/*
* rpc_pkey.c
* ----------
* Remote procedure call server-side public key implementation.
*
* Authors: Rob Austein
* Copyright (c) 2015, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#include "asn1_internal.h"
#ifndef HAL_STATIC_PKEY_STATE_BLOCKS
#define HAL_STATIC_PKEY_STATE_BLOCKS 0
#endif
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
static hal_pkey_slot_t pkey_slot[HAL_STATIC_PKEY_STATE_BLOCKS];
#endif
/*
* Handle allocation is simple: look for an unused (HAL_HANDLE_NONE)
* slot in the table, and, assuming we find one, construct a composite
* handle consisting of the index into the table and a counter whose
* sole purpose is to keep the same handle from reoccurring anytime
* soon, to help identify use-after-free bugs in calling code.
*
* The high order bit of the pkey handle is left free for
* HAL_PKEY_HANDLE_TOKEN_FLAG, which is used by the mixed-mode
* handlers to route calls to the appropriate destination.
*/
static inline hal_pkey_slot_t *alloc_slot(const hal_key_flags_t flags)
{
hal_pkey_slot_t *slot = NULL;
hal_critical_section_start();
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
static uint16_t next_glop = 0;
uint32_t glop = ++next_glop << 16;
next_glop %= 0x7FFF;
assert((glop & HAL_PKEY_HANDLE_TOKEN_FLAG) == 0);
if ((flags & HAL_KEY_FLAG_TOKEN) != 0)
glop |= HAL_PKEY_HANDLE_TOKEN_FLAG;
for (int i = 0; slot == NULL && i < sizeof(pkey_slot)/sizeof(*pkey_slot); i++) {
if (pkey_slot[i].pkey_handle.handle != HAL_HANDLE_NONE)
continue;
memset(&pkey_slot[i], 0, sizeof(pkey_slot[i]));
pkey_slot[i].pkey_handle.handle = i | glop;
pkey_slot[i].hint = -1;
slot = &pkey_slot[i];
}
#endif
hal_critical_section_end();
return slot;
}
/*
* Check a caller-supplied handle. Must be in range, in use, and have
* the right glop. Returns slot pointer on success, NULL otherwise.
*/
static inline hal_pkey_slot_t *find_handle(const hal_pkey_handle_t handle)
{
hal_pkey_slot_t *slot = NULL;
hal_critical_section_start();
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
const int i = (int) (handle.handle & 0xFFFF);
if (i < sizeof(pkey_slot)/sizeof(*pkey_slot) && pkey_slot[i].pkey_handle.handle == handle.handle)
slot = &pkey_slot[i];
#endif
hal_critical_section_end();
return slot;
}
/*
* Access rules are a bit complicated, mostly due to PKCS #11.
*
* The simple, obvious rule would be that one must be logged in as
* HAL_USER_NORMAL to create, see, use, or delete a key, full stop.
*
* That's almost the rule that PKCS #11 follows for so-called
* "private" objects (CKA_PRIVATE = CK_TRUE), but PKCS #11 has a more
* complex model which not only allows wider visibility to "public"
* objects (CKA_PRIVATE = CK_FALSE) but also allows write access to
* "public session" (CKA_PRIVATE = CK_FALSE, CKA_TOKEN = CK_FALSE)
* objects regardless of login state.
*
* PKCS #11 also has a concept of read-only sessions, which we don't
* bother to implement at all on the HSM, since the PIN is required to
* be the same as for the corresponding read-write session, so this
* would just be additional compexity without adding any security on
* the HSM; the PKCS #11 library still has to support read-only
* sessions, but that's not our problem here.
*
* In general, non-PKCS #11 users of this API should probably never
* set HAL_KEY_FLAG_PUBLIC, in which case they'll get the simple rule.
*
* Note that keystore drivers may need to implement additional
* additional checks, eg, ks_volatile needs to enforce the rule that
* session objects are only visible to the client which created them
* (not the session, that would be too simple, thanks PKCS #11). In
* practice, this should not be a serious problem, since such checks
* will likely only apply to existing objects. The thing we really
* want to avoid is doing all the work to create a large key only to
* have the keystore driver reject access at the end, but since, by
* definition, that only occurs when creating new objects, the access
* decision doesn't depend on preexisting data, so the rules here
* should suffice. That's the theory, anyway, if this is wrong we may
* need to refactor.
