/*
* rsa.c
* -----
* Basic RSA functions based on Cryptech ModExp core.
*
* The mix of what we're doing in software vs what we're doing on the
* FPGA is a moving target. Goal for now is to have the bits we need
* to do in C be straightforward to review and as simple as possible
* (but no simpler).
*
* Much of the code in this module is based, at least loosely, on Tom
* St Denis's libtomcrypt code.
*
* Authors: Rob Austein
* Copyright (c) 2015, SUNET
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "cryptech.h"
/*
* Use "Tom's Fast Math" library for our bignum implementation. This
* particular implementation has a couple of nice features:
*
* - The code is relatively readable, thus reviewable.
*
* - The bignum representation doesn't use dynamic memory, which
* simplifies things for us.
*
* The price tag for not using dynamic memory is that libtfm has to be
* configured to know about the largest bignum one wants it to be able
* to support at compile time. This should not be a serious problem.
*/
#include "tfm.h"
/*
* Whether we want debug output.
*/
static int debug = 0;
void hal_rsa_set_debug(const int onoff)
{
debug = onoff;
}
/*
* Check a result, report on failure if debugging, pass failures up
* the chain.
*/
#define check(_expr_) \
do { \
hal_error_t _err = (_expr_); \
if (_err != HAL_OK && debug) \
printf("%s failed: %s\n", #_expr_, hal_error_string(_err)); \
if (_err != HAL_OK) \
return _err; \
} while (0)
/*
* RSA key implementation. This structure type is private to this
* module, anything else that needs to touch one of these just gets a
* typed opaque pointer. We do, however, export the size, so that we
* can make memory allocation the caller's problem (well, maybe).
*/
typedef enum { RSA_PRIVATE, RSA_PUBLIC } rsa_key_type_t;
typedef struct {
rsa_key_type_t type; /* What kind of key this is */
fp_int n; /* The modulus */
fp_int e; /* Public exponent */
fp_int d; /* Private exponent */
fp_int p; /* 1st prime factor */
fp_int q; /* 2nd prime factor */
fp_int u; /* 1/q mod p */
fp_int dP; /* d mod (p - 1) */
fp_int dQ; /* d mod (q - 1) */
} rsa_key_t;
const size_t hal_rsa_key_t_size = sizeof(rsa_key_t);
/*
* In the long run we want a full RSA implementation, or enough of one
* to cover what we need in PKCS #11. For the moment, though, the
* most urgent thing is to see whether this approach to performing the
* CRT calculation works (and is any faster), followed by whether we
* can use this approach for key generation.
*
* So don't worry about whether the following functions are what we
* want in the long run, they'll probably evolve as we go.
*/
#warning Should do RSA blinding, skipping for now
#define lose(_code_) \
do { err = _code_; goto fail; } while (0)
#define FP_CHECK(_expr_) \
do { \
switch (_expr_) { \
case FP_OKAY: break; \
case FP_VAL: lose(HAL_ERROR_BAD_ARGUMENTS); \
case FP_MEM: lose(HAL_ERROR_ALLOCATION_FAILURE); \
default: lose(HAL_ERROR_UNKNOWN_TFM_FAILURE); \
} \
} while (0)
/*
* Unpack a bignum into a byte array, with length check.
*/
static hal_error_t unpack_fp(fp_int *bn, uint8_t *buffer, const size_t length)
{
hal_error_t err = HAL_OK;
assert(bn != NULL && buffer != NULL);
const size_t bytes = fp_unsigned_bin_size(bn);
if (bytes > length)
lose(HAL_ERROR_RESULT_TOO_LONG);
memset(buffer, 0, length);
fp_to_unsigned_bin(bn, buffer + length - bytes);
fail:
return err;
}
/*
* modexp_fp() is a function I haven't written yet which takes
* fp_int values, unwraps them, feeds the numbers into hal_modexp(),
* and wraps the result back up as a fp_int.
