/*
* rpc_pkey.c
* ----------
* Remote procedure call server-side public key implementation.
*
* Authors: Rob Austein
* Copyright (c) 2015, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
typedef struct {
hal_rpc_client_handle_t client_handle;
hal_rpc_session_handle_t session_handle;
hal_rpc_pkey_handle_t pkey_handle;
hal_key_type_t type;
hal_curve_name_t curve;
hal_key_flags_t flags;
uint8_t name[HAL_RPC_PKEY_NAME_MAX];
size_t name_len;
int ks_hint;
/*
* This might be where we'd stash a (hal_core_t *) pointing to a
* core which has already been loaded with the key, if we were
* trying to be clever about using multiple signing cores. Moot
* point (ie, no way we could possibly test such a thing) as long as
* the FPGA is too small to hold more than one modexp core and ECDSA
* is entirely software, so skip it for now, but the implied
* semantics are interesting: a pkey handle starts to resemble an
* initialized signing core, and once all the cores are in use, one
* can't load another key without closing an existing pkey handle.
*/
} pkey_slot_t;
#ifndef HAL_STATIC_PKEY_STATE_BLOCKS
#define HAL_STATIC_PKEY_STATE_BLOCKS 0
#endif
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
static pkey_slot_t pkey_handle[HAL_STATIC_PKEY_STATE_BLOCKS];
#endif
/*
* Handle allocation is simple: we look for an unused (name_len == 0)
* slot in the table, and, assuming we find one, construct a composite
* handle consisting of the index into the table and a counter whose
* sole purpose is to keep the same handle from reoccurring anytime
* soon, to help identify use-after-free bugs in calling code.
*/
static inline pkey_slot_t *alloc_slot(void)
{
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
static uint16_t next_glop = 0;
uint32_t glop = ++next_glop << 16;
next_glop %= 0xFFFF;
for (int i = 0; i < sizeof(pkey_handle)/sizeof(*pkey_handle); i++) {
if (pkey_handle[i].name_len > 0)
continue;
pkey_handle[i].pkey_handle.handle = i | glop;
pkey_handle[i].ks_hint = -1;
return &pkey_handle[i];
}
#endif
return NULL;
}
/*
* Check a caller-supplied handle. Must be in range, in use, and have
* the right glop. Returns slot pointer on success, NULL otherwise.
*/
static inline pkey_slot_t *find_handle(const hal_rpc_pkey_handle_t handle)
{
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
const int i = (int) (handle.handle & 0xFFFF);
if (i < sizeof(pkey_handle)/sizeof(*pkey_handle) && pkey_handle[i].pkey_handle.handle == handle.handle)
return &pkey_handle[i];
#endif
return NULL;
}
/*
* Construct a PKCS #1 DigestInfo object. This requires some (very
* basic) ASN.1 encoding, which we perform inline.
*/
static hal_error_t pkcs1_construct_digestinfo(const hal_rpc_hash_handle_t handle,
uint8_t *digest_info, size_t *digest_info_len, const size_t digest_info_max)
{
assert(digest_info != NULL && digest_info_len != NULL);
hal_digest_algorithm_t alg;
size_t len, alg_len;
hal_error_t err;
if ((err = hal_rpc_hash_get_algorithm(handle, &alg)) != HAL_OK ||
(err = hal_rpc_hash_get_digest_length(alg, &len)) != HAL_OK ||
(err = hal_rpc_hash_get_digest_algorithm_id(alg, NULL, &alg_len, 0)) != HAL_OK)
return err;
*digest_info_len = len + alg_len + 4;
if (*digest_info_len >= digest_info_max)
return HAL_ERROR_RESULT_TOO_LONG;
assert(*digest_info_len < 130);
uint8_t *d = digest_info;
*d++ = 0x30; /* SEQUENCE */
*d++ = (uint8_t) (*digest_info_len - 2);
if ((err = hal_rpc_hash_get_digest_algorithm_id(alg, d, NULL, alg_len)) != HAL_OK)
return err;
d += alg_len;
*d++ = 0x04; /* OCTET STRING */
*d++ = (uint8_t) len;
assert(digest_info + *digest_info_len == d + len);
return hal_rpc_hash_finalize(handle, d, len);
}
/*
* Pad an octet string with PKCS #1.5 padding for use with RSA.
*
* For the moment, this only handles type 01 encryption blocks, thus
* is only suitable for use with signature and verification. If and
* when we add support for encryption and decryption, this function
* should be extended to take an argument specifying the block type
* and include support for generating type 02 encryption blocks.