*/
static inline hal_error_t check_normal_or_wheel(const hal_client_handle_t client)
{
const hal_error_t err = hal_rpc_is_logged_in(client, HAL_USER_NORMAL);
return (err == HAL_ERROR_FORBIDDEN
? hal_rpc_is_logged_in(client, HAL_USER_WHEEL)
: err);
}
static inline hal_error_t check_readable(const hal_client_handle_t client,
const hal_key_flags_t flags)
{
if ((flags & HAL_KEY_FLAG_PUBLIC) != 0)
return HAL_OK;
return check_normal_or_wheel(client);
}
static inline hal_error_t check_writable(const hal_client_handle_t client,
const hal_key_flags_t flags)
{
if ((flags & (HAL_KEY_FLAG_TOKEN | HAL_KEY_FLAG_PUBLIC)) == HAL_KEY_FLAG_PUBLIC)
return HAL_OK;
return check_normal_or_wheel(client);
}
/*
* PKCS #1.5 encryption requires non-zero random bytes, which is a bit
* messy if done in place, so make it a separate function for readability.
*/
static inline hal_error_t get_nonzero_random(uint8_t *buffer, size_t n)
{
assert(buffer != NULL);
uint32_t word = 0;
hal_error_t err;
while (n > 0) {
while ((word & 0xFF) == 0)
if ((word & ~0xFF) != 0)
word >>= 8;
else if ((err = hal_get_random(NULL, &word, sizeof(word))) != HAL_OK)
return err;
*buffer++ = word & 0xFF;
word >>= 8;
n--;
}
return HAL_OK;
}
/*
* Pad an octet string with PKCS #1.5 padding for use with RSA.
*
* This handles type 01 and type 02 encryption blocks. The formats
* are identical, except that the padding string is constant 0xFF
* bytes for type 01 and non-zero random bytes for type 02.
*
* We use memmove() instead of memcpy() so that the caller can
* construct the data to be padded in the same buffer.
*/
static hal_error_t pkcs1_5_pad(const uint8_t * const data, const size_t data_len,
uint8_t *block, const size_t block_len,
const uint8_t type)
{
assert(data != NULL && block != NULL && (type == 0x01 || type == 0x02));
hal_error_t err;
/*
* Congregation will now please turn to RFC 2313 8.1 as we
* construct a PKCS #1.5 type 01 or type 02 encryption block.
*/
if (data_len > block_len - 11)
return HAL_ERROR_RESULT_TOO_LONG;
memmove(block + block_len - data_len, data, data_len);
block[0] = 0x00;
block[1] = type;
switch (type) {
case 0x01: /* Signature */
memset(block + 2, 0xFF, block_len - 3 - data_len);
break;
case 0x02: /* Encryption */
if ((err = get_nonzero_random(block + 2, block_len - 3 - data_len)) != HAL_OK)
return err;
break;
}
block[block_len - data_len - 1] = 0x00;
return HAL_OK;
}
/*
* Given key flags, open appropriate keystore driver.
*/
static inline hal_error_t ks_open_from_flags(hal_ks_t **ks, const hal_key_flags_t flags)
{
return hal_ks_open((flags & HAL_KEY_FLAG_TOKEN) == 0
? hal_ks_volatile_driver
: hal_ks_token_driver,
ks);
}
/*
* Receive key from application, generate a name (UUID), store it, and
* return a key handle and the name.
