/*
* rsa.c
* -----
* Basic RSA functions based on Cryptech ModExp core.
*
* The mix of what we're doing in software vs what we're doing on the
* FPGA is a moving target. Goal for now is to have the bits we need
* to do in C be straightforward to review and as simple as possible
* (but no simpler).
*
* Much of the code in this module is based, at least loosely, on Tom
* St Denis's libtomcrypt code.
*
* Authors: Rob Austein
* Copyright (c) 2015, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* We use "Tom's Fast Math" library for our bignum implementation.
* This particular implementation has a couple of nice features:
*
* - The code is relatively readable, thus reviewable.
*
* - The bignum representation doesn't use dynamic memory, which
* simplifies things for us.
*
* The price tag for not using dynamic memory is that libtfm has to be
* configured to know about the largest bignum one wants it to be able
* to support at compile time. This should not be a serious problem.
*
* We use a lot of one-element arrays (fp_int[1] instead of plain
* fp_int) to avoid having to prefix every use of an fp_int with "&".
* Perhaps we should encapsulate this idiom in a typedef.
*
* Unfortunately, libtfm is bad about const-ification, but we want to
* hide that from our users, so our public API uses const as
* appropriate and we use inline functions to remove const constraints
* in a relatively type-safe manner before calling libtom.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#include <tfm.h>
#include "asn1_internal.h"
/*
* Whether to use ModExp core. It works, but at the moment it's so
* slow that a full test run can take more than an hour.
*/
#ifndef HAL_RSA_USE_MODEXP
#define HAL_RSA_USE_MODEXP 1
#endif
#if defined(RPC_CLIENT) && RPC_CLIENT != RPC_CLIENT_LOCAL
#define hal_get_random(core, buffer, length) hal_rpc_get_random(buffer, length)
#endif
/*
* Whether we want debug output.
*/
static int debug = 0;
void hal_rsa_set_debug(const int onoff)
{
debug = onoff;
}
/*
* Whether we want RSA blinding.
*/
static int blinding = 1;
void hal_rsa_set_blinding(const int onoff)
{
blinding = onoff;
}
/*
* RSA key implementation. This structure type is private to this
* module, anything else that needs to touch one of these just gets a
* typed opaque pointer. We do, however, export the size, so that we
* can make memory allocation the caller's problem.
*/
struct hal_rsa_key {
hal_key_type_t type; /* What kind of key this is */
fp_int n[1]; /* The modulus */
fp_int e[1]; /* Public exponent */
fp_int d[1]; /* Private exponent */
fp_int p[1]; /* 1st prime factor */
fp_int q[1]; /* 2nd prime factor */
fp_int u[1]; /* 1/q mod p */
fp_int dP[1]; /* d mod (p - 1) */
fp_int dQ[1]; /* d mod (q - 1) */
};
const size_t hal_rsa_key_t_size = sizeof(hal_rsa_key_t);
/*
* Initializers. We want to be able to initialize automatic fp_int
* variables a sane value (less error prone), but picky compilers
* whine about the number of curly braces required. So we define a
* macro which isolates that madness in one place.
*/
#define INIT_FP_INT {{{0}}}
/*
* Error handling.
*/
#define lose(_code_) \
do { err = _code_; goto fail; } while (0)
#define FP_CHECK(_expr_) \
do { \
switch (_expr_) { \
case FP_OKAY: break; \
case FP_VAL: lose(HAL_ERROR_BAD_ARGUMENTS); \
case FP_MEM: lose(HAL_ERROR_ALLOCATION_FAILURE); \
default: lose(HAL_ERROR_IMPOSSIBLE); \
} \
} while (0)
/*
* Unpack a bignum into a byte array, with length check.
