/*
* ks_volatile.c
* -------------
* Keystore implementation in normal volatile internal memory.
*
* NB: This is only suitable for cases where you do not want the keystore
* to survive library exit, eg, for storing PKCS #11 session keys.
*
* Authors: Rob Austein
* Copyright (c) 2015-2016, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#define KEK_LENGTH (bitsToBytes(256))
#ifndef STATIC_KS_VOLATILE_SLOTS
#define STATIC_KS_VOLATILE_SLOTS HAL_STATIC_PKEY_STATE_BLOCKS
#endif
#ifndef STATIC_KS_VOLATILE_ATTRIBUTE_SPACE
#define STATIC_KS_VOLATILE_ATTRIBUTE_SPACE 4096
#endif
/*
* In-memory keystore database. This should also be usable for
* mmap(), if and when we get around to rewriting that driver (and in
* which case this driver probably ought to be renamed ks_memory).
*/
typedef struct {
hal_key_type_t type;
hal_curve_name_t curve;
hal_key_flags_t flags;
hal_client_handle_t client;
hal_session_handle_t session;
size_t der_len;
unsigned attributes_len;
uint8_t der[HAL_KS_WRAPPED_KEYSIZE + STATIC_KS_VOLATILE_ATTRIBUTE_SPACE];
} ks_key_t;
typedef struct {
hal_ks_index_t ksi;
ks_key_t *keys;
} db_t;
/*
* "Subclass" (well, what one can do in C) of hal_ks_t. This is
* separate from db_t primarily to simplify things like rewriting the
* old ks_mmap driver to piggy-back on the ks_volatile driver: we
* wouldn't want the hal_ks_t into the mmap()ed file.
*/
typedef struct {
hal_ks_t ks; /* Must be first */
db_t *db; /* Which memory-based keystore database */
int per_session; /* Whether objects are per-session */
} ks_t;
/*
* If we also supported mmap, there would be a separate definition for
* HAL_KS_MMAP_SLOTS above, and the bulk of the code would be under a
* conditional testing whether either HAL_KS_*_SLOTS were nonzero.
*/
#if STATIC_KS_VOLATILE_SLOTS > 0
static ks_t volatile_ks;
static inline ks_t *ks_to_ksv(hal_ks_t *ks)
{
return (ks_t *) ks;
}
/*
* Check whether the current session can see a particular key. One
* might expect this to be based on whether the session matches, and
* indeed it would be in a sane world, but in the world of PKCS #11,
* keys belong to sessions, are visible to other sessions, and may
* even be modifiable by other sessions, but softly and silently
* vanish away when the original creating session is destroyed.
*
* In our terms, this means that visibility of session objects is
* determined only by the client handle, so taking the session handle
* as an argument here isn't really necessary, but we've flipflopped
* on that enough times that at least for now I'd prefer to leave the
* session handle here and not have to revise all the RPC calls again.
* Remove it at some later date and redo the RPC calls if we manage to
* avoid revising this yet again.
*/
static inline int key_visible_to_session(const ks_t * const ksv,
const hal_client_handle_t client,
const hal_session_handle_t session,
const ks_key_t * const k)
{
return !ksv->per_session || client.handle == HAL_HANDLE_NONE || k->client.handle == client.handle;
}
static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
{
if (mem == NULL || *mem == NULL || len == NULL || size > *len)
return NULL;
void *ret = *mem;
*mem += size;
*len -= size;
return ret;
}
static hal_error_t ks_init(const hal_ks_driver_t * const driver,
const int per_session,
ks_t *ksv,
uint8_t *mem,
size_t len)
{
if (ksv == NULL || mem == NULL)
return HAL_ERROR_IMPOSSIBLE;
memset(ksv, 0, sizeof(*ksv));
memset(mem, 0, len);
ksv->ks.driver = driver;
ksv->per_session = per_session;
ksv->db = gnaw(&mem, &len, sizeof(*ksv->db));
ksv->db->ksi.index = gnaw(&mem, &len, sizeof(*ksv->db->ksi.index) * STATIC_KS_VOLATILE_SLOTS);
ksv->db->ksi.names = gnaw(&mem, &len, sizeof(*ksv->db->ksi.names) * STATIC_KS_VOLATILE_SLOTS);
ksv->db->keys = gnaw(&mem, &len, sizeof(*ksv->db->keys) * STATIC_KS_VOLATILE_SLOTS);
ksv->db->ksi.size = STATIC_KS_VOLATILE_SLOTS;
ksv->db->ksi.used = 0;
if (ksv->db == NULL ||
ksv->db->ksi.index == NULL ||
ksv->db->ksi.names == NULL ||
ksv->db->keys == NULL)
return HAL_ERROR_IMPOSSIBLE;
/*
* Set up keystore with empty index and full free list.
* Since this driver doesn't care about wear leveling,
* just populate the free list in block numerical order.