*/
static hal_error_t pkey_local_load(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const uint8_t * const der, const size_t der_len,
const hal_key_flags_t flags)
{
assert(pkey != NULL && name != NULL && der != NULL);
hal_curve_name_t curve;
hal_pkey_slot_t *slot;
hal_key_type_t type;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = check_writable(client, flags)) != HAL_OK)
return err;
if ((err = hal_asn1_guess_key_type(&type, &curve, der, der_len)) != HAL_OK)
return err;
if ((slot = alloc_slot(flags)) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
if ((err = hal_uuid_gen(&slot->name)) != HAL_OK)
return err;
slot->client_handle = client;
slot->session_handle = session;
slot->type = type;
slot->curve = curve;
slot->flags = flags;
if ((err = ks_open_from_flags(&ks, flags)) == HAL_OK &&
(err = hal_ks_store(ks, slot, der, der_len)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err != HAL_OK) {
slot->type = HAL_KEY_TYPE_NONE;
return err;
}
*pkey = slot->pkey_handle;
*name = slot->name;
return HAL_OK;
}
/*
* Look up a key given its name, return a key handle.
*/
static hal_error_t pkey_local_open(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
const hal_uuid_t * const name,
const hal_key_flags_t flags)
{
assert(pkey != NULL && name != NULL);
hal_pkey_slot_t *slot;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = check_readable(client, flags)) != HAL_OK)
return err;
if ((slot = alloc_slot(flags)) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
slot->name = *name;
slot->client_handle = client;
slot->session_handle = session;
if ((err = ks_open_from_flags(&ks, flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, slot, NULL, NULL, 0)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err != HAL_OK) {
slot->type = HAL_KEY_TYPE_NONE;
return err;
}
*pkey = slot->pkey_handle;
return HAL_OK;
}
/*
* Generate a new RSA key with supplied name, return a key handle.
*/
static hal_error_t pkey_local_generate_rsa(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const unsigned key_length,
const uint8_t * const public_exponent, const size_t public_exponent_len,
const hal_key_flags_t flags)
{
assert(pkey != NULL && name != NULL && (key_length & 7) == 0);
uint8_t keybuf[hal_rsa_key_t_size];
hal_rsa_key_t *key = NULL;
hal_pkey_slot_t *slot;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = check_writable(client, flags)) != HAL_OK)
return err;
if ((slot = alloc_slot(flags)) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
if ((err = hal_uuid_gen(&slot->name)) != HAL_OK)
return err;
slot->client_handle = client;
slot->session_handle = session;
slot->type = HAL_KEY_TYPE_RSA_PRIVATE;
slot->curve = HAL_CURVE_NONE;
slot->flags = flags;
if ((err = hal_rsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), key_length / 8,
public_exponent, public_exponent_len)) != HAL_OK) {
slot->type = HAL_KEY_TYPE_NONE;
return err;
}
uint8_t der[hal_rsa_private_key_to_der_len(key)];
size_t der_len;
if ((err = hal_rsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK &&
(err = ks_open_from_flags(&ks, flags)) == HAL_OK &&
(err = hal_ks_store(ks, slot, der, der_len)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
if (err != HAL_OK) {
slot->type = HAL_KEY_TYPE_NONE;
return err;
}
*pkey = slot->pkey_handle;
*name = slot->name;
return HAL_OK;
}
/*
* Generate a new EC key with supplied name, return a key handle.
* At the moment, EC key == ECDSA key, but this is subject to change.
*/
static hal_error_t pkey_local_generate_ec(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const hal_curve_name_t curve,
const hal_key_flags_t flags)
{
assert(pkey != NULL && name != NULL);
uint8_t keybuf[hal_ecdsa_key_t_size];
hal_ecdsa_key_t *key = NULL;
hal_pkey_slot_t *slot;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = check_writable(client, flags)) != HAL_OK)
return err;
if ((slot = alloc_slot(flags)) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
if ((err = hal_uuid_gen(&slot->name)) != HAL_OK)
return err;
slot->client_handle = client;
slot->session_handle = session;
slot->type = HAL_KEY_TYPE_EC_PRIVATE;
slot->curve = curve;
slot->flags = flags;
if ((err = hal_ecdsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), curve)) != HAL_OK) {
slot->type = HAL_KEY_TYPE_NONE;
return err;
}
uint8_t der[hal_ecdsa_private_key_to_der_len(key)];
size_t der_len;
if ((err = hal_ecdsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK &&
(err = ks_open_from_flags(&ks, flags)) == HAL_OK &&
(err = hal_ks_store(ks, slot, der, der_len)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
if (err != HAL_OK) {
slot->type = HAL_KEY_TYPE_NONE;
return err;
}
*pkey = slot->pkey_handle;
*name = slot->name;
return HAL_OK;
}
/*
* Discard key handle, leaving key intact.