*/
static hal_error_t unpack_fp(const fp_int * const bn, uint8_t *buffer, const size_t length)
{
hal_error_t err = HAL_OK;
assert(bn != NULL && buffer != NULL);
const size_t bytes = fp_unsigned_bin_size(unconst_fp_int(bn));
if (bytes > length)
lose(HAL_ERROR_RESULT_TOO_LONG);
memset(buffer, 0, length);
fp_to_unsigned_bin(unconst_fp_int(bn), buffer + length - bytes);
fail:
return err;
}
#if HAL_RSA_USE_MODEXP
/*
* Unwrap bignums into byte arrays, feed them into hal_modexp(), and
* wrap result back up as a bignum.
*/
static hal_error_t modexp(hal_core_t *core,
const fp_int * msg,
const fp_int * const exp,
const fp_int * const mod,
fp_int *res)
{
hal_error_t err = HAL_OK;
assert(msg != NULL && exp != NULL && mod != NULL && res != NULL);
fp_int reduced_msg[1] = INIT_FP_INT;
if (fp_cmp_mag(unconst_fp_int(msg), unconst_fp_int(mod)) != FP_LT) {
fp_init(reduced_msg);
fp_mod(unconst_fp_int(msg), unconst_fp_int(mod), reduced_msg);
msg = reduced_msg;
}
const size_t msg_len = (fp_unsigned_bin_size(unconst_fp_int(msg)) + 3) & ~3;
const size_t exp_len = (fp_unsigned_bin_size(unconst_fp_int(exp)) + 3) & ~3;
const size_t mod_len = (fp_unsigned_bin_size(unconst_fp_int(mod)) + 3) & ~3;
uint8_t msgbuf[msg_len];
uint8_t expbuf[exp_len];
uint8_t modbuf[mod_len];
uint8_t resbuf[mod_len];
if ((err = unpack_fp(msg, msgbuf, sizeof(msgbuf))) != HAL_OK ||
(err = unpack_fp(exp, expbuf, sizeof(expbuf))) != HAL_OK ||
(err = unpack_fp(mod, modbuf, sizeof(modbuf))) != HAL_OK ||
(err = hal_modexp(core,
msgbuf, sizeof(msgbuf),
expbuf, sizeof(expbuf),
modbuf, sizeof(modbuf),
resbuf, sizeof(resbuf))) != HAL_OK)
goto fail;
fp_read_unsigned_bin(res, resbuf, sizeof(resbuf));
fail:
memset(msgbuf, 0, sizeof(msgbuf));
memset(expbuf, 0, sizeof(expbuf));
memset(modbuf, 0, sizeof(modbuf));
memset(resbuf, 0, sizeof(resbuf));
return err;
}
/*
* Wrapper to let us export our modexp function as a replacement for
* TFM's, to avoid dragging in all of the TFM montgomery code when we
* use TFM's Miller-Rabin test code.
*
* This code is here rather than in a separate module because of the
* error handling: TFM's error codes aren't really capable of
* expressing all the things that could go wrong here.
*/
int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d)
{
return modexp(NULL, a, b, c, d) == HAL_OK ? FP_OKAY : FP_VAL;
}
#else /* HAL_RSA_USE_MODEXP */
/*
* Workaround to let us use TFM's software implementation of modular
* exponentiation when we want to test other things and don't want to
* wait for the slow FPGA implementation.
*/
static hal_error_t modexp(const hal_core_t *core, /* ignored */
const fp_int * const msg,
const fp_int * const exp,
const fp_int * const mod,
fp_int *res)
{
hal_error_t err = HAL_OK;
FP_CHECK(fp_exptmod(unconst_fp_int(msg), unconst_fp_int(exp), unconst_fp_int(mod), res));
fail:
return err;
}
#endif /* HAL_RSA_USE_MODEXP */
/*
* Create blinding factors. There are various schemes for amortizing
* the cost of this over multiple RSA operations, at present we don't
* try. Come back to this if it looks like a bottleneck.
