aboutsummaryrefslogblamecommitdiff
path: root/rpc_misc.c
blob: 18f4083086c35fa44bc548ab2d3d8356916e6449 (plain) (tree)







































                                                                           





                                                 

























                                                                      

   




                             







                                        



































                                                                                                       













                                                                                   
                                                                                              

                                                                              
                                                                                           








                                       

                                            
                                                    



                                               



                












                                                                                   

                                                           





                                            

 









                                                                        































                                                                                                         
                                                             






               






                        
/*
 * rpc_misc.c
 * ----------
 * RPC interface to TRNG and PIN functions
 *
 * Authors: Rob Austein
 * Copyright (c) 2015, NORDUnet A/S All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>

#include "hal.h"
#include "hal_internal.h"

static hal_error_t get_version(uint32_t *version)
{
  *version = RPC_VERSION;
  return HAL_OK;
}

static hal_error_t get_random(void *buffer, const size_t length)
{
  assert(buffer != NULL && length > 0);

  return hal_get_random(NULL, buffer, length);
}

/*
 * PINs, salt, and iteration count live in the keystore.
 *
 * We also need a client table in conventional memory (here, probably)
 * to record login status.
 *
 * The USER and SO PINs correspond to PKCS #11.
 *
 * The WHEEL PIN is the one that's allowed to change the SO PIN.
 *
 * It's a bit unclear how we should manage changes to the WHEEL PIN.
 * Implementing a factory default would be easy enough (just
 * pre-compute and compile in a const hal_ks_pin_t), question is
 * whether doing so provides anything useful.  Certainly adds no real
 * security, question is whether it would help prevent accidently
 * bricking the HSM right out of the shrink wrap.
 *
 * More interesting question is whether we should ever allow the WHEEL
 * PIN to be changed a second time without toasting the keystore.
 */

typedef struct {
  hal_client_handle_t handle;
  hal_user_t logged_in;
} client_slot_t;

#ifndef HAL_PIN_MINIMUM_ITERATIONS
#define HAL_PIN_MINIMUM_ITERATIONS 10000
#endif

#ifndef HAL_PIN_DEFAULT_ITERATIONS
#define HAL_PIN_DEFAULT_ITERATIONS 20000
#endif

#ifndef HAL_STATIC_CLIENT_STATE_BLOCKS
#define HAL_STATIC_CLIENT_STATE_BLOCKS	10
#endif

#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
static client_slot_t client_handle[HAL_STATIC_CLIENT_STATE_BLOCKS];
#endif

/*
 * Client handles are supplied by the application, we don't get to
 * pick them, we just store them and associate a login state with
 * them.  HAL_USER_NONE indicates an empty slot in the table.
 */

static inline client_slot_t *alloc_slot(void)
{
#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
  for (int i = 0; i < sizeof(client_handle)/sizeof(*client_handle); i++)
    if (client_handle[i].logged_in == HAL_USER_NONE)
      return &client_handle[i];
#endif

  return NULL;
}

static inline client_slot_t *find_handle(const hal_client_handle_t handle)
{
#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
  for (int i = 0; i < sizeof(client_handle)/sizeof(*client_handle); i++)
    if (client_handle[i].logged_in != HAL_USER_NONE && client_handle[i].handle.handle == handle.handle)
      return &client_handle[i];
#endif

  return NULL;
}

static hal_error_t login(const hal_client_handle_t client,
                         const hal_user_t user,
                         const char * const pin, const size_t pin_len)
{
  assert(pin != NULL && pin_len != 0);
  assert(user == HAL_USER_NORMAL || user == HAL_USER_SO || user == HAL_USER_WHEEL);

  const hal_ks_pin_t *p;
  hal_error_t err;

  if ((err = hal_ks_get_pin(user, &p)) != HAL_OK)
    return err;

  uint8_t buf[sizeof(p->pin)];
  const uint32_t iterations = p->iterations == 0 ? HAL_PIN_DEFAULT_ITERATIONS : p->iterations;

  if ((err = hal_pbkdf2(NULL, hal_hash_sha256, (const uint8_t *) pin, pin_len,
                        p->salt, sizeof(p->salt), buf, sizeof(buf), iterations)) != HAL_OK)
    return err;