*/
static hal_error_t pkey_local_close(const hal_pkey_handle_t pkey)
{
hal_pkey_slot_t *slot;
if ((slot = find_handle(pkey)) == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
memset(slot, 0, sizeof(*slot));
return HAL_OK;
}
/*
* Delete a key from the store, given its key handle.
*/
static hal_error_t pkey_local_delete(const hal_pkey_handle_t pkey)
{
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = check_writable(slot->client_handle, slot->flags)) != HAL_OK)
return err;
if ((err = ks_open_from_flags(&ks, slot->flags)) == HAL_OK &&
(err = hal_ks_delete(ks, slot)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err == HAL_OK || err == HAL_ERROR_KEY_NOT_FOUND)
memset(slot, 0, sizeof(*slot));
return err;
}
/*
* Get type of key associated with handle.
*/
static hal_error_t pkey_local_get_key_type(const hal_pkey_handle_t pkey,
hal_key_type_t *type)
{
if (type == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
*type = slot->type;
return HAL_OK;
}
/*
* Get curve of key associated with handle.
*/
static hal_error_t pkey_local_get_key_curve(const hal_pkey_handle_t pkey,
hal_curve_name_t *curve)
{
if (curve == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
*curve = slot->curve;
return HAL_OK;
}
/*
* Get flags of key associated with handle.
*/
static hal_error_t pkey_local_get_key_flags(const hal_pkey_handle_t pkey,
hal_key_flags_t *flags)
{
if (flags == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
*flags = slot->flags;
return HAL_OK;
}
/*
* Get length of public key associated with handle.
*/
static size_t pkey_local_get_public_key_len(const hal_pkey_handle_t pkey)
{
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return 0;
size_t result = 0;
uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
hal_rsa_key_t *rsa_key = NULL;
hal_ecdsa_key_t *ecdsa_key = NULL;
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = ks_open_from_flags(&ks, slot->flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, slot, der, &der_len, sizeof(der))) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err == HAL_OK) {
switch (slot->type) {
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
result = der_len;
break;
case HAL_KEY_TYPE_RSA_PRIVATE:
if (hal_rsa_private_key_from_der(&rsa_key, keybuf, sizeof(keybuf), der, der_len) == HAL_OK)
result = hal_rsa_public_key_to_der_len(rsa_key);
break;
case HAL_KEY_TYPE_EC_PRIVATE:
if (hal_ecdsa_private_key_from_der(&ecdsa_key, keybuf, sizeof(keybuf), der, der_len) == HAL_OK)
result = hal_ecdsa_public_key_to_der_len(ecdsa_key);
break;
default:
break;
}
}
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
return result;
}
/*
* Get public key associated with handle.
*/
static hal_error_t pkey_local_get_public_key(const hal_pkey_handle_t pkey,
uint8_t *der, size_t *der_len, const size_t der_max)
{
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
hal_rsa_key_t *rsa_key = NULL;
hal_ecdsa_key_t *ecdsa_key = NULL;
uint8_t buf[HAL_KS_WRAPPED_KEYSIZE];
size_t buf_len;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = ks_open_from_flags(&ks, slot->flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, slot, buf, &buf_len, sizeof(buf))) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err == HAL_OK) {
switch (slot->type) {
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
if (der_len != NULL)
*der_len = buf_len;
if (der != NULL && der_max < buf_len)
err = HAL_ERROR_RESULT_TOO_LONG;
else if (der != NULL)
memcpy(der, buf, buf_len);
break;
case HAL_KEY_TYPE_RSA_PRIVATE:
if ((err = hal_rsa_private_key_from_der(&rsa_key, keybuf, sizeof(keybuf), buf, buf_len)) == HAL_OK)
err = hal_rsa_public_key_to_der(rsa_key, der, der_len, der_max);
break;
case HAL_KEY_TYPE_EC_PRIVATE:
if ((err = hal_ecdsa_private_key_from_der(&ecdsa_key, keybuf, sizeof(keybuf), buf, buf_len)) == HAL_OK)
err = hal_ecdsa_public_key_to_der(ecdsa_key, der, der_len, der_max);
break;
default:
err = HAL_ERROR_UNSUPPORTED_KEY;
break;
}
}
memset(keybuf, 0, sizeof(keybuf));
memset(buf, 0, sizeof(buf));
return err;
}
/*
* Sign something using private key associated with handle.
