/*
* rsa.c
* -----
* Basic RSA functions based on Cryptech ModExp core.
*
* The mix of what we're doing in software vs what we're doing on the
* FPGA is a moving target. Goal for now is to have the bits we need
* to do in C be straightforward to review and as simple as possible
* (but no simpler).
*
* Much of the code in this module is based, at least loosely, on Tom
* St Denis's libtomcrypt code.
*
* Authors: Rob Austein
* Copyright (c) 2015, SUNET
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "cryptech.h"
/*
* Use "Tom's Fast Math" library for our bignum implementation. This
* particular implementation has a couple of nice features:
*
* - The code is relatively readable, thus reviewable.
*
* - The bignum representation doesn't use dynamic memory, which
* simplifies things for us.
*
* The price tag for not using dynamic memory is that libtfm has to be
* configured to know about the largest bignum one wants it to be able
* to support at compile time. This should not be a serious problem.
*/
#include "tfm.h"
/*
* Whether we want debug output.
*/
static int debug = 0;
void hal_rsa_set_debug(const int onoff)
{
debug = onoff;
}
/*
* Check a result, report on failure if debugging, pass failures up
* the chain.
*/
#define check(_expr_) \
do { \
hal_error_t _err = (_expr_); \
if (_err != HAL_OK && debug) \
printf("%s failed: %s\n", #_expr_, hal_error_string(_err)); \
if (_err != HAL_OK) \
return _err; \
} while (0)
/*
* RSA key implementation. This structure type is private to this
* module, anything else that needs to touch one of these just gets a
* typed opaque pointer. We do, however, export the size, so that we
* can make memory allocation the caller's problem (well, maybe).
*/
struct rsa_key {
hal_rsa_key_type_t type; /* What kind of key this is */
fp_int n; /* The modulus */
fp_int e; /* Public exponent */
fp_int d; /* Private exponent */
fp_int p; /* 1st prime factor */
fp_int q; /* 2nd prime factor */
fp_int u; /* 1/q mod p */
fp_int dP; /* d mod (p - 1) */
fp_int dQ; /* d mod (q - 1) */
};
const size_t hal_rsa_key_t_size = sizeof(struct rsa_key);
/*
* In the long run we want a full RSA implementation, or enough of one
* to cover what we need in PKCS #11. For the moment, though, the
* most urgent thing is to see whether this approach to performing the
* CRT calculation works (and is any faster), followed by whether we
* can use this approach for key generation.
*
* So don't worry about whether the following functions are what we
* want in the long run, they'll probably evolve as we go.
*/
#warning Should do RSA blinding, skipping for now
#define lose(_code_) \
do { err = _code_; goto fail; } while (0)
#define FP_CHECK(_expr_) \
do { \
switch (_expr_) { \
case FP_OKAY: break; \
case FP_VAL: lose(HAL_ERROR_BAD_ARGUMENTS); \
case FP_MEM: lose(HAL_ERROR_ALLOCATION_FAILURE); \
default: lose(HAL_ERROR_IMPOSSIBLE); \
} \
} while (0)
/*
* Unpack a bignum into a byte array, with length check.
*/
static hal_error_t unpack_fp(fp_int *bn, uint8_t *buffer, const size_t length)
{
hal_error_t err = HAL_OK;
assert(bn != NULL && buffer != NULL);
const size_t bytes = fp_unsigned_bin_size(bn);
if (bytes > length)
lose(HAL_ERROR_RESULT_TOO_LONG);
memset(buffer, 0, length);
fp_to_unsigned_bin(bn, buffer + length - bytes);
fail:
return err;
}
/*
* Unwrap bignums into byte arrays, feeds them into hal_modexp(), and
* wrap result back up as a bignum.