*/
static hal_error_t create_blinding_factors(hal_core_t *core, const hal_rsa_key_t * const key, fp_int *bf, fp_int *ubf)
{
assert(key != NULL && bf != NULL && ubf != NULL);
uint8_t rnd[fp_unsigned_bin_size(unconst_fp_int(key->n))];
hal_error_t err = HAL_OK;
if ((err = hal_get_random(NULL, rnd, sizeof(rnd))) != HAL_OK)
goto fail;
fp_init(bf);
fp_read_unsigned_bin(bf, rnd, sizeof(rnd));
fp_copy(bf, ubf);
if ((err = modexp(core, bf, key->e, key->n, bf)) != HAL_OK)
goto fail;
FP_CHECK(fp_invmod(ubf, unconst_fp_int(key->n), ubf));
fail:
memset(rnd, 0, sizeof(rnd));
return err;
}
/*
* RSA decryption via Chinese Remainder Theorem (Garner's formula).
*/
static hal_error_t rsa_crt(hal_core_t *core, const hal_rsa_key_t * const key, fp_int *msg, fp_int *sig)
{
assert(key != NULL && msg != NULL && sig != NULL);
hal_error_t err = HAL_OK;
fp_int t[1] = INIT_FP_INT;
fp_int m1[1] = INIT_FP_INT;
fp_int m2[1] = INIT_FP_INT;
fp_int bf[1] = INIT_FP_INT;
fp_int ubf[1] = INIT_FP_INT;
/*
* Handle blinding if requested.
*/
if (blinding) {
if ((err = create_blinding_factors(core, key, bf, ubf)) != HAL_OK)
goto fail;
FP_CHECK(fp_mulmod(msg, bf, unconst_fp_int(key->n), msg));
}
/*
* m1 = msg ** dP mod p
* m2 = msg ** dQ mod q
*/
if ((err = modexp(core, msg, key->dP, key->p, m1)) != HAL_OK ||
(err = modexp(core, msg, key->dQ, key->q, m2)) != HAL_OK)
goto fail;
/*
* t = m1 - m2.
*/
fp_sub(m1, m2, t);
/*
* Add zero (mod p) if needed to make t positive. If doing this
* once or twice doesn't help, something is very wrong.
*/
if (fp_cmp_d(t, 0) == FP_LT)
fp_add(t, unconst_fp_int(key->p), t);
if (fp_cmp_d(t, 0) == FP_LT)
fp_add(t, unconst_fp_int(key->p), t);
if (fp_cmp_d(t, 0) == FP_LT)
lose(HAL_ERROR_IMPOSSIBLE);
/*
* sig = (t * u mod p) * q + m2
*/
FP_CHECK(fp_mulmod(t, unconst_fp_int(key->u), unconst_fp_int(key->p), t));
fp_mul(t, unconst_fp_int(key->q), t);
fp_add(t, m2, sig);
/*
* Unblind if necessary.
*/
if (blinding)
FP_CHECK(fp_mulmod(sig, ubf, unconst_fp_int(key->n), sig));
fail:
fp_zero(t);
fp_zero(m1);
fp_zero(m2);
return err;
}
/*
* Public API for raw RSA encryption and decryption.
*
* NB: This does not handle PKCS #1.5 padding, at the moment that's up
* to the caller.
*/
hal_error_t hal_rsa_encrypt(hal_core_t *core,
const hal_rsa_key_t * const key,
const uint8_t * const input, const size_t input_len,
uint8_t * output, const size_t output_len)
{
hal_error_t err = HAL_OK;
if (key == NULL || input == NULL || output == NULL || input_len > output_len)
return HAL_ERROR_BAD_ARGUMENTS;
fp_int i[1] = INIT_FP_INT;
fp_int o[1] = INIT_FP_INT;
fp_read_unsigned_bin(i, unconst_uint8_t(input), input_len);
if ((err = modexp(core, i, key->e, key->n, o)) != HAL_OK ||
(err = unpack_fp(o, output, output_len)) != HAL_OK)
goto fail;
fail:
fp_zero(i);
fp_zero(o);
return err;
}
hal_error_t hal_rsa_decrypt(hal_core_t *core,
const hal_rsa_key_t * const key,
const uint8_t * const input, const size_t input_len,
uint8_t * output, const size_t output_len)
{
hal_error_t err = HAL_OK;
if (key == NULL || input == NULL || output == NULL || input_len > output_len)
return HAL_ERROR_BAD_ARGUMENTS;
fp_int i[1] = INIT_FP_INT;
fp_int o[1] = INIT_FP_INT;
fp_read_unsigned_bin(i, unconst_uint8_t(input), input_len);
/*
* Do CRT if we have all the necessary key components, otherwise
* just do brute force ModExp.