*
* RSA has enough quirks that it's simplest to split this out into
* algorithm-specific functions.
*/
static hal_error_t pkey_local_sign_rsa(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_hash_handle_t hash,
const uint8_t * input, size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
hal_rsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len != NULL);
assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));
if ((err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK ||
(err = hal_rsa_key_get_modulus(key, NULL, signature_len, 0)) != HAL_OK)
return err;
if (*signature_len > signature_max)
return HAL_ERROR_RESULT_TOO_LONG;
if (input == NULL || input_len == 0) {
if ((err = hal_rpc_pkcs1_construct_digestinfo(hash, signature, &input_len, *signature_len)) != HAL_OK)
return err;
input = signature;
}
if ((err = pkcs1_5_pad(input, input_len, signature, *signature_len, 0x01)) != HAL_OK ||
(err = hal_rsa_decrypt(NULL, key, signature, *signature_len, signature, *signature_len)) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t pkey_local_sign_ecdsa(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_hash_handle_t hash,
const uint8_t * input, size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
hal_ecdsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len != NULL);
assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));
if ((err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
return err;
if (input == NULL || input_len == 0) {
hal_digest_algorithm_t alg;
if ((err = hal_rpc_hash_get_algorithm(hash, &alg)) != HAL_OK ||
(err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK)
return err;
if (input_len > signature_max)
return HAL_ERROR_RESULT_TOO_LONG;
if ((err = hal_rpc_hash_finalize(hash, signature, input_len)) != HAL_OK)
return err;
input = signature;
}
if ((err = hal_ecdsa_sign(NULL, key, input, input_len, signature, signature_len, signature_max)) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t pkey_local_sign(const hal_pkey_handle_t pkey,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_error_t (*signer)(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max);
switch (slot->type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
signer = pkey_local_sign_rsa;
break;
case HAL_KEY_TYPE_EC_PRIVATE:
signer = pkey_local_sign_ecdsa;
break;
default:
return HAL_ERROR_UNSUPPORTED_KEY;
}
if ((slot->flags & HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE) == 0)
return HAL_ERROR_FORBIDDEN;
uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = ks_open_from_flags(&ks, slot->flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, slot, der, &der_len, sizeof(der))) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err == HAL_OK)
err = signer(keybuf, sizeof(keybuf), der, der_len, hash, input, input_len, signature, signature_len, signature_max);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
return err;
}
/*
* Verify something using public key associated with handle.
*
* RSA has enough quirks that it's simplest to split this out into
* algorithm-specific functions.