  unsigned diff = 0;
  for (int i = 0; i < sizeof(buf); i++)
    diff |= buf[i] ^ p->pin[i];

  if (diff != 0)
    return HAL_ERROR_PIN_INCORRECT;

  client_slot_t *slot = find_handle(client);

  if (slot == NULL && (slot = alloc_slot()) == NULL)
    return HAL_ERROR_NO_CLIENT_SLOTS_AVAILABLE;

  slot->handle = client;
  slot->logged_in = user;

  return HAL_OK;
}

static hal_error_t is_logged_in(const hal_client_handle_t client,
                                const hal_user_t user)
{
  assert(user == HAL_USER_NORMAL || user == HAL_USER_SO || user == HAL_USER_WHEEL);

  client_slot_t *slot = find_handle(client);

  if (slot == NULL || slot->logged_in != user)
    return HAL_ERROR_FORBIDDEN;

  return HAL_OK;
}

static hal_error_t logout(const hal_client_handle_t client)
{
  client_slot_t *slot = find_handle(client);

  if (slot != NULL)
    slot->logged_in = HAL_USER_NONE;

  return HAL_OK;
}

static hal_error_t logout_all(void)
{
#if HAL_STATIC_CLIENT_STATE_BLOCKS > 0
  for (int i = 0; i < sizeof(client_handle)/sizeof(*client_handle); i++)
    client_handle[i].logged_in = HAL_USER_NONE;
#endif

  return HAL_OK;
}

static hal_error_t set_pin(const hal_client_handle_t client,
                           const hal_user_t user,
                           const char * const newpin, const size_t newpin_len)
{
  assert(newpin != NULL && newpin_len >= hal_rpc_min_pin_length && newpin_len <= hal_rpc_max_pin_length);

  if ((user != HAL_USER_NORMAL || is_logged_in(client, HAL_USER_SO) != HAL_OK) &&
      is_logged_in(client, HAL_USER_WHEEL) != HAL_OK)
    return HAL_ERROR_FORBIDDEN;

  const hal_ks_pin_t *pp;
  hal_error_t err;

  if ((err = hal_ks_get_pin(user, &pp)) != HAL_OK)
    return err;

  hal_ks_pin_t p = *pp;

  if (p.iterations == 0)
    p.iterations = HAL_PIN_DEFAULT_ITERATIONS;

  if ((err = hal_get_random(NULL, p.salt, sizeof(p.salt)))      != HAL_OK ||
      (err = hal_pbkdf2(NULL, hal_hash_sha256,
                        (const uint8_t *) newpin, newpin_len,
                        p.salt, sizeof(p.salt),
                        p.pin,  sizeof(p.pin), p.iterations))   != HAL_OK ||
      (err = hal_ks_set_pin(user, &p))                          != HAL_OK)
    return err;

  return HAL_OK;
}

const hal_rpc_misc_dispatch_t hal_rpc_local_misc_dispatch = {
  set_pin,
  login,
  logout,
  logout_all,
  is_logged_in,
  get_random,
  get_version
};