*/
if (fp_iszero(key->p) || fp_iszero(key->q) || fp_iszero(key->u) || fp_iszero(key->dP) || fp_iszero(key->dQ))
err = modexp(core, i, key->d, key->n, o);
else
err = rsa_crt(core, key, i, o);
if (err != HAL_OK || (err = unpack_fp(o, output, output_len)) != HAL_OK)
goto fail;
fail:
fp_zero(i);
fp_zero(o);
return err;
}
/*
* Clear a key. We might want to do something a bit more energetic
* than plain old memset() eventually.
*/
void hal_rsa_key_clear(hal_rsa_key_t *key)
{
if (key != NULL)
memset(key, 0, sizeof(*key));
}
/*
* Load a key from raw components. This is a simplistic version: we
* don't attempt to generate missing private key components, we just
* reject the key if it doesn't have everything we expect.
*
* In theory, the only things we'd really need for the private key if
* we were being nicer about this would be e, p, and q, as we could
* calculate everything else from them.
*/
static hal_error_t load_key(const hal_key_type_t type,
hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len,
const uint8_t * const d, const size_t d_len,
const uint8_t * const p, const size_t p_len,
const uint8_t * const q, const size_t q_len,
const uint8_t * const u, const size_t u_len,
const uint8_t * const dP, const size_t dP_len,
const uint8_t * const dQ, const size_t dQ_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hal_rsa_key_t *key = keybuf;
key->type = type;
#define _(x) do { fp_init(key->x); if (x == NULL) goto fail; fp_read_unsigned_bin(key->x, unconst_uint8_t(x), x##_len); } while (0)
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
_(d); _(p); _(q); _(u); _(dP); _(dQ);
case HAL_KEY_TYPE_RSA_PUBLIC:
_(n); _(e);
*key_ = key;
return HAL_OK;
default:
goto fail;
}
#undef _
fail:
memset(key, 0, sizeof(*key));
return HAL_ERROR_BAD_ARGUMENTS;
}
/*
* Public API to load_key().
*/
hal_error_t hal_rsa_key_load_private(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len,
const uint8_t * const d, const size_t d_len,
const uint8_t * const p, const size_t p_len,
const uint8_t * const q, const size_t q_len,
const uint8_t * const u, const size_t u_len,
const uint8_t * const dP, const size_t dP_len,
const uint8_t * const dQ, const size_t dQ_len)
{
return load_key(HAL_KEY_TYPE_RSA_PRIVATE, key_, keybuf, keybuf_len,
n, n_len, e, e_len,
d, d_len, p, p_len, q, q_len, u, u_len, dP, dP_len, dQ, dQ_len);
}
hal_error_t hal_rsa_key_load_public(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const n, const size_t n_len,
const uint8_t * const e, const size_t e_len)
{
return load_key(HAL_KEY_TYPE_RSA_PUBLIC, key_, keybuf, keybuf_len,
n, n_len, e, e_len,
NULL, 0, NULL, 0, NULL, 0, NULL, 0, NULL, 0, NULL, 0);
}
/*
* Extract the key type.
*/
hal_error_t hal_rsa_key_get_type(const hal_rsa_key_t * const key,
hal_key_type_t *key_type)
{
if (key == NULL || key_type == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*key_type = key->type;
return HAL_OK;
}
/*
* Extract public key components.