*/
static hal_error_t pkey_local_verify_rsa(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
const uint8_t * const der, const size_t der_len,
const hal_hash_handle_t hash,
const uint8_t * input, size_t input_len,
const uint8_t * const signature, const size_t signature_len)
{
uint8_t expected[signature_len], received[(signature_len + 3) & ~3];
hal_rsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len > 0);
assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len);
break;
case HAL_KEY_TYPE_RSA_PUBLIC:
err = hal_rsa_public_key_from_der(&key, keybuf, keybuf_len, der, der_len);
break;
default:
err = HAL_ERROR_IMPOSSIBLE;
}
if (err != HAL_OK)
return err;
if (input == NULL || input_len == 0) {
if ((err = hal_rpc_pkcs1_construct_digestinfo(hash, expected, &input_len, sizeof(expected))) != HAL_OK)
return err;
input = expected;
}
if ((err = pkcs1_5_pad(input, input_len, expected, sizeof(expected), 0x01)) != HAL_OK ||
(err = hal_rsa_encrypt(NULL, key, signature, signature_len, received, sizeof(received))) != HAL_OK)
return err;
unsigned diff = 0;
for (int i = 0; i < signature_len; i++)
diff |= expected[i] ^ received[i + sizeof(received) - sizeof(expected)];
if (diff != 0)
return HAL_ERROR_INVALID_SIGNATURE;
return HAL_OK;
}
static hal_error_t pkey_local_verify_ecdsa(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
const uint8_t * const der, const size_t der_len,
const hal_hash_handle_t hash,
const uint8_t * input, size_t input_len,
const uint8_t * const signature, const size_t signature_len)
{
uint8_t digest[signature_len];
hal_ecdsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len > 0);
assert((hash.handle == HAL_HANDLE_NONE) != (input == NULL || input_len == 0));
switch (type) {
case HAL_KEY_TYPE_EC_PRIVATE:
err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len);
break;
case HAL_KEY_TYPE_EC_PUBLIC:
err = hal_ecdsa_public_key_from_der(&key, keybuf, keybuf_len, der, der_len);
break;
default:
err = HAL_ERROR_IMPOSSIBLE;
}
if (err != HAL_OK)
return err;
if (input == NULL || input_len == 0) {
hal_digest_algorithm_t alg;
if ((err = hal_rpc_hash_get_algorithm(hash, &alg)) != HAL_OK ||
(err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK ||
(err = hal_rpc_hash_finalize(hash, digest, sizeof(digest))) != HAL_OK)
return err;
input = digest;
}
if ((err = hal_ecdsa_verify(NULL, key, input, input_len, signature, signature_len)) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t pkey_local_verify(const hal_pkey_handle_t pkey,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
const uint8_t * const signature, const size_t signature_len)
{
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_error_t (*verifier)(uint8_t *keybuf, const size_t keybuf_len, const hal_key_type_t type,
const uint8_t * const der, const size_t der_len,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
const uint8_t * const signature, const size_t signature_len);
switch (slot->type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
verifier = pkey_local_verify_rsa;
break;
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_EC_PUBLIC:
verifier = pkey_local_verify_ecdsa;
break;
default:
return HAL_ERROR_UNSUPPORTED_KEY;
}
if ((slot->flags & HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE) == 0)
return HAL_ERROR_FORBIDDEN;
uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = ks_open_from_flags(&ks, slot->flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, slot, der, &der_len, sizeof(der))) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err == HAL_OK)
err = verifier(keybuf, sizeof(keybuf), slot->type, der, der_len, hash, input, input_len, signature, signature_len);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
return err;
}
static hal_error_t pkey_local_match(const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid)