* Other than the block type code, the only difference is the padding
* value: for type 01 it's constant (0xFF), for type 02 it should be
* non-zero random bytes from the CSPRNG.
*
* We use memmove() instead of memcpy() so that the caller can
* construct the data to be padded in the same buffer.
*/
static hal_error_t pkcs1_5_pad(const uint8_t * const data, const size_t data_len,
uint8_t *block, const size_t block_len)
{
assert(data != NULL && block != NULL);
/*
* Congregation will now please turn to RFC 2313 8.1 as we
* construct a PKCS #1.5 type 01 encryption block.
*/
if (data_len > block_len - 11)
return HAL_ERROR_RESULT_TOO_LONG;
memmove(block + block_len - data_len, data, data_len);
block[0] = 0x00;
block[1] = 0x01;
/* This is where we'd use non-zero random bytes if constructing a type 02 block. */
memset(block + 2, 0xFF, block_len - 3 - data_len);
block[block_len - data_len - 1] = 0x00;
return HAL_OK;
}
/*
* Receive key from application, store it with supplied name, return a key handle.
*/
static hal_error_t load(const hal_rpc_client_handle_t client,
const hal_rpc_session_handle_t session,
hal_rpc_pkey_handle_t *pkey,
const hal_key_type_t type,
const hal_curve_name_t curve,
const uint8_t * const name, const size_t name_len,
const uint8_t * const der, const size_t der_len,
const hal_key_flags_t flags)
{
pkey_slot_t *slot;
hal_error_t err;
assert(sizeof(slot->name) >= name_len && pkey != NULL);
if ((slot = alloc_slot()) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
if ((err = hal_ks_store(type, curve, flags, name, name_len, der, der_len, &slot->ks_hint)) != HAL_OK)
return err;
memcpy(slot->name, name, name_len);
slot->client_handle = client;
slot->session_handle = session;
slot->type = type;
slot->curve = curve;
slot->flags = flags;
slot->name_len = name_len;
*pkey = slot->pkey_handle;
return HAL_OK;
}
/*
* Look up a key given its name, return a key handle.
*/
static hal_error_t find(const hal_rpc_client_handle_t client,
const hal_rpc_session_handle_t session,
hal_rpc_pkey_handle_t *pkey,
const hal_key_type_t type,
const uint8_t * const name, const size_t name_len)
{
pkey_slot_t *slot;
hal_error_t err;
assert(sizeof(slot->name) >= name_len && pkey != NULL);
if ((slot = alloc_slot()) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
if ((err = hal_ks_fetch(type, name, name_len, &slot->curve, &slot->flags, NULL, NULL, 0, &slot->ks_hint)) != HAL_OK)
return err;
memcpy(slot->name, name, name_len);
slot->client_handle = client;
slot->session_handle = session;
slot->type = type;
slot->name_len = name_len;
*pkey = slot->pkey_handle;
return HAL_OK;
}
/*
* Generate a new RSA key with supplied name, return a key handle.
*/
static hal_error_t generate_rsa(const hal_rpc_client_handle_t client,
const hal_rpc_session_handle_t session,
hal_rpc_pkey_handle_t *pkey,
const uint8_t * const name, const size_t name_len,
const unsigned key_length,
const uint8_t * const public_exponent, const size_t public_exponent_len,
const hal_key_flags_t flags)
{
pkey_slot_t *slot;
hal_error_t err;
assert(sizeof(slot->name) >= name_len && pkey != NULL && (key_length & 7) == 0);
if ((slot = alloc_slot()) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
uint8_t keybuf[hal_rsa_key_t_size];
hal_rsa_key_t *key = NULL;
if ((err = hal_rsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), key_length / 8,
public_exponent, public_exponent_len)) != HAL_OK)
return err;
uint8_t der[hal_rsa_key_to_der_len(key)];
size_t der_len;
if ((err = hal_rsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
err = hal_ks_store(HAL_KEY_TYPE_RSA_PRIVATE, HAL_CURVE_NONE, flags,
name, name_len, der, der_len, &slot->ks_hint);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
if (err != HAL_OK)
return err;
memcpy(slot->name, name, name_len);
slot->client_handle = client;
slot->session_handle = session;
slot->type = HAL_KEY_TYPE_RSA_PRIVATE;
slot->curve = HAL_CURVE_NONE;
slot->flags = flags;
slot->name_len = name_len;
*pkey = slot->pkey_handle;
return HAL_OK;
}
/*
* Generate a new EC key with supplied name, return a key handle.
* At the moment, EC key == ECDSA key, but this is subject to change.