*/
static hal_error_t extract_component(const hal_rsa_key_t * const key,
const size_t offset,
uint8_t *res, size_t *res_len, const size_t res_max)
{
if (key == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const fp_int * const bn = (const fp_int *) (((const uint8_t *) key) + offset);
const size_t len = fp_unsigned_bin_size(unconst_fp_int(bn));
if (res_len != NULL)
*res_len = len;
if (res == NULL)
return HAL_OK;
if (len > res_max)
return HAL_ERROR_RESULT_TOO_LONG;
memset(res, 0, res_max);
fp_to_unsigned_bin(unconst_fp_int(bn), res);
return HAL_OK;
}
hal_error_t hal_rsa_key_get_modulus(const hal_rsa_key_t * const key,
uint8_t *res, size_t *res_len, const size_t res_max)
{
return extract_component(key, offsetof(hal_rsa_key_t, n), res, res_len, res_max);
}
hal_error_t hal_rsa_key_get_public_exponent(const hal_rsa_key_t * const key,
uint8_t *res, size_t *res_len, const size_t res_max)
{
return extract_component(key, offsetof(hal_rsa_key_t, e), res, res_len, res_max);
}
/*
* Generate a prime factor for an RSA keypair.
*
* Get random bytes, munge a few bits, and stuff into a bignum to
* construct our initial candidate.
*
* Initialize table of remainders when dividing candidate by each
* entry in corresponding table of small primes. We'd have to perform
* these tests in any case for any succesful candidate, and doing it
* up front lets us amortize the cost over the entire search, so we do
* this unconditionally before entering the search loop.
*
* If all of the remainders were non-zero, run the requisite number of
* Miller-Rabin tests using the first few entries from that same table
* of small primes as the test values. If we get past Miller-Rabin,
* the candidate is (probably) prime, to a confidence level which we
* can tune by adjusting the number of Miller-Rabin tests.
*
* For RSA, we also need (result - 1) to be relatively prime with
* respect to the public exponent. If a (probable) prime passes that
* test, we have a winner.
*
* If any of the above tests failed, we increment the candidate and
* all remainders by two, then loop back to the remainder test. This
* is where the table pays off: incrementing remainders is really
* cheap, and since most composite numbers fail the small primes test,
* making that cheap makes the whole loop run significantly faster.
*
* General approach suggested by HAC note 4.51. Range of small prime
* table and default number of Miller-Rabin tests suggested by Schneier.
*/
#ifndef HAL_RSA_MILLER_RABIN_TESTS
#define HAL_RSA_MILLER_RABIN_TESTS (5)
#endif
static const uint16_t small_prime[] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521,
523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607,
613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773,
787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039,
1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109,
1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201,
1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283,
1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367,
1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523,
1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,
1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669,
1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759,
1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867,
1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949,
1951, 1973, 1979, 1987, 1993, 1997, 1999
};
static hal_error_t find_prime(const unsigned prime_length,
const fp_int * const e,
fp_int *result)
{
uint16_t remainder[sizeof(small_prime)/sizeof(*small_prime)];
uint8_t buffer[prime_length];
fp_int t[1] = INIT_FP_INT;
hal_error_t err;
if ((err = hal_get_random(NULL, buffer, sizeof(buffer))) != HAL_OK)
return err;
buffer[0] &= ~0x01; /* Headroom for search */
buffer[0] |= 0xc0; /* Result large enough */
buffer[sizeof(buffer) - 1] |= 0x01; /* Candidates are odd */
fp_read_unsigned_bin(result, buffer, sizeof(buffer));
for (int i = 0; i < sizeof(small_prime)/sizeof(*small_prime); i++) {
fp_digit d;
fp_mod_d(result, small_prime[i], &d);
remainder[i] = d;
}
for (;;) {
int possible = 1;
for (int i = 0; i < sizeof(small_prime)/sizeof(*small_prime); i++)
possible &= remainder[i] != 0;
for (int i = 0; possible && i < HAL_RSA_MILLER_RABIN_TESTS; i++) {
fp_set(t, small_prime[i]);
fp_prime_miller_rabin(result, t, &possible);
}
if (possible) {
fp_sub_d(result, 1, t);
fp_gcd(t, unconst_fp_int(e), t);
possible = fp_cmp_d(t, 1) == FP_EQ;
}
if (possible) {
fp_zero(t);
return HAL_OK;
}
fp_add_d(result, 2, result);
for (int i = 0; i < sizeof(small_prime)/sizeof(*small_prime); i++)
if ((remainder[i] += 2) >= small_prime[i])
remainder[i] -= small_prime[i];
}
}
/*
* Generate a new RSA keypair.
