/*
* ks_volatile.c
* -------------
* Keystore implementation in normal volatile internal memory.
*
* NB: This is only suitable for cases where you do not want the keystore
* to survive library exit, eg, for storing PKCS #11 session keys.
*
* Authors: Rob Austein
* Copyright (c) 2015-2016, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#define KEK_LENGTH (bitsToBytes(256))
#ifndef HAL_STATIC_PKEY_STATE_BLOCKS
#define HAL_STATIC_PKEY_STATE_BLOCKS 0
#endif
/*
* Keystore database itself. For the moment, we stick to the old
* model where the entire database is wrapped in a C structure. We
* may want to change this, but if so, we'll need a replacement for
* the length check. If we do decide to replace it, we may want to
* keep the C structure but replace the fixed size array with a C99
* "flexible array", ie,
*
* hal_ks_key_t keys[];
*
* which is like the old GCC zero-length array hack, and can only
* go at the end of the structure.
*/
typedef struct {
hal_ks_pin_t wheel_pin;
hal_ks_pin_t so_pin;
hal_ks_pin_t user_pin;
#if HAL_STATIC_PKEY_STATE_BLOCKS > 0
hal_ks_key_t keys[HAL_STATIC_PKEY_STATE_BLOCKS];
#else
#warning No keys in keydb
#endif
} db_t;
/*
* "Subclass" (well, what one can do in C) of hal_ks_t. This is
* separate from db_t primarily to simplify things like rewriting the
* old ks_mmap driver to piggy-back on the ks_volatile driver: we
* wouldn't want the hal_ks_t into the mmap()ed file.
*/
typedef struct {
hal_ks_t ks; /* Must be first */
db_t *db; /* Which memory-based keystore database */
} ks_t;
static db_t volatile_db;
static ks_t volatile_ks = { { hal_ks_volatile_driver }, &volatile_db };
static inline ks_t *ks_to_ksv(hal_ks_t *ks)
{
return (ks_t *) ks;
}
static hal_error_t ks_volatile_open(const hal_ks_driver_t * const driver,
hal_ks_t **ks)
{
assert(driver != NULL && ks != NULL);
*ks = &volatile_ks.ks;
return HAL_OK;
}
static hal_error_t ks_volatile_close(hal_ks_t *ks)
{
return HAL_OK;
}
static inline int acceptable_key_type(const hal_key_type_t type)
{
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
return 1;
default:
return 0;
}
}
static hal_error_t ks_store(hal_ks_t *ks,
const hal_pkey_slot_t * const slot,
const uint8_t * const der, const size_t der_len)
{
if (ks == NULL || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
hal_error_t err;
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
int loc = -1;
for (int i = 0; i < sizeof(ksv->db->keys)/sizeof(*ksv->db->keys); i++) {
if (!ksv->db->keys[i].in_use && loc < 0)
loc = i;
if (ksv->db->keys[i].in_use &&
ksv->db->keys[i].type == slot->type &&
hal_uuid_cmp(&ksv->db->keys[i].name, &slot->name) == 0)
return HAL_ERROR_KEY_NAME_IN_USE;
}
if (loc < 0)
return HAL_ERROR_NO_KEY_SLOTS_AVAILABLE;
hal_ks_key_t k;
memset(&k, 0, sizeof(k));
k.der_len = sizeof(k.der);
uint8_t kek[KEK_LENGTH];
size_t kek_len;
if ((err = hal_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k.der, &k.der_len);
memset(kek, 0, sizeof(kek));
if (err != HAL_OK)
return err;
k.name = slot->name;
k.type = slot->type;
k.curve = slot->curve;
k.flags = slot->flags;
ksv->db->keys[loc] = k;
ksv->db->keys[loc].in_use = 1;
return HAL_OK;
}
static hal_ks_key_t *find(ks_t *ksv, const hal_uuid_t * const name)
{
assert(ksv != NULL && name != NULL);
for (int i = 0; i < sizeof(ksv->db->keys)/sizeof(*ksv->db->keys); i++)
if (ksv->db->keys[i].in_use && hal_uuid_cmp(&ksv->db->keys[i].name, name) == 0)
return &ksv->db->keys[i];
return NULL;
}
static hal_error_t ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
const hal_ks_key_t * const k = find(ksv, &slot->name);
if (k == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
slot->type = k->type;
slot->curve = k->curve;
slot->flags = k->flags;
if (der == NULL && der_len != NULL)
*der_len = k->der_len;
if (der != NULL) {
uint8_t kek[KEK_LENGTH];
size_t kek_len, der_len_;
hal_error_t err;
if (der_len == NULL)
der_len = &der_len_;
*der_len = der_max;
if ((err = hal_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);
memset(kek, 0, sizeof(kek));
if (err != HAL_OK)
return err;
}
return HAL_OK;
}
static hal_error_t ks_delete(hal_ks_t *ks,
const hal_pkey_slot_t * const slot)
{
if (ks == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
hal_ks_key_t *k = find(ksv, &slot->name);
if (k == NULL)
return HAL_ERROR_KEY_NOT_FOUND;
memset(k, 0, sizeof(*k));
return HAL_OK;
}
static hal_error_t ks_list(hal_ks_t *ks,
hal_pkey_info_t *result,
unsigned *result_len,
const unsigned result_max)
{
if (ks == NULL || result == NULL || result_len == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
ks_t *ksv = ks_to_ksv(ks);
if (ksv->db == NULL)
return HAL_ERROR_KEYSTORE_ACCESS;
*result_len = 0;
for (int i = 0; i < sizeof(ksv->db->keys)/sizeof(*ksv->db->keys); i++) {
if (!ksv->db->keys[i].in_use)
continue;
if (*result_len == result_max)
return HAL_ERROR_RESULT_TOO_LONG;
result[*result_len].type = ksv->db->keys[i].type;
result[*result_len].curve = ksv->db->keys[i].curve;
result[*result_len].flags = ksv->db->keys[i].flags;
result[*result_len].name = ksv->db->keys[i].name;
++ *result_len;
}
return HAL_OK;
}
const hal_ks_driver_t hal_ks_volatile_driver[1] = {{
ks_volatile_open,
ks_volatile_close,
ks_store,
ks_fetch,
ks_delete,
ks_list
}};
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/