*/
for (int i = 0; i < STATIC_KS_VOLATILE_SLOTS; i++)
ksv->db->ksi.index[i] = i;
return hal_ks_index_setup(&ksv->db->ksi);
}
static hal_error_t ks_volatile_init(const hal_ks_driver_t * const driver)
{
const size_t len = (sizeof(*volatile_ks.db) +
sizeof(*volatile_ks.db->ksi.index) * STATIC_KS_VOLATILE_SLOTS +
sizeof(*volatile_ks.db->ksi.names) * STATIC_KS_VOLATILE_SLOTS +
sizeof(*volatile_ks.db->keys) * STATIC_KS_VOLATILE_SLOTS);
uint8_t *mem = hal_allocate_static_memory(len);
if (mem == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
return ks_init(driver, 1, &volatile_ks, mem, len);
}
static hal_error_t ks_volatile_shutdown(const hal_ks_driver_t * const driver)
{
if (volatile_ks.ks.driver != driver)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
static hal_error_t ks_volatile_open(const hal_ks_driver_t * const driver,
hal_ks_t **ks)
{
assert(driver != NULL && ks != NULL);
*ks = &volatile_ks.ks;
return HAL_OK;
}
static hal_error_t ks_volatile_close(hal_ks_t *ks)
{
return HAL_OK;
}
static inline int acceptable_key_type(const hal_key_type_t type)
{
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
return 1;
default:
return 0;
}
}
static hal_error_t ks_store(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len)
{
if (ks == NULL || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_add(&ksv->db->ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
uint8_t kek[KEK_LENGTH];
size_t kek_len;
ks_key_t k;
memset(&k, 0, sizeof(k));
k.der_len = sizeof(k.der);
k.type = slot->type;
k.curve = slot->curve;
k.flags = slot->flags;
k.client = slot->client_handle;
k.session = slot->session_handle;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k.der, &k.der_len);
memset(kek, 0, sizeof(kek));
if (err == HAL_OK)
ksv->db->keys[b] = k;
else
(void) hal_ks_index_delete(&ksv->db->ksi, &slot->name, 0, NULL, &slot->hint);
return err;
}
static hal_error_t ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_find(&ksv->db->ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
const ks_key_t * const k = &ksv->db->keys[b];
if (!key_visible_to_session(ksv, slot->client_handle, slot->session_handle, k))
return HAL_ERROR_KEY_NOT_FOUND;
slot->type = k->type;
slot->curve = k->curve;
slot->flags = k->flags;
if (der == NULL && der_len != NULL)
*der_len = k->der_len;
if (der != NULL) {
uint8_t kek[KEK_LENGTH];
size_t kek_len, der_len_;
hal_error_t err;
if (der_len == NULL)
der_len = &der_len_;
*der_len = der_max;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);
memset(kek, 0, sizeof(kek));
if (err != HAL_OK)
return err;
}
return HAL_OK;
}
static hal_error_t ks_delete(hal_ks_t *ks,
hal_pkey_slot_t *slot)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_find(&ksv->db->ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
if (!key_visible_to_session(ksv, slot->client_handle, slot->session_handle, &ksv->db->keys[b]))
return HAL_ERROR_KEY_NOT_FOUND;
if ((err = hal_ks_index_delete(&ksv->db->ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
memset(&ksv->db->keys[b], 0, sizeof(ksv->db->keys[b]));
return HAL_OK;
}
static hal_error_t ks_list(hal_ks_t *ks,
hal_client_handle_t client,
hal_session_handle_t session,
hal_pkey_info_t *result,
unsigned *result_len,
const unsigned result_max)
{
if (ks == NULL || result == NULL || result_len == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if (ksv->db->ksi.used > result_max)
return HAL_ERROR_RESULT_TOO_LONG;
for (int i = 0; i < ksv->db->ksi.used; i++) {
unsigned b = ksv->db->ksi.index[i];
if (ksv->db->ksi.names[b].chunk > 0)
continue;
if (!key_visible_to_session(ksv, client, session, &ksv->db->keys[b]))
continue;
result[i].name = ksv->db->ksi.names[b].name;
result[i].type = ksv->db->keys[b].type;
result[i].curve = ksv->db->keys[b].curve;
result[i].flags = ksv->db->keys[b].flags;
}
*result_len = ksv->db->ksi.used;
return HAL_OK;
}
static hal_error_t ks_match(hal_ks_t *ks,
hal_client_handle_t client,
hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid)
{
if (ks == NULL || attributes == NULL ||
result == NULL || result_len == NULL || previous_uuid == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
hal_error_t err;
int i = -1;
*result_len = 0;
err = hal_ks_index_find(&ksv->db->ksi, previous_uuid, 0, NULL, &i);