*/
static hal_error_t modexp_fp(fp_int *msg, fp_int *exp, fp_int *mod, fp_int *res)
{
hal_error_t err = HAL_OK;
assert(msg != NULL && exp != NULL && mod != NULL && res != NULL);
const size_t msg_len = fp_unsigned_bin_size(msg);
const size_t exp_len = fp_unsigned_bin_size(exp);
const size_t mod_len = fp_unsigned_bin_size(mod);
const size_t len = (MAX(MAX(msg_len, exp_len), mod_len) + 3) & ~3;
uint8_t msgbuf[len], expbuf[len], modbuf[len], resbuf[len];
if ((err = unpack_fp(msg, msgbuf, sizeof(msgbuf))) != HAL_OK ||
(err = unpack_fp(exp, expbuf, sizeof(expbuf))) != HAL_OK ||
(err = unpack_fp(mod, modbuf, sizeof(modbuf))) != HAL_OK ||
(err = hal_modexp(msgbuf, sizeof(msgbuf),
expbuf, sizeof(expbuf),
modbuf, sizeof(modbuf),
resbuf, sizeof(resbuf))) != HAL_OK)
goto fail;
fp_read_unsigned_bin(res, resbuf, sizeof(resbuf));
fail:
memset(msgbuf, 0, sizeof(msgbuf));
memset(expbuf, 0, sizeof(expbuf));
memset(modbuf, 0, sizeof(modbuf));
return err;
}
/*
* Clear a key. We might want to do something a bit more energetic
* than plain old memset() eventually.
*/
void hal_rsa_key_clear(hal_rsa_key_t key)
{
if (key.key != NULL)
memset(key.key, 0, sizeof(struct rsa_key));
}
/*
* Load a key from raw components. This is a simplistic version: we
* don't attempt to generate missing private key components, we just
* reject the key if it doesn't have everything we expect.
*
* In theory, the only things we'd really need for the private key if
* we were being nicer about this would be e, p, and q, as we could
* calculate everything else from them.
*/
hal_error_t hal_rsa_key_load(const hal_rsa_key_type_t type,
hal_rsa_key_t *key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len,
const uint8_t * const d, const size_t d_len,
const uint8_t * const p, const size_t p_len,
const uint8_t * const q, const size_t q_len,
const uint8_t * const u, const size_t u_len,
const uint8_t * const dP, const size_t dP_len,
const uint8_t * const dQ, const size_t dQ_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(struct rsa_key))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
struct rsa_key *key = keybuf;
key->type = type;
#define _(x) do { fp_init(&key->x); if (x == NULL) goto fail; fp_read_unsigned_bin(&key->x, (uint8_t *) x, x##_len); } while (0)
switch (type) {
case HAL_RSA_PRIVATE:
_(d); _(p); _(q); _(u); _(dP); _(dQ);
case HAL_RSA_PUBLIC:
_(n); _(e);
key_->key = key;
return HAL_OK;
}
#undef _
fail:
memset(key, 0, sizeof(*key));
return HAL_ERROR_BAD_ARGUMENTS;
}
/*
* RSA decyrption/signature using the Chinese Remainder Theorem
* (Garner's formula).
*/
hal_error_t hal_rsa_crt(hal_rsa_key_t key_,
const uint8_t * const m, const size_t m_len,
uint8_t * result, const size_t result_len)
{
hal_error_t err = HAL_OK;
struct rsa_key *key = key_.key;
struct { fp_int t, msg, m1, m2; } tmp;
fp_init(&tmp.t);
fp_init(&tmp.msg);
fp_init(&tmp.m1);
fp_init(&tmp.m2);
fp_read_unsigned_bin(&tmp.msg, (uint8_t *) m, m_len);
/*
* m1 = msg ** dP mod p
* m2 = msg ** dQ mod q
*/
if ((err = modexp_fp(&tmp.msg, &key->dP, &key->p, &tmp.m1)) != HAL_OK ||
(err = modexp_fp(&tmp.msg, &key->dQ, &key->q, &tmp.m2)) != HAL_OK)
goto fail;
/*
* t = m1 - m2.
* Add zero (mod p) once or twice if necessary to get positive result.