/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */
unsigned int wp : 1; unsigned int psz : 4; }; struct EIM_CS_GCR2 { unsigned int adh : 2; unsigned int reserved_3_2 : 2; unsigned int daps : 4; unsigned int dae : 1; unsigned int dap : 1; unsigned int reserved_11_10 : 2; unsigned int mux16_byp_grant : 1; unsigned int reserved_31_13 : 19; }; struct EIM_CS_RCR1 { unsigned int rcsn : 3; unsigned int reserved_3 : 1; unsigned int rcsa : 3; unsigned int reserved_7 : 1; unsigned int oen : 3; unsigned int reserved_11 : 1; unsigned int oea : 3; unsigned int reserved_15 : 1; unsigned int radvn : 3; unsigned int ral : 1; unsigned int radva : 3; unsigned int reserved_23 : 1; unsigned int rwsc : 6; unsigned int reserved_31_30 : 2; }; struct EIM_CS_RCR2 { unsigned int rben : 3; unsigned int rbe : 1; unsigned int rbea : 3; unsigned int reserved_7 : 1; unsigned int rl : 2; unsigned int reserved_11_10 : 2; unsigned int pat : 3; unsigned int apr : 1; unsigned int reserved_31_16 : 16; }; struct EIM_CS_WCR1 { unsigned int wcsn : 3; unsigned int wcsa : 3; unsigned int wen : 3; unsigned int wea : 3; unsigned int wben : 3; unsigned int wbea : 3; unsigned int wadvn : 3; unsigned int wadva : 3; unsigned int wwsc : 6; unsigned int wbed : 1; unsigned int wal : 1; }; struct EIM_CS_WCR2 { unsigned int wbcdd : 1; unsigned int reserved_31_1 : 31; }; struct EIM_WCR { unsigned int bcm : 1; unsigned int gbcd : 2; unsigned int reserved_3 : 1; unsigned int inten : 1; unsigned int intpol : 1; unsigned int reserved_7_6 : 2; unsigned int wdog_en : 1; unsigned int wdog_limit : 2; unsigned int reserved_31_11 : 21; }; struct EIM_WIAR { unsigned int ips_req : 1; unsigned int ips_ack : 1; unsigned int irq : 1; unsigned int errst : 1; unsigned int aclk_en : 1; unsigned int reserved_31_5 : 27; }; struct EIM_EAR { unsigned int error_addr : 32; }; //------------------------------------------------------------------------------ // Variables //------------------------------------------------------------------------------ static long mem_page_size = 0; static int mem_dev_fd = -1; static void * mem_map_ptr = MAP_FAILED; static off_t mem_base_addr = 0; //------------------------------------------------------------------------------ // Prototypes //------------------------------------------------------------------------------ static void _eim_setup_iomuxc (void); static void _eim_setup_ccm (void); static void _eim_setup_eim (void); static void _eim_cleanup (void); static off_t _eim_calc_offset (off_t); static void _eim_remap_mem (off_t); //------------------------------------------------------------------------------ // Set up EIM bus. Returns 0 on success, -1 on failure. //------------------------------------------------------------------------------ int eim_setup(void) { // register cleanup function if (atexit(_eim_cleanup) != 0) { fprintf(stderr, "ERROR: atexit() failed.\n"); return -1; } // determine memory page size to use in mmap() mem_page_size = sysconf(_SC_PAGESIZE); if (mem_page_size < 1) { fprintf(stderr, "ERROR: sysconf(_SC_PAGESIZE) == %ld\n", mem_page_size); return -1; } // try to open memory device mem_dev_fd = open(MEMORY_DEVICE, O_RDWR | O_SYNC); if (mem_dev_fd == -1) { fprintf(stderr, "ERROR: open(%s) failed.\n", MEMORY_DEVICE); return -1; } // configure IOMUXC _eim_setup_iomuxc(); // configure Clock Controller Module _eim_setup_ccm(); /* We need to properly configure EIM mode and all the corresponding parameters. * That's a lot of code, let's do it now. */ _eim_setup_eim(); // done return 0; } //------------------------------------------------------------------------------ // Shut down EIM bus. This is called automatically on exit(). //------------------------------------------------------------------------------ static void _eim_cleanup(void) { // unmap memory if needed if (mem_map_ptr != MAP_FAILED) if (munmap(mem_map_ptr, mem_page_size) != 0) fprintf(stderr, "WARNING: munmap() failed.\n"); // close memory device if needed if (mem_dev_fd != -1) if (close(mem_dev_fd) != 0) fprintf(stderr, "WARNING: close() failed.