*/
static hal_error_t generate_ec(const hal_rpc_client_handle_t client,
const hal_rpc_session_handle_t session,
hal_rpc_pkey_handle_t *pkey,
const uint8_t * const name, const size_t name_len,
const hal_curve_name_t curve,
const hal_key_flags_t flags)
{
pkey_slot_t *slot;
hal_error_t err;
assert(sizeof(slot->name) >= name_len && pkey != NULL);
if ((slot = alloc_slot()) == NULL)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
uint8_t keybuf[hal_ecdsa_key_t_size];
hal_ecdsa_key_t *key = NULL;
if ((err = hal_ecdsa_key_gen(NULL, &key, keybuf, sizeof(keybuf), curve)) != HAL_OK)
return err;
uint8_t der[hal_ecdsa_key_to_der_len(key)];
size_t der_len;
if ((err = hal_ecdsa_private_key_to_der(key, der, &der_len, sizeof(der))) == HAL_OK)
err = hal_ks_store(HAL_KEY_TYPE_EC_PRIVATE, curve, flags,
name, name_len, der, der_len, &slot->ks_hint);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
if (err != HAL_OK)
return err;
memcpy(slot->name, name, name_len);
slot->client_handle = client;
slot->session_handle = session;
slot->type = HAL_KEY_TYPE_EC_PRIVATE;
slot->curve = curve;
slot->flags = flags;
slot->name_len = name_len;
*pkey = slot->pkey_handle;
return HAL_OK;
}
/*
* Discard key handle, leaving key intact.
*/
static hal_error_t close(const hal_rpc_pkey_handle_t pkey)
{
pkey_slot_t *slot;
if ((slot = find_handle(pkey)) == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
memset(slot, 0, sizeof(*slot));
return HAL_OK;
}
/*
* Delete a key from the store, given its key handle.
*/
static hal_error_t delete(const hal_rpc_pkey_handle_t pkey)
{
pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_error_t err = hal_ks_delete(slot->type, slot->name, slot->name_len, &slot->ks_hint);
if (err == HAL_OK || err == HAL_ERROR_KEY_NOT_FOUND)
memset(slot, 0, sizeof(*slot));
return err;
}
/*
* Get type of key associated with handle.
*/
static hal_error_t get_key_type(const hal_rpc_pkey_handle_t pkey,
hal_key_type_t *type)
{
if (type == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
*type = slot->type;
return HAL_OK;
}
/*
* Get flags of key associated with handle.
*/
static hal_error_t get_key_flags(const hal_rpc_pkey_handle_t pkey,
hal_key_flags_t *flags)
{
if (flags == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
*flags = slot->flags;
return HAL_OK;
}
/*
* Get length of public key associated with handle.
*/
static size_t get_public_key_len(const hal_rpc_pkey_handle_t pkey)
{
return 0;
}
/*
* Get public key associated with handle.
*/
static hal_error_t get_public_key(const hal_rpc_pkey_handle_t pkey,
uint8_t *der, size_t *der_len, const size_t der_len_max)
{
/*
* Still missing some of the public key format ASN.1 stuff, apparently. Feh.
*/
return HAL_ERROR_IMPOSSIBLE;
#warning get_public_key() not implemented
}
/*
* Sign something using private key associated with handle.
*
* RSA has enough quirks that it's simplest to split this out into
* algorithm-specific functions.
*/
static hal_error_t sign_rsa(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_rpc_hash_handle_t hash,
const uint8_t * input, size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
hal_rsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len != NULL);
assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
if ((err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK ||
(err = hal_rsa_key_get_modulus(key, NULL, signature_len, 0)) != HAL_OK)
return err;
if (*signature_len > signature_max)
return HAL_ERROR_RESULT_TOO_LONG;
if (input == NULL) {
if ((err = pkcs1_construct_digestinfo(hash, signature, &input_len, *signature_len)) != HAL_OK)
return err;
input = signature;
}
if ((err = pkcs1_5_pad(input, input_len, signature, *signature_len)) != HAL_OK ||
(err = hal_rsa_decrypt(NULL, key, signature, *signature_len, signature, *signature_len)) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t sign_ecdsa(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_rpc_hash_handle_t hash,
const uint8_t * input, size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
hal_ecdsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len != NULL);
assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
if ((err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
return err;
if (input == NULL) {
hal_digest_algorithm_t alg;
if ((err = hal_rpc_hash_get_algorithm(hash, &alg)) != HAL_OK ||
(err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK)
return err;
if (input_len < signature_max)
return HAL_ERROR_RESULT_TOO_LONG;
if ((err = hal_rpc_hash_finalize(hash, signature, input_len)) != HAL_OK)
return err;
input = signature;
}
if ((err = hal_ecdsa_sign(NULL, key, input, input_len, signature, signature_len, signature_max)) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t sign(const hal_rpc_session_handle_t session,
const hal_rpc_pkey_handle_t pkey,
const hal_rpc_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max)
{
pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_error_t (*signer)(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_rpc_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max);
switch (slot->type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
signer = sign_rsa;
break;
case HAL_KEY_TYPE_EC_PRIVATE:
signer = sign_ecdsa;
break;
default:
return HAL_ERROR_UNSUPPORTED_KEY;
}
uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
hal_error_t err;
err = hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL, der, &der_len, sizeof(der), &slot->ks_hint);
if (err == HAL_OK)
err = signer(keybuf, sizeof(keybuf), der, der_len, hash, input, input_len, signature, signature_len, signature_max);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
return err;
}
/*
* Verify something using private key associated with handle.