{
hal_ks_t *ks = NULL;
hal_error_t err;
err = check_readable(client, flags);
if (err == HAL_ERROR_FORBIDDEN) {
assert(result_len != NULL);
*result_len = 0;
return HAL_OK;
}
if (err != HAL_OK)
return err;
if ((err = ks_open_from_flags(&ks, flags)) == HAL_OK &&
(err = hal_ks_match(ks, client, session, type, curve, flags, attributes, attributes_len,
result, result_len, result_max, previous_uuid)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
return err;
}
static hal_error_t pkey_local_set_attributes(const hal_pkey_handle_t pkey,
const hal_pkey_attribute_t *attributes,
const unsigned attributes_len)
{
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = check_writable(slot->client_handle, slot->flags)) != HAL_OK)
return err;
if ((err = ks_open_from_flags(&ks, slot->flags)) == HAL_OK &&
(err = hal_ks_set_attributes(ks, slot, attributes, attributes_len)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
return err;
}
static hal_error_t pkey_local_get_attributes(const hal_pkey_handle_t pkey,
hal_pkey_attribute_t *attributes,
const unsigned attributes_len,
uint8_t *attributes_buffer,
const size_t attributes_buffer_len)
{
hal_pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_ks_t *ks = NULL;
hal_error_t err;
if ((err = ks_open_from_flags(&ks, slot->flags)) == HAL_OK &&
(err = hal_ks_get_attributes(ks, slot, attributes, attributes_len,
attributes_buffer, attributes_buffer_len)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
return err;
}
static hal_error_t pkey_local_export(const hal_pkey_handle_t pkey_handle,
const hal_pkey_handle_t kekek_handle,
uint8_t *pkcs8, size_t *pkcs8_len, const size_t pkcs8_max,
uint8_t *kek, size_t *kek_len, const size_t kek_max)
{
assert(pkcs8 != NULL && pkcs8_len != NULL && kek != NULL && kek_len != NULL && kek_max > KEK_LENGTH);
uint8_t rsabuf[hal_rsa_key_t_size];
hal_rsa_key_t *rsa = NULL;
hal_ks_t *ks = NULL;
hal_error_t err;
size_t len;
hal_pkey_slot_t * const pkey = find_handle(pkey_handle);
hal_pkey_slot_t * const kekek = find_handle(kekek_handle);
if (pkey == NULL || kekek == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
if ((pkey->flags & HAL_KEY_FLAG_EXPORTABLE) == 0)
return HAL_ERROR_FORBIDDEN;
if ((kekek->flags & HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT) == 0)
return HAL_ERROR_FORBIDDEN;
if (kekek->type != HAL_KEY_TYPE_RSA_PRIVATE && kekek->type != HAL_KEY_TYPE_RSA_PUBLIC)
return HAL_ERROR_UNSUPPORTED_KEY;
if (pkcs8_max < HAL_KS_WRAPPED_KEYSIZE)
return HAL_ERROR_RESULT_TOO_LONG;
if ((err = ks_open_from_flags(&ks, kekek->flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, kekek, pkcs8, &len, pkcs8_max)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err != HAL_OK)
goto fail;
switch (kekek->type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
err = hal_rsa_private_key_from_der(&rsa, rsabuf, sizeof(rsabuf), pkcs8, len);
break;
case HAL_KEY_TYPE_RSA_PUBLIC:
err = hal_rsa_public_key_from_der(&rsa, rsabuf, sizeof(rsabuf), pkcs8, len);
break;
default:
err = HAL_ERROR_IMPOSSIBLE;
}
if (err != HAL_OK)
goto fail;
if ((err = hal_rsa_key_get_modulus(rsa, NULL, kek_len, 0)) != HAL_OK)
goto fail;
if (*kek_len > kek_max) {
err = HAL_ERROR_RESULT_TOO_LONG;
goto fail;
}
if ((err = ks_open_from_flags(&ks, pkey->flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, pkey, pkcs8, &len, pkcs8_max)) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err != HAL_OK)
goto fail;
if ((err = hal_get_random(NULL, kek, KEK_LENGTH)) != HAL_OK)
goto fail;
*pkcs8_len = pkcs8_max;
if ((err = hal_aes_keywrap(NULL, kek, KEK_LENGTH, pkcs8, len, pkcs8, pkcs8_len)) != HAL_OK)
goto fail;
if ((err = hal_asn1_encode_pkcs8_encryptedprivatekeyinfo(hal_asn1_oid_aesKeyWrap,
hal_asn1_oid_aesKeyWrap_len,
pkcs8, *pkcs8_len,
pkcs8, pkcs8_len, pkcs8_max)) != HAL_OK)
goto fail;