\n"); } //------------------------------------------------------------------------------ // Several blocks in the CPU have common pins. We use the I/O MUX Controller // to configure what block will actually use I/O pins. We wait for the EIM // module to be able to communicate with the on-board FPGA. //------------------------------------------------------------------------------ static void _eim_setup_iomuxc(void) { // create structures struct IOMUXC_SW_MUX_CTL_PAD_EIM reg_mux; // mux control register struct IOMUXC_SW_PAD_CTL_PAD_EIM reg_pad; // pad control register // setup mux control register reg_mux.mux_mode = IOMUXC_MUX_MODE_ALT0; // ALT0 mode must be used for EIM reg_mux.sion = 0; // forced input not needed reg_mux.reserved_3 = 0; // must be 0 reg_mux.reserved_31_5 = 0; // must be 0 // setup pad control register reg_pad.sre = IOMUXC_PAD_CTL_SRE_FAST; // fast slew rate reg_pad.dse = IOMUXC_PAD_CTL_DSE_33_OHM; // highest drive strength reg_pad.speed = IOMUXC_PAD_CTL_SPEED_MEDIUM_10; // medium speed reg_pad.ode = IOMUXC_PAD_CTL_ODE_DISABLED; // open drain not needed reg_pad.pke = IOMUXC_PAD_CTL_PKE_DISABLED; // neither pull nor keeper are needed reg_pad.pue = IOMUXC_PAD_CTL_PUE_PULL; // doesn't matter actually, because PKE is disabled reg_pad.pus = IOMUXC_PAD_CTL_PUS_100K_OHM_PU; // doesn't matter actually, because PKE is disabled reg_pad.hys = IOMUXC_PAD_CTL_HYS_DISABLED; // use CMOS, not Schmitt trigger input reg_pad.reserved_2_1 = 0; // must be 0 reg_pad.reserved_10_8 = 0; // must be 0 reg_pad.reserved_31_17 = 0; // must be 0 // all the pins must be configured to use the same ALT0 mode eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_CS0_B, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_OE_B, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_RW, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_LBA_B, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD00, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD01, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD02, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD03, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD04, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD05, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD06, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD07, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD08, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD09, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD10, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD11, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD12, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD13, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD14, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_AD15, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_WAIT_B, (uint32_t *)&reg_mux); eim_write_32(IOMUXC_SW_MUX_CTL_PAD_EIM_BCLK, (uint32_t *)&reg_mux); // we need to configure all the I/O pads too eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_CS0_B, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_OE_B, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_RW, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_LBA_B, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD00, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD01, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD02, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD03, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD04, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD05, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD06, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD07, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD08, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD09, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD10, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD11, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD12, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD13, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD14, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_AD15, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_WAIT_B, (uint32_t *)&reg_pad); eim_write_32(IOMUXC_SW_PAD_CTL_PAD_EIM_BCLK, (uint32_t *)&reg_pad); } //------------------------------------------------------------------------------ // Configure Clock Controller Module to enable clocking of EIM block. //------------------------------------------------------------------------------ static void _eim_setup_ccm(void) { // create structure struct CCM_CCGR6 ccm_ccgr6; // read register eim_read_32(CCM_CCGR6, (uint32_t *)&ccm_ccgr6); // modify register ccm_ccgr6.cg0_usboh3 = CCM_CGR_ON_EXCEPT_STOP; ccm_ccgr6.cg1_usdhc1 = CCM_CGR_OFF; ccm_ccgr6.cg2_usdhc2 = CCM_CGR_ON_EXCEPT_STOP; ccm_ccgr6.cg3_usdhc3 = CCM_CGR_ON_EXCEPT_STOP; ccm_ccgr6.cg3_usdhc4 = CCM_CGR_OFF; ccm_ccgr6.cg5_eim_slow = CCM_CGR_ON_EXCEPT_STOP; ccm_ccgr6.cg6_vdoaxiclk = CCM_CGR_OFF; ccm_ccgr6.cg7_vpu = CCM_CGR_OFF; ccm_ccgr6.cg8_reserved = 0; ccm_ccgr6.cg9_reserved = 0; ccm_ccgr6.cg10_reserved = 0; ccm_ccgr6.cg11_reserved = 0; ccm_ccgr6.cg12_reserved = 0; ccm_ccgr6.cg13_reserved = 0; ccm_ccgr6.cg14_reserved = 0; ccm_ccgr6.cg15_reserved = 0; // write register eim_write_32(CCM_CCGR6, (uint32_t *)&ccm_ccgr6); } //------------------------------------------------------------------------------ // Configure EIM mode and all the corresponding parameters. That's a lot of code. //------------------------------------------------------------------------------ static void _eim_setup_eim(void) { // create structures struct EIM_CS_GCR1 gcr1; struct EIM_CS_GCR2 gcr2; struct EIM_CS_RCR1 rcr1; struct EIM_CS_RCR2 rcr2; struct EIM_CS_WCR1 wcr1; struct EIM_CS_WCR2 wcr2; struct EIM_WCR wcr; struct EIM_WIAR wiar; struct EIM_EAR ear; // read all the registers eim_read_32(EIM_CS0GCR1, (uint32_t *)&gcr1); eim_read_32(EIM_CS0GCR2, (uint32_t *)&gcr2); eim_read_32(EIM_CS0RCR1, (uint32_t *)&rcr1); eim_read_32(EIM_CS0RCR2, (uint32_t *)&rcr2); eim_read_32(EIM_CS0WCR1, (uint32_t *)&wcr1); eim_read_32(EIM_CS0WCR2, (uint32_t *)&wcr2); eim_read_32(EIM_WCR, (uint32_t *)&wcr); eim_read_32(EIM_WIAR, (uint32_t *)&wiar); eim_read_32(EIM_EAR, (uint32_t *)&ear); // manipulate registers as needed gcr1.csen = 1; // chip select is enabled gcr1.swr = 1; // write is sync gcr1.srd = 1; // read is sync gcr1.mum = 1; // address and data are multiplexed gcr1.wfl = 0; // write latency is not fixed gcr1.rfl = 0; // read latency is not fixed gcr1.cre = 0; // CRE signal not needed //gcr1.crep = x; // don't care, CRE not used gcr1.bl = 4; // burst length gcr1.wc = 0; // write is not continuous gcr1.bcd = 3; // BCLK divisor is 3+1=4 gcr1.bcs = 1; // delay from ~CS to BCLK is 1 cycle gcr1.dsz = 1; // 16 bits per databeat at DATA[15:0] gcr1.sp = 0; // supervisor protection is disabled gcr1.csrec = 1; // ~CS recovery is 1 cycle gcr1.aus = 1; // address is not shifted gcr1.gbc = 1; // ~CS gap is 1 cycle gcr1.wp = 0; // write protection is not enabled //gcr1.psz = x; // don't care, page mode is not used gcr2.adh = 0; // address hold duration is 1 cycle //gcr2.daps = x; // don't care, DTACK is not used gcr2.dae = 0; // DTACK is not used //gcr2.dap = x; // don't care, DTACK is not used gcr2.mux16_byp_grant= 1; // enable grant mechanism gcr2.reserved_3_2 = 0; // must be 0 gcr2.reserved_11_10 = 0; // must be 0 gcr2.reserved_31_13 = 0; // must be 0 //rcr1.rcsn = x; // don't care in sync mode rcr1.rcsa = 0; // no delay for ~CS needed //rcr1.oen = x; // don't care in sync mode rcr1.oea = 0; // no delay for ~OE needed rcr1.radvn = 0; // no delay for ~LBA needed rcr1.ral = 0; // clear ~LBA when needed rcr1.radva = 0; // no delay for ~LBA needed rcr1.rwsc = 1; // one wait state rcr1.reserved_3 = 0; // must be 0 rcr1.reserved_7 = 0; // must be 0 rcr1.reserved_11 = 0; // must be 0 rcr1.reserved_15 = 0; // must be 0 rcr1.reserved_23 = 0; // must be 0 rcr1.reserved_31_30 = 0; // must be 0 //rcr2.rben = x; // don't care in sync mode rcr2.rbe = 0; // BE is disabled //rcr2.rbea = x; // don't care when BE is not used rcr2.rl = 0; // read latency is 0 //rcr2.pat = x; // don't care when page read is not used rcr2.apr = 0; // page read mode is not used rcr2.reserved_7 = 0; // must be 0 rcr2.reserved_11_10 = 0; // must be 0 rcr2.reserved_31_16 = 0; // must be 0 //wcr1.wcsn = x; // don't care in sync mode wcr1.wcsa = 0; // no delay for ~CS needed //wcr1.wen = x; // don't care in sync mode