/*
* ks_flash.c
* ----------
* Keystore implementation in flash memory.
*
* Authors: Rob Austein, Fredrik Thulin
* Copyright (c) 2015-2016, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#include "last_gasp_pin_internal.h"
#define HAL_OK CMIS_HAL_OK
#include "stm-keystore.h"
#undef HAL_OK
/*
* Revised flash keystore database. Work in progress.
*
* General consideration:
*
* - bits can only be cleared, not set, unless one wants to erase the
* sector. This has some odd knock on effects in terms of
* things like values of enumerated constants used here.
*
* - This code assumes we're using ks_index.c, including its notion
* of a free list and its attempt at light-weight wear leveling.
*
* - This version takes a simplistic approach to updating existing
* blocks: write the modified contents to a new block regardless of
* whether they could have been made in-place. The only in-place
* modifications we make are things like zeroing a block to mark it
* as having been used recently, so that it will go near the end of
* the free list. We could allow many kinds of updates in place by
* making the crc field in the block header an array with some kind
* of counter (probably encoded as a mask given the constraints),
* but the code would be more complicated and it's not immediately
* obvious that it's worth it. Maybe add that as a wear reduction
* feature later, but let's get the simpler version working first.
*
* Current theory for update logic:
*
* 1) Update-in-place of old block to deprecate;
* 2) Write new block, including updating index;
* 3) Update-in-place of old block to zero.
*/
/*
* Known block states.
*
* Might want an additional state 0xDEADDEAD to mark blocks which
* are known to be unusable, but the current hardware is NOR flash
* so that may not be as important as it would be with NAND flash.
*
* C does not guarantee any particular representation for enums, so
* including an enum directly in the block header isn't safe.
*/
typedef enum {
FLASH_ERASED = 0xFFFFFFFF, /* Pristine erased block (candidate for reuse) */
FLASH_ZEROED = 0x00000000, /* Zeroed block (recently used) */
FLASH_KEYBLK = 0x55555555, /* Block contains key material */
FLASH_KEYOLD = 0x41411414, /* Deprecated key block */
FLASH_PINBLK = 0xAAAAAAAA, /* Block contains PINs */
FLASH_PINOLD = 0x82822828, /* Deprecated PIN block */
FLASH_UNKNOWN = 0x12345678, /* Internal code for "I have no clue what this is" */
} flash_block_type_t;
/*
* Common header for all flash block types. The crc fields should
* remain at the end of the header to simplify the CRC calculation.
*/
typedef struct {
uint32_t block_type;
hal_crc32_t crc1, crc2;
} flash_block_header_t;
/*
* We probably want some kind of TLV format for optional attributes
* in key objects, and might want to put the DER key itself there to
* save space.
*/
typedef struct {
flash_block_header_t header;
hal_uuid_t name;
hal_key_type_t type;
hal_curve_name_t curve;
hal_key_flags_t flags;
size_t der_len;
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
} flash_key_block_t;
/*
* PIN block. Also includes space for backing up the KEK when
* HAL_MKM_FLASH_BACKUP_KLUDGE is enabled.
*/
typedef struct {
flash_block_header_t header;
hal_ks_pin_t wheel_pin;
hal_ks_pin_t so_pin;
hal_ks_pin_t user_pin;
#if HAL_MKM_FLASH_BACKUP_KLUDGE
uint32_t kek_set;
uint8_t kek[KEK_LENGTH];
#endif
} flash_pin_block_t;
#define FLASH_KEK_SET 0x33333333
/*
* One flash block.
*/
typedef union {
uint8_t bytes[KEYSTORE_SUBSECTOR_SIZE];
flash_block_header_t header;
flash_key_block_t key;
flash_pin_block_t pin;
} flash_block_t;
/*
* In-memory cache.
*/
typedef struct {
unsigned blockno;
uint32_t lru;
flash_block_t block;
} cache_block_t;
/*
* In-memory database.
*
* The top-level structure is a static variable; the arrays are allocated at runtime
* using hal_allocate_static_memory() because they can get kind of large.
*/
#ifndef KS_FLASH_CACHE_SIZE
#define KS_FLASH_CACHE_SIZE 4
#endif
#define NUM_FLASH_BLOCKS KEYSTORE_NUM_SUBSECTORS
typedef struct {
hal_ks_t ks; /* Must be first (C "subclassing") */
hal_ks_index_t ksi;
hal_ks_pin_t wheel_pin;
hal_ks_pin_t so_pin;
hal_ks_pin_t user_pin;
uint32_t cache_lru;
cache_block_t *cache;
} db_t;
/*
* PIN block gets the all-zeros UUID, which will never be returned by
* the UUID generation code (by definition -- it's not a version 4 UUID).
*/
const static hal_uuid_t pin_uuid = {{0}};
/*
* The in-memory database almost certainly should be a pointer to
* allocated SDRAM rather than compile-time data space. Well,
* the arrays should be, anyway, it might be reasonable to keep
* the top level structure here. Worry about that later.
*/
static db_t db;
/*
* Type safe cast.
*/
static inline flash_block_type_t block_get_type(const flash_block_t * const block)
{
assert(block != NULL);
return (flash_block_type_t) block->header.block_type;
}
/*
* Pick unused or least-recently-used slot in our in-memory cache.