*/
hal_error_t hal_rsa_key_gen(hal_core_t *core,
hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const unsigned key_length,
const uint8_t * const public_exponent, const size_t public_exponent_len)
{
hal_rsa_key_t *key = keybuf;
hal_error_t err = HAL_OK;
fp_int p_1[1] = INIT_FP_INT;
fp_int q_1[1] = INIT_FP_INT;
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_RSA_PRIVATE;
fp_read_unsigned_bin(key->e, (uint8_t *) public_exponent, public_exponent_len);
if (key_length < bitsToBytes(1024) || key_length > bitsToBytes(8192))
return HAL_ERROR_UNSUPPORTED_KEY;
if (fp_cmp_d(key->e, 0x010001) != FP_EQ)
return HAL_ERROR_UNSUPPORTED_KEY;
/*
* Find a good pair of prime numbers.
*/
if ((err = find_prime(key_length / 2, key->e, key->p)) != HAL_OK ||
(err = find_prime(key_length / 2, key->e, key->q)) != HAL_OK)
return err;
/*
* Calculate remaining key components.
*/
fp_init(p_1); fp_sub_d(key->p, 1, p_1);
fp_init(q_1); fp_sub_d(key->q, 1, q_1);
fp_mul(key->p, key->q, key->n); /* n = p * q */
fp_lcm(p_1, q_1, key->d);
FP_CHECK(fp_invmod(key->e, key->d, key->d)); /* d = (1/e) % lcm(p-1, q-1) */
FP_CHECK(fp_mod(key->d, p_1, key->dP)); /* dP = d % (p-1) */
FP_CHECK(fp_mod(key->d, q_1, key->dQ)); /* dQ = d % (q-1) */
FP_CHECK(fp_invmod(key->q, key->p, key->u)); /* u = (1/q) % p */
*key_ = key;
/* Fall through to cleanup */
fail:
if (err != HAL_OK)
memset(keybuf, 0, keybuf_len);
fp_zero(p_1);
fp_zero(q_1);
return err;
}
/*
* Just enough ASN.1 to read and write PKCS #1.5 RSAPrivateKey syntax
* (RFC 2313 section 7.2) wrapped in a PKCS #8 PrivateKeyInfo (RFC 5208).
*
* RSAPrivateKey fields in the required order.
*/
#define RSAPrivateKey_fields \
_(version); \
_(key->n); \
_(key->e); \
_(key->d); \
_(key->p); \
_(key->q); \
_(key->dP); \
_(key->dQ); \
_(key->u);
hal_error_t hal_rsa_private_key_to_der(const hal_rsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
hal_error_t err = HAL_OK;
if (key == NULL || key->type != HAL_KEY_TYPE_RSA_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
fp_int version[1] = INIT_FP_INT;
/*
* Calculate data length.