wcr1.wea = 0; // no delay for ~WR_N needed //wcr1.wben = x; // don't care in sync mode //wcr1.wbea = x; // don't care in sync mode wcr1.wadvn = 0; // no delay for ~LBA needed wcr1.wadva = 0; // no delay for ~LBA needed wcr1.wwsc = 1; // no wait state in needed wcr1.wbed = 1; // BE is disabled wcr1.wal = 0; // clear ~LBA when needed wcr2.wbcdd = 0; // write clock division is not needed wcr2.reserved_31_1 = 0; // must be 0 wcr.bcm = 0; // clock is only active during access //wcr.gbcd = x; // don't care when BCM=0 wcr.inten = 0; // interrupt is not used //wcr.intpol = x; // don't care when interrupt is not used wcr.wdog_en = 1; // watchdog is enabled wcr.wdog_limit = 00; // timeout is 128 BCLK cycles wcr.reserved_3 = 0; // must be 0 wcr.reserved_7_6 = 0; // must be 0 wcr.reserved_31_11 = 0; // must be 0 wiar.ips_req = 0; // IPS not needed wiar.ips_ack = 0; // IPS not needed //wiar.irq = x; // don't touch //wiar.errst = x; // don't touch wiar.aclk_en = 1; // clock is enabled wiar.reserved_31_5 = 0; // must be 0 //ear.error_addr = x; // read-only // write modified registers eim_write_32(EIM_CS0GCR1, (uint32_t *)&gcr1); eim_write_32(EIM_CS0GCR2, (uint32_t *)&gcr2); eim_write_32(EIM_CS0RCR1, (uint32_t *)&rcr1); eim_write_32(EIM_CS0RCR2, (uint32_t *)&rcr2); eim_write_32(EIM_CS0WCR1, (uint32_t *)&wcr1); eim_write_32(EIM_CS0WCR2, (uint32_t *)&wcr2); eim_write_32(EIM_WCR, (uint32_t *)&wcr); eim_write_32(EIM_WIAR, (uint32_t *)&wiar); /* eim_write_32(EIM_EAR, (uint32_t *)&ear);*/ } //------------------------------------------------------------------------------ // Write a 32-bit word to EIM. // If EIM is not set up correctly, this will abort with a bus error. //------------------------------------------------------------------------------ void eim_write_32(off_t offset, uint32_t *pvalue) { // calculate memory offset uint32_t *ptr = (uint32_t *)_eim_calc_offset(offset); // write data to memory memcpy(ptr, pvalue, sizeof(uint32_t)); } //------------------------------------------------------------------------------ // Read a 32-bit word from EIM. // If EIM is not set up correctly, this will abort with a bus error. //------------------------------------------------------------------------------ void eim_read_32(off_t offset, uint32_t *pvalue) { // calculate memory offset uint32_t *ptr = (uint32_t *)_eim_calc_offset(offset); // read data from memory memcpy(pvalue, ptr, sizeof(uint32_t)); } //------------------------------------------------------------------------------ // Calculate an offset into the currently-mapped EIM page. //------------------------------------------------------------------------------ static off_t _eim_calc_offset(off_t offset) { // make sure that memory is mapped if (mem_map_ptr == MAP_FAILED) _eim_remap_mem(offset); // calculate starting and ending addresses of currently mapped page off_t offset_low = mem_base_addr; off_t offset_high = mem_base_addr + (mem_page_size - 1); // check that offset is in currently mapped page, remap new page otherwise if ((offset < offset_low) || (offset > offset_high)) _eim_remap_mem(offset); // calculate pointer return (off_t)mem_map_ptr + (offset - mem_base_addr); } //------------------------------------------------------------------------------ // Map in a new EIM page. //------------------------------------------------------------------------------ static void _eim_remap_mem(off_t offset) { // unmap old memory page if needed if (mem_map_ptr != MAP_FAILED) { if (munmap(mem_map_ptr, mem_page_size) != 0) { fprintf(stderr, "ERROR: munmap() failed.\n"); exit(EXIT_FAILURE); } } // calculate starting address of new page while (offset % mem_page_size) offset--; // try to map new memory page mem_map_ptr = mmap(NULL, mem_page_size, PROT_READ | PROT_WRITE, MAP_SHARED, mem_dev_fd, offset); if (mem_map_ptr == MAP_FAILED) { fprintf(stderr, "ERROR: mmap() failed.\n"); exit(EXIT_FAILURE); } // save last mapped page address mem_base_addr = offset; } //------------------------------------------------------------------------------ // End-of-File //------------------------------------------------------------------------------ /* * Local variables: * indent-tabs-mode: nil * End: */