*/
/* modexp_fp(&tmp.msg, &key.dP, &key.p, &tmp.m1) */
static hal_error_t modexp_fp(fp_int *msg, fp_int *exp, fp_int *mod, fp_int *res)
{
hal_error_t err = HAL_OK;
assert(msg != NULL && exp != NULL && mod != NULL && res != NULL);
uint8_t msgbuf[(fp_unsigned_bin_size(msg) + 3) & ~3];
uint8_t expbuf[(fp_unsigned_bin_size(exp) + 3) & ~3];
uint8_t modbuf[(fp_unsigned_bin_size(mod) + 3) & ~3];
if ((err = unpack_fp(msg, msgbuf, sizeof(msgbuf))) != HAL_OK ||
(err = unpack_fp(exp, expbuf, sizeof(expbuf))) != HAL_OK ||
(err = unpack_fp(mod, modbuf, sizeof(modbuf))) != HAL_OK)
goto fail;
uint8_t resbuf[FP_MAX_SIZE/8];
if ((err = hal_modexp(msgbuf, sizeof(msgbuf),
expbuf, sizeof(expbuf),
modbuf, sizeof(modbuf),
resbuf, sizeof(resbuf))) != HAL_OK)
goto fail;
fp_read_unsigned_bin(res, resbuf, sizeof(resbuf));
fail:
memset(msgbuf, 0, sizeof(msgbuf));
memset(expbuf, 0, sizeof(expbuf));
memset(modbuf, 0, sizeof(modbuf));
return err;
}
/*
* CRT with the components we have. PyCrypto doesn't give us dP or
* dQ, probably because they're so easy to calculate that it's
* (almost) not worth the bother.
*/
hal_error_t hal_rsa_crt(const uint8_t * const m, const size_t m_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len,
const uint8_t * const d, const size_t d_len,
const uint8_t * const p, const size_t p_len,
const uint8_t * const q, const size_t q_len,
const uint8_t * const u, const size_t u_len,
uint8_t * result, const size_t result_len)
{
hal_error_t err = HAL_OK;
rsa_key_t key;
struct { fp_int t, msg, m1, m2; } tmp;
key.type = RSA_PRIVATE;
#define _(x) do { fp_init(&key.x); fp_read_unsigned_bin(&key.x, (uint8_t *) x, x##_len); } while (0)
_(n); _(e); _(d); _(p); _(q); _(u);
#undef _
fp_init(&tmp.t);
fp_init(&tmp.msg);
fp_init(&tmp.m1);
fp_init(&tmp.m2);
/* Calculate dP = d % (p-1) and dQ = d % (q-1) */
fp_sub_d(&key.p, 1, &tmp.t);
FP_CHECK(fp_mod(&key.d, &tmp.t, &key.dP));
fp_sub_d(&key.q, 1, &tmp.t);
FP_CHECK(fp_mod(&key.d, &tmp.t, &key.dQ));
/* Read message to be signed/decrypted into a bignum */
fp_read_unsigned_bin(&tmp.msg, (uint8_t *) m, m_len);
/* OK, try to perform the CRT */
/* m1 = msg ** dP mod p, m2 = msg ** dQ mod q */
if ((err = modexp_fp(&tmp.msg, &key.dP, &key.p, &tmp.m1)) != HAL_OK ||
(err = modexp_fp(&tmp.msg, &key.dQ, &key.q, &tmp.m2)) != HAL_OK)
goto fail;
/* t = m1 - m2 */
fp_sub(&tmp.m1, &tmp.m2, &tmp.t);
/* Add zero (mod p) if necessary to get positive result */
if (fp_cmp_d(&tmp.t, 0) == FP_LT)
fp_add(&tmp.t, &key.p, &tmp.t);
if (fp_cmp_d(&tmp.t, 0) == FP_LT)
fp_add(&tmp.t, &key.p, &tmp.t);
if (fp_cmp_d(&tmp.t, 0) == FP_LT)
lose(HAL_ERROR_CRT_FAILED);
/* t = (t * u mod p) * q + m2 */
FP_CHECK(fp_mulmod(&tmp.t, &key.u, &key.p, &tmp.t));
fp_mul(&tmp.t, &key.q, &tmp.t);
fp_add(&tmp.t, &tmp.m2, &tmp.t);
/* Have result, write it back to caller */
if ((err = unpack_fp(&tmp.t, result, result_len)) != HAL_OK)
goto fail;
/* Done, fall through into cleanup code */
fail:
memset(&key, 0, sizeof(key));
memset(&tmp, 0, sizeof(tmp));
return err;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/