*
* RSA has enough quirks that it's simplest to split this out into
* algorithm-specific functions.
*/
static hal_error_t verify_rsa(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_rpc_hash_handle_t hash,
const uint8_t * input, size_t input_len,
const uint8_t * const signature, const size_t signature_len)
{
uint8_t expected[signature_len], received[signature_len];
hal_rsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len > 0);
assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
if ((err = hal_rsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
return err;
if (input == NULL) {
if ((err = pkcs1_construct_digestinfo(hash, expected, &input_len, sizeof(expected))) != HAL_OK)
return err;
input = expected;
}
if ((err = pkcs1_5_pad(input, input_len, expected, sizeof(expected))) != HAL_OK ||
(err = hal_rsa_encrypt(NULL, key, signature, signature_len, received, sizeof(received))) != HAL_OK)
return err;
unsigned diff = 0;
for (int i = 0; i < signature_len; i++)
diff |= expected[i] ^ received[i];
if (diff != 0)
return HAL_ERROR_INVALID_SIGNATURE;
return HAL_OK;
}
static hal_error_t verify_ecdsa(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_rpc_hash_handle_t hash,
const uint8_t * input, size_t input_len,
const uint8_t * const signature, const size_t signature_len)
{
uint8_t digest[signature_len];
hal_ecdsa_key_t *key = NULL;
hal_error_t err;
assert(signature != NULL && signature_len > 0);
assert((hash.handle == hal_rpc_hash_handle_none.handle) != (input == NULL || input_len == 0));
if ((err = hal_ecdsa_private_key_from_der(&key, keybuf, keybuf_len, der, der_len)) != HAL_OK)
return err;
if (input == NULL) {
hal_digest_algorithm_t alg;
if ((err = hal_rpc_hash_get_algorithm(hash, &alg)) != HAL_OK ||
(err = hal_rpc_hash_get_digest_length(alg, &input_len)) != HAL_OK ||
(err = hal_rpc_hash_finalize(hash, digest, sizeof(digest))) != HAL_OK)
return err;
input = digest;
}
if ((err = hal_ecdsa_verify(NULL, key, input, input_len, signature, signature_len)) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t verify(const hal_rpc_session_handle_t session,
const hal_rpc_pkey_handle_t pkey,
const hal_rpc_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
const uint8_t * const signature, const size_t signature_len)
{
pkey_slot_t *slot = find_handle(pkey);
if (slot == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
hal_error_t (*verifier)(uint8_t *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len,
const hal_rpc_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
const uint8_t * const signature, const size_t signature_len);
switch (slot->type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
verifier = verify_rsa;
break;
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_EC_PUBLIC:
verifier = verify_ecdsa;
break;
default:
return HAL_ERROR_UNSUPPORTED_KEY;
}
uint8_t keybuf[hal_rsa_key_t_size > hal_ecdsa_key_t_size ? hal_rsa_key_t_size : hal_ecdsa_key_t_size];
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
hal_error_t err;
err = hal_ks_fetch(slot->type, slot->name, slot->name_len, NULL, NULL, der, &der_len, sizeof(der), &slot->ks_hint);
if (err == HAL_OK)
err = verifier(keybuf, sizeof(keybuf), der, der_len, hash, input, input_len, signature, signature_len);
memset(keybuf, 0, sizeof(keybuf));
memset(der, 0, sizeof(der));
return err;
}
/*
* List keys in the key store.
*/
static hal_error_t list(hal_rpc_pkey_key_info_t *result,
unsigned *result_len,
const unsigned result_max)
{
return hal_ks_list(result, result_len, result_max);
}
const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch = {
load, find, generate_rsa, generate_ec, close, delete,
get_key_type, get_key_flags, get_public_key_len, get_public_key,
sign, verify, list
};
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/