*/
fp_sub(&tmp.m1, &tmp.m2, &tmp.t);
if (fp_cmp_d(&tmp.t, 0) == FP_LT)
fp_add(&tmp.t, &key->p, &tmp.t);
if (fp_cmp_d(&tmp.t, 0) == FP_LT)
fp_add(&tmp.t, &key->p, &tmp.t);
if (fp_cmp_d(&tmp.t, 0) == FP_LT)
lose(HAL_ERROR_IMPOSSIBLE);
/*
* t = (t * u mod p) * q + m2
*/
FP_CHECK(fp_mulmod(&tmp.t, &key->u, &key->p, &tmp.t));
fp_mul(&tmp.t, &key->q, &tmp.t);
fp_add(&tmp.t, &tmp.m2, &tmp.t);
/*
* t now holds result, write it back to caller
*/
if ((err = unpack_fp(&tmp.t, result, result_len)) != HAL_OK)
goto fail;
/*
* Done, fall through into cleanup.
*/
fail:
memset(&tmp, 0, sizeof(tmp));
return err;
}
static hal_error_t find_prime(unsigned prime_length, fp_int *e, fp_int *result)
{
uint8_t buffer[prime_length];
hal_error_t err;
fp_int t;
/*
* Get random bytes, munge a few bits, and stuff into a bignum.
* Keep doing this until we find a result that's (probably) prime
* and for which result - 1 is relatively prime with respect to e.
*/
do {
if ((err = hal_get_random(buffer, sizeof(buffer))) != HAL_OK)
return err;
buffer[0 ] |= 0xc0;
buffer[sizeof(buffer) - 1] |= 0x01;
fp_read_unsigned_bin(result, buffer, sizeof(buffer));
} while (!fp_isprime(result) ||
(fp_sub_d(result, 1, &t), fp_gcd(&t, e, &t), fp_cmp_d(&t, 1) != FP_EQ));
fp_zero(&t);
return HAL_OK;
}
hal_error_t hal_rsa_gen(hal_rsa_key_t *key_,
void *keybuf, const size_t keybuf_len,
const unsigned key_length,
const unsigned long public_exponent)
{
struct rsa_key *key = keybuf;
hal_error_t err = HAL_OK;
fp_int p_1, q_1;
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(struct rsa_key))
return HAL_ERROR_BAD_ARGUMENTS;
switch (key_length) {
case bitsToBytes(1024):
case bitsToBytes(2048):
case bitsToBytes(4096):
case bitsToBytes(8192):
break;
default:
return HAL_ERROR_UNSUPPORTED_KEY;
}
switch (public_exponent) {
case 0x010001:
break;
default:
return HAL_ERROR_UNSUPPORTED_KEY;
}
/*
* Initialize key
*/
memset(keybuf, 0, keybuf_len);
key->type = HAL_RSA_PRIVATE;
fp_set(&key->e, public_exponent);
/*
* Find a good pair of prime numbers.
*/
if ((err = find_prime(key_length / 2, &key->e, &key->p)) != HAL_OK ||
(err = find_prime(key_length / 2, &key->e, &key->q)) != HAL_OK)
return err;
/*
* Calculate remaining key components.
*/
fp_sub_d(&key->p, 1, &p_1);
fp_sub_d(&key->q, 1, &q_1);
fp_mul(&key->p, &key->q, &key->n); /* n = p * q */
fp_lcm(&p_1, &q_1, &key->d);
FP_CHECK(fp_invmod(&key->e, &key->d, &key->d)); /* d = (1/e) % lcm(p-1, q-1) */
FP_CHECK(fp_mod(&key->d, &p_1, &key->dP)); /* dP = d % (p-1) */
FP_CHECK(fp_mod(&key->d, &q_1, &key->dQ)); /* dQ = d % (q-1) */
FP_CHECK(fp_invmod(&key->q, &key->p, &key->u)); /* u = (1/q) % p */
/* Fall through to cleanup */
fail:
fp_zero(&p_1);
fp_zero(&q_1);
return err;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/