*/
size_t hlen = 0, vlen = 0;
#define _(x) { size_t n; if ((err = hal_asn1_encode_integer(x, NULL, &n, der_max - vlen)) != HAL_OK) return err; vlen += n; }
RSAPrivateKey_fields;
#undef _
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)) != HAL_OK)
return err;
if ((err = hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_rsaEncryption, hal_asn1_oid_rsaEncryption_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)) != HAL_OK)
return err;
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)) != HAL_OK)
return err;
uint8_t *d = der + hlen;
memset(d, 0, vlen);
#define _(x) { size_t n; if ((err = hal_asn1_encode_integer(x, d, &n, vlen)) != HAL_OK) return err; d += n; vlen -= n; }
RSAPrivateKey_fields;
#undef _
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_rsaEncryption, hal_asn1_oid_rsaEncryption_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
size_t hal_rsa_private_key_to_der_len(const hal_rsa_key_t * const key)
{
size_t len = 0;
return hal_rsa_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_rsa_private_key_from_der(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t *der, const size_t der_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hal_rsa_key_t *key = keybuf;
key->type = HAL_KEY_TYPE_RSA_PRIVATE;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
hal_error_t err;
if ((err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len)) != HAL_OK)
return err;
if (alg_oid_len != hal_asn1_oid_rsaEncryption_len ||
memcmp(alg_oid, hal_asn1_oid_rsaEncryption, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t *d = privkey + hlen;
fp_int version[1] = INIT_FP_INT;
#define _(x) { size_t n; if ((err = hal_asn1_decode_integer(x, d, &n, vlen)) != HAL_OK) return err; d += n; vlen -= n; }
RSAPrivateKey_fields;
#undef _
if (d != privkey + privkey_len || !fp_iszero(version))
return HAL_ERROR_ASN1_PARSE_FAILED;
*key_ = key;
return HAL_OK;
}
/*
* ASN.1 public keys in SubjectPublicKeyInfo form, see RFCs 2313, 4055, and 5280.
*/
hal_error_t hal_rsa_public_key_to_der(const hal_rsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || (key->type != HAL_KEY_TYPE_RSA_PRIVATE &&
key->type != HAL_KEY_TYPE_RSA_PUBLIC))
return HAL_ERROR_BAD_ARGUMENTS;
size_t hlen, n_len, e_len;
hal_error_t err;
if ((err = hal_asn1_encode_integer(key->n, NULL, &n_len, 0)) != HAL_OK ||
(err = hal_asn1_encode_integer(key->e, NULL, &e_len, 0)) != HAL_OK)
return err;
const size_t vlen = n_len + e_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)) != HAL_OK)
return err;
if (der != NULL) {
uint8_t * const n_out = der + hlen;
uint8_t * const e_out = n_out + n_len;
if ((err = hal_asn1_encode_integer(key->n, n_out, NULL, der + der_max - n_out)) != HAL_OK ||
(err = hal_asn1_encode_integer(key->e, e_out, NULL, der + der_max - e_out)) != HAL_OK)
return err;
}
return hal_asn1_encode_spki(hal_asn1_oid_rsaEncryption, hal_asn1_oid_rsaEncryption_len,
NULL, 0, der, hlen + vlen,
der, der_len, der_max);
}
size_t hal_rsa_public_key_to_der_len(const hal_rsa_key_t * const key)
{
size_t len = 0;
return hal_rsa_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_rsa_public_key_from_der(hal_rsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len)
{
hal_rsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_KEY_TYPE_RSA_PUBLIC;
const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
size_t alg_oid_len, null_len, pubkey_len;
hal_error_t err;
if ((err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len)) != HAL_OK)
return err;
if (null != NULL || null_len != 0 || alg_oid == NULL ||
alg_oid_len != hal_asn1_oid_rsaEncryption_len || memcmp(alg_oid, hal_asn1_oid_rsaEncryption, alg_oid_len) != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
size_t len, hlen, vlen;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t * const pubkey_end = pubkey + hlen + vlen;
const uint8_t *d = pubkey + hlen;
if ((err = hal_asn1_decode_integer(key->n, d, &len, pubkey_end - d)) != HAL_OK)
return err;
d += len;
if ((err = hal_asn1_decode_integer(key->e, d, &len, pubkey_end - d)) != HAL_OK)
return err;
d += len;
if (d != pubkey_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
*key_ = key;
return HAL_OK;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/