if (err == HAL_ERROR_KEY_NOT_FOUND)
i--;
else if (err != HAL_OK)
return err;
while (*result_len < result_max && ++i < ksv->db->ksi.used) {
unsigned b = ksv->db->ksi.index[i];
if (ksv->db->ksi.names[b].chunk > 0)
continue;
if (type != HAL_KEY_TYPE_NONE && type != ksv->db->keys[b].type)
continue;
if (curve != HAL_CURVE_NONE && curve != ksv->db->keys[b].curve)
continue;
if (!key_visible_to_session(ksv, client, session, &ksv->db->keys[b]))
continue;
if (attributes_len > 0) {
const ks_key_t * const k = &ksv->db->keys[b];
int ok = 1;
if (k->attributes_len == 0)
continue;
hal_rpc_pkey_attribute_t key_attrs[k->attributes_len];
if ((err = hal_ks_attribute_scan(k->der + k->der_len, sizeof(k->der) - k->der_len,
key_attrs, k->attributes_len, NULL)) != HAL_OK)
return err;
for (hal_rpc_pkey_attribute_t *required = attributes;
ok && required < attributes + attributes_len; required++) {
hal_rpc_pkey_attribute_t *present = key_attrs;
while (ok && present->type != required->type)
ok = ++present < key_attrs + k->attributes_len;
if (ok)
ok = (present->length == required->length &&
!memcmp(present->value, required->value, present->length));
}
if (!ok)
continue;
}
result[*result_len] = ksv->db->ksi.names[b].name;
++*result_len;
}
return HAL_OK;
}
static hal_error_t ks_set_attribute(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type,
const uint8_t * const value,
const size_t value_len)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_find(&ksv->db->ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
ks_key_t * const k = &ksv->db->keys[b];
if (!key_visible_to_session(ksv, slot->client_handle, slot->session_handle, k))
return HAL_ERROR_KEY_NOT_FOUND;
hal_rpc_pkey_attribute_t attributes[k->attributes_len + 1];
uint8_t *bytes = k->der + k->der_len;
size_t bytes_len = sizeof(k->der) - k->der_len;
size_t total_len;
err = hal_ks_attribute_scan(bytes, bytes_len, attributes, k->attributes_len, &total_len);
if (err != HAL_OK)
return err;
return hal_ks_attribute_insert(bytes, bytes_len, attributes, &k->attributes_len, &total_len,
type, value, value_len);
}
static hal_error_t ks_get_attribute(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type,
uint8_t *value,
size_t *value_len,
const size_t value_max)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_find(&ksv->db->ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
const ks_key_t * const k = &ksv->db->keys[b];
if (!key_visible_to_session(ksv, slot->client_handle, slot->session_handle, k))
return HAL_ERROR_KEY_NOT_FOUND;
if (k->attributes_len == 0)
return HAL_ERROR_ATTRIBUTE_NOT_FOUND;
hal_rpc_pkey_attribute_t attributes[k->attributes_len];
if ((err = hal_ks_attribute_scan(k->der + k->der_len, sizeof(k->der) - k->der_len,
attributes, k->attributes_len, NULL)) != HAL_OK)
return err;
int i = 0;
while (attributes[i].type != type)
if (++i >= k->attributes_len)
return HAL_ERROR_ATTRIBUTE_NOT_FOUND;
if (attributes[i].length > value_max && value != NULL)
return HAL_ERROR_RESULT_TOO_LONG;
if (value != NULL)
memcpy(value, attributes[i].value, attributes[i].length);
if (value_len != NULL)
*value_len = attributes[i].length;
return HAL_OK;
}
static hal_error_t ks_delete_attribute(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
unsigned b;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
if ((err = hal_ks_index_find(&ksv->db->ksi, &slot->name, 0, &b, &slot->hint)) != HAL_OK)
return err;
ks_key_t * const k = &ksv->db->keys[b];
if (!key_visible_to_session(ksv, slot->client_handle, slot->session_handle, k))
return HAL_ERROR_KEY_NOT_FOUND;
hal_rpc_pkey_attribute_t attributes[k->attributes_len + 1];
uint8_t *bytes = k->der + k->der_len;
size_t bytes_len = sizeof(k->der) - k->der_len;
size_t total_len;
err = hal_ks_attribute_scan(bytes, bytes_len, attributes, k->attributes_len, &total_len);
if (err != HAL_OK)
return err;
return hal_ks_attribute_delete(bytes, bytes_len, attributes, &k->attributes_len, &total_len, type);
}
const hal_ks_driver_t hal_ks_volatile_driver[1] = {{
ks_volatile_init,
ks_volatile_shutdown,
ks_volatile_open,
ks_volatile_close,
ks_store,
ks_fetch,
ks_delete,
ks_list,
ks_match,
ks_set_attribute,
ks_get_attribute,
ks_delete_attribute
}};
#endif /* STATIC_KS_VOLATILE_SLOTS > 0 */
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/