if (tc->Qy_len != Qy_len || memcmp(tc->Qy, Qy, Qy_len) != 0)
return printf("Qy mismatch\n"), 0;
if (hal_ecdsa_key_to_der_len(key1) != tc->key_len)
return printf("DER Key length mismatch\n"), 0;
uint8_t keyder[tc->key_len];
size_t keyder_len;
if ((err = hal_ecdsa_key_to_der(key1, keyder, &keyder_len, sizeof(keyder))) != HAL_OK)
return printf("hal_ecdsa_key_to_der() failed: %s\n", hal_error_string(err)), 0;
uint8_t keybuf2[hal_ecdsa_key_t_size];
hal_ecdsa_key_t *key2 = NULL;
if ((err = hal_ecdsa_key_from_der(&key2, keybuf2, sizeof(keybuf2), keyder, keyder_len)) != HAL_OK)
return printf("hal_ecdsa_key_from_der() failed: %s\n", hal_error_string(err)), 0;
if (memcmp(key1, key2, hal_ecdsa_key_t_size) != 0)
return printf("Private key mismatch after read/write cycle\n"), 0;
set_next_random(tc->k, tc->k_len);
uint8_t sig[tc->sig_len + 4];
size_t sig_len;
if ((err = hal_ecdsa_sign(NULL, key1, tc->H, tc->H_len, sig, &sig_len, sizeof(sig), HAL_ECDSA_SIGNATURE_FORMAT_ASN1)) != HAL_OK)
return printf("hal_ecdsa_sign() failed: %s\n", hal_error_string(err)), 0;
if (sig_len != tc->sig_len || memcmp(sig, tc->sig, tc->sig_len) != 0)
return printf("Signature mismatch\n"), 0;
if ((err = hal_ecdsa_verify(NULL, key2, tc->H, tc->H_len, sig, sig_len, HAL_ECDSA_SIGNATURE_FORMAT_ASN1)) != HAL_OK)
return printf("hal_ecdsa_verify(private) failed: %s\n", hal_error_string(err)), 0;
hal_ecdsa_key_clear(key2);
key2 = NULL;
if ((err = hal_ecdsa_key_load_private(&key2, keybuf2, sizeof(keybuf2), tc->curve,
tc->Qx, tc->Qx_len, tc->Qy, tc->Qy_len, tc->d, tc->d_len)) != HAL_OK)
return printf("hal_ecdsa_load_private() failed: %s\n", hal_error_string(err)), 0;
if (memcmp(key1, key2, hal_ecdsa_key_t_size) != 0)
return printf("Key mismatch after hal_ecdsa_load_private_key()\n"), 0;
hal_ecdsa_key_clear(key2);
key2 = NULL;
if ((err = hal_ecdsa_key_load_public(&key2, keybuf2, sizeof(keybuf2), tc->curve,
tc->Qx, tc->Qx_len, tc->Qy, tc->Qy_len)) != HAL_OK)
return printf("hal_ecdsa_load_public() failed: %s\n", hal_error_string(err)), 0;
if ((err = hal_ecdsa_verify(NULL, key2, tc->H, tc->H_len, sig, sig_len, HAL_ECDSA_SIGNATURE_FORMAT_ASN1)) != HAL_OK)
return printf("hal_ecdsa_verify(public) failed: %s\n", hal_error_string(err)), 0;
uint8_t point[hal_ecdsa_key_to_ecpoint_len(key1)];
size_t point_len;
if ((err = hal_ecdsa_key_to_ecpoint(key1, point, &point_len, sizeof(point))) != HAL_OK)
return printf("hal_ecdsa_key_to_point() failed: %s\n", hal_error_string(err)), 0;
hal_ecdsa_key_clear(key1);
key1 = NULL;
if ((err = hal_ecdsa_key_from_ecpoint(&key1, keybuf1, sizeof(keybuf1), point, point_len, tc->curve)) != HAL_OK)
return printf("hal_ecdsa_key_from_point() failed: %s\n", hal_error_string(err)), 0;
if (memcmp(key1, key2, hal_ecdsa_key_t_size) != 0)
return printf("Public key mismatch after read/write cycle\n"), 0;
return 1;
}
#endif /* HAL_ECDSA_DEBUG_ONLY_STATIC_TEST_VECTOR_RANDOM */
/*
* Run one keygen/sign/verify test with a newly generated key.