if ((err = pkcs1_5_pad(kek, KEK_LENGTH, kek, *kek_len, 0x02)) != HAL_OK)
goto fail;
if ((err = hal_rsa_encrypt(NULL, rsa, kek, *kek_len, kek, *kek_len)) != HAL_OK)
goto fail;
if ((err = hal_asn1_encode_pkcs8_encryptedprivatekeyinfo(hal_asn1_oid_rsaEncryption,
hal_asn1_oid_rsaEncryption_len,
kek, *kek_len,
kek, kek_len, kek_max)) != HAL_OK)
goto fail;
memset(rsabuf, 0, sizeof(rsabuf));
return HAL_OK;
fail:
memset(pkcs8, 0, pkcs8_max);
memset(kek, 0, kek_max);
memset(rsabuf, 0, sizeof(rsabuf));
*pkcs8_len = *kek_len = 0;
return err;
}
static hal_error_t pkey_local_import(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const hal_pkey_handle_t kekek_handle,
const uint8_t * const pkcs8, const size_t pkcs8_len,
const uint8_t * const kek_, const size_t kek_len,
const hal_key_flags_t flags)
{
assert(pkey != NULL && name != NULL && pkcs8 != NULL && kek_ != NULL && kek_len > 2);
uint8_t kek[KEK_LENGTH], rsabuf[hal_rsa_key_t_size], der[HAL_KS_WRAPPED_KEYSIZE], *d;
size_t der_len, oid_len, data_len;
const uint8_t *oid, *data;
hal_rsa_key_t *rsa = NULL;
hal_ks_t *ks = NULL;
hal_error_t err;
hal_pkey_slot_t * const kekek = find_handle(kekek_handle);
if (kekek == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
if ((kekek->flags & HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT) == 0)
return HAL_ERROR_FORBIDDEN;
if (kekek->type != HAL_KEY_TYPE_RSA_PRIVATE)
return HAL_ERROR_UNSUPPORTED_KEY;
if ((err = ks_open_from_flags(&ks, kekek->flags)) == HAL_OK &&
(err = hal_ks_fetch(ks, kekek, der, &der_len, sizeof(der))) == HAL_OK)
err = hal_ks_close(ks);
else if (ks != NULL)
(void) hal_ks_close(ks);
if (err != HAL_OK)
goto fail;
if ((err = hal_rsa_private_key_from_der(&rsa, rsabuf, sizeof(rsabuf), der, der_len)) != HAL_OK)
goto fail;
if ((err = hal_asn1_decode_pkcs8_encryptedprivatekeyinfo(&oid, &oid_len, &data, &data_len,
kek_, kek_len)) != HAL_OK)
goto fail;
if (oid_len != hal_asn1_oid_rsaEncryption_len ||
memcmp(oid, hal_asn1_oid_rsaEncryption, oid_len) != 0 ||
data_len > sizeof(der) ||
data_len < 2) {
err = HAL_ERROR_ASN1_PARSE_FAILED;
goto fail;
}
if ((err = hal_rsa_decrypt(NULL, rsa, data, data_len, der, data_len)) != HAL_OK)
goto fail;
if ((err = hal_get_random(NULL, kek, sizeof(kek))) != HAL_OK)
goto fail;
d = memchr(der + 2, 0x00, data_len - 2);
if (der[0] == 0x00 && der[1] == 0x02 && d != NULL && der + data_len == d + 1 + KEK_LENGTH)
memcpy(kek, d + 1, sizeof(kek));
if ((err = hal_asn1_decode_pkcs8_encryptedprivatekeyinfo(&oid, &oid_len, &data, &data_len,
pkcs8, pkcs8_len)) != HAL_OK)
goto fail;
if (oid_len != hal_asn1_oid_aesKeyWrap_len ||
memcmp(oid, hal_asn1_oid_aesKeyWrap, oid_len) != 0 ||
data_len > sizeof(der)) {
err = HAL_ERROR_ASN1_PARSE_FAILED;
goto fail;
}
der_len = sizeof(der);
if ((err = hal_aes_keyunwrap(NULL, kek, sizeof(kek), data, data_len, der, &der_len)) != HAL_OK)
goto fail;
err = pkey_local_load(client, session, pkey, name, der, der_len, flags);
fail:
memset(rsabuf, 0, sizeof(rsabuf));
memset(kek, 0, sizeof(kek));
memset(der, 0, sizeof(der));
return err;
}
const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch = {
.load = pkey_local_load,
.open = pkey_local_open,
.generate_rsa = pkey_local_generate_rsa,
.generate_ec = pkey_local_generate_ec,
.close = pkey_local_close,
.delete = pkey_local_delete,
.get_key_type = pkey_local_get_key_type,
.get_key_curve = pkey_local_get_key_curve,
.get_key_flags = pkey_local_get_key_flags,
.get_public_key_len = pkey_local_get_public_key_len,
.get_public_key = pkey_local_get_public_key,
.sign = pkey_local_sign,
.verify = pkey_local_verify,
.match = pkey_local_match,
.set_attributes = pkey_local_set_attributes,
.get_attributes = pkey_local_get_attributes,
.export = pkey_local_export,
.import = pkey_local_import
};
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/