*/
static int test_keygen_sign_verify(const hal_ecdsa_curve_t curve)
{
const hal_hash_descriptor_t *hash_descriptor = NULL;
uint8_t keybuf[hal_ecdsa_key_t_size];
hal_ecdsa_key_t *key = NULL;
hal_error_t err;
switch (curve) {
case HAL_ECDSA_CURVE_P256:
printf("ECDSA P-256 key generation / signature / verification test\n");
hash_descriptor = hal_hash_sha256;
break;
case HAL_ECDSA_CURVE_P384:
printf("ECDSA P-384 key generation / signature / verification test\n");
hash_descriptor = hal_hash_sha384;
break;
case HAL_ECDSA_CURVE_P521:
printf("ECDSA P-521 key generation / signature / verification test\n");
hash_descriptor = hal_hash_sha512;
break;
default:
printf("Unsupported ECDSA curve type\n");
return 0;
}
printf("Generating key\n");
if ((err = hal_ecdsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), curve)) != HAL_OK)
return printf("hal_ecdsa_key_gen() failed: %s\n", hal_error_string(err)), 0;
printf("Generating digest\n");
uint8_t hashbuf[hash_descriptor->digest_length];
{
const uint8_t plaintext[] = "So long, and thanks...";
uint8_t statebuf[hash_descriptor->hash_state_length];
hal_hash_state_t *state = NULL;
if ((err = hal_hash_initialize(NULL, hash_descriptor, &state, statebuf, sizeof(statebuf))) != HAL_OK ||
(err = hal_hash_update(state, plaintext, strlen((const char *) plaintext))) != HAL_OK ||
(err = hal_hash_finalize(state, hashbuf, sizeof(hashbuf))) != HAL_OK)
return printf("Couldn't hash plaintext: %s\n", hal_error_string(err)), 0;
}
/*
* Lazy but probably-good-enough guess on signature size -- want
* explicit number in ecdsa_curve_t?
*/
uint8_t sigbuf[hash_descriptor->digest_length * 3];
size_t siglen;
printf("Signing\n");
if ((err = hal_ecdsa_sign(NULL, key, hashbuf, sizeof(hashbuf),
sigbuf, &siglen, sizeof(sigbuf), HAL_ECDSA_SIGNATURE_FORMAT_ASN1)) != HAL_OK)
return printf("hal_ecdsa_sign() failed: %s\n", hal_error_string(err)), 0;
printf("Verifying\n");
if ((err = hal_ecdsa_verify(NULL, key, hashbuf, sizeof(hashbuf),
sigbuf, siglen, HAL_ECDSA_SIGNATURE_FORMAT_ASN1)) != HAL_OK)
return printf("hal_ecdsa_verify() failed: %s\n", hal_error_string(err)), 0;
return 1;
}
/*
* Time a test.
*/
static void _time_check(const struct timeval t0, const int ok)
{
struct timeval t;
gettimeofday(&t, NULL);
t.tv_sec -= t0.tv_sec;
t.tv_usec = t0.tv_usec;
if (t.tv_usec < 0) {
t.tv_usec += 1000000;
t.tv_sec -= 1;
}
printf("Elapsed time %lu.%06lu seconds, %s\n",
(unsigned long) t.tv_sec,
(unsigned long) t.tv_usec,
ok ? "OK" : "FAILED");
}
#define time_check(_expr_) \
do { \
struct timeval _t; \
gettimeofday(&_t, NULL); \
int _ok = (_expr_); \
_time_check(_t, _ok); \
ok &= _ok; \
} while (0)
static void show_core(const hal_core_t *core, const char *whinge)
{
const hal_core_info_t *core_info = hal_core_info(core);
if (core_info != NULL)
printf("\"%8.8s\" \"%4.4s\"\n", core_info->name, core_info->version);
else if (whinge != NULL)
printf("%s core not present\n", whinge);
}
int main(int argc, char *argv[])
{
const hal_core_t *sha256_core = hal_core_find(SHA256_NAME, NULL);
const hal_core_t *sha512_core = hal_core_find(SHA512_NAME, NULL);
const hal_core_t *csprng_core = hal_core_find(CSPRNG_NAME, NULL);
show_core(sha256_core, "sha-256");
show_core(sha512_core, "sha-512");
show_core(csprng_core, "csprng");
int ok = 1;
/*
* Test vectors (where we have them).
*/
for (int i = 0; i < sizeof(ecdsa_tc)/sizeof(*ecdsa_tc); i++)
time_check(test_against_static_vectors(&ecdsa_tc[i]));
/*
* Generate/sign/verify test for each curve.
*/
if (csprng_core != NULL && sha256_core != NULL) {
time_check(test_keygen_sign_verify(HAL_ECDSA_CURVE_P256));
}
if (csprng_core != NULL && sha512_core != NULL) {
time_check(test_keygen_sign_verify(HAL_ECDSA_CURVE_P384));
time_check(test_keygen_sign_verify(HAL_ECDSA_CURVE_P521));
}
return !ok;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/