*
* Updating lru values is caller's problem: if caller is using cache
* slot as a temporary buffer and there's no point in caching the
* result, leave the lru values alone and the right thing will happen.
*/
static inline flash_block_t *cache_pick_lru(void)
{
uint32_t best_delta = 0;
int best_index = 0;
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
if (db.cache[i].blockno == ~0)
return &db.cache[i].block;
const uint32_t delta = db.cache_lru - db.cache[i].lru;
if (delta > best_delta) {
best_delta = delta;
best_index = i;
}
}
db.cache[best_index].blockno = ~0;
return &db.cache[best_index].block;
}
/*
* Find a block in our in-memory cache; return block or NULL if not present.
*/
static inline flash_block_t *cache_find_block(const unsigned blockno)
{
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
if (db.cache[i].blockno == blockno)
return &db.cache[i].block;
return NULL;
}
/*
* Mark a block in our in-memory cache as being in current use.
*/
static inline void cache_mark_used(const flash_block_t * const block, const unsigned blockno)
{
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++) {
if (&db.cache[i].block == block) {
db.cache[i].blockno = blockno;
db.cache[i].lru = ++db.cache_lru;
return;
}
}
}
/*
* Release a block from the in-memory cache.
*/
static inline void cache_release(const flash_block_t * const block)
{
if (block != NULL)
cache_mark_used(block, ~0);
}
/*
* Generate CRC-32 for a block.
*
* This function needs to understand the structure of
* flash_block_header_t, so that it can skip over the crc field.
*/
static hal_crc32_t calculate_block_crc(const flash_block_t * const block)
{
assert(block != NULL);
hal_crc32_t crc = hal_crc32_init();
crc = hal_crc32_update(crc,
block->bytes,
offsetof(flash_block_header_t, crc1));
crc = hal_crc32_update(crc,
block->bytes + sizeof(flash_block_header_t),
sizeof(*block) - sizeof(flash_block_header_t));
return hal_crc32_finalize(crc);
}
/*
* Calculate block offset.
*/
static uint32_t block_offset(const unsigned blockno)
{
return blockno * KEYSTORE_SUBSECTOR_SIZE;
}
/*
* Read a flash block.
*
* Sadly, flash on the Alpha is slow enough that it pays to
* check the first page before reading the rest of the block.
*/
static hal_error_t block_read(const unsigned blockno, flash_block_t *block)
{
assert(block != NULL && blockno < NUM_FLASH_BLOCKS && sizeof(*block) == KEYSTORE_SUBSECTOR_SIZE);
/* Sigh, magic numeric return codes */
if (keystore_read_data(block_offset(blockno),
block->bytes,
KEYSTORE_PAGE_SIZE) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
flash_block_type_t block_type = block_get_type(block);
hal_crc32_t crc = 0;
switch (block_type) {
case FLASH_KEYBLK:
case FLASH_PINBLK:
crc = block->header.crc1;
break;
case FLASH_KEYOLD:
case FLASH_PINOLD:
crc = block->header.crc2;
break;
case FLASH_ERASED:
case FLASH_ZEROED:
return HAL_OK;
default:
return HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE;
}
/* Sigh, magic numeric return codes */
if (keystore_read_data(block_offset(blockno) + KEYSTORE_PAGE_SIZE,
block->bytes + KEYSTORE_PAGE_SIZE,
sizeof(*block) - KEYSTORE_PAGE_SIZE) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
switch (block_type) {
default:
if (calculate_block_crc(block) != crc)
return HAL_ERROR_KEYSTORE_BAD_CRC;
case FLASH_ERASED:
case FLASH_ZEROED:
return HAL_OK;
}
}
/*
* Read a block using the cache. Marking the block as used is left
* for the caller, so we can avoid blowing out the cache when we
* perform a ks_list() operation.
*/
static hal_error_t block_read_cached(const unsigned blockno, flash_block_t **block)
{
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
if ((*block = cache_find_block(blockno)) != NULL)
return HAL_OK;
if ((*block = cache_pick_lru()) == NULL)
return HAL_ERROR_IMPOSSIBLE;
return block_read(blockno, *block);
}
/*
* Write a flash block, calculating CRC when appropriate.
*
* NB: This does NOT automatically erase the block prior to write,
* because doing so would either mess up our wear leveling algorithm
* (such as it is) or cause gratuitous erasures (increasing wear).
*/
static hal_error_t block_write(const unsigned blockno, flash_block_t *block)
{
assert(block != NULL && blockno < NUM_FLASH_BLOCKS && sizeof(*block) == KEYSTORE_SUBSECTOR_SIZE);
switch (block_get_type(block)) {
case FLASH_KEYBLK:
case FLASH_PINBLK:
block->header.crc1 = calculate_block_crc(block);
break;
case FLASH_KEYOLD:
case FLASH_PINOLD:
block->header.crc2 = calculate_block_crc(block);
break;
default:
break;
}
/* Sigh, magic numeric return codes */
if (keystore_write_data(block_offset(blockno), block->bytes, sizeof(*block)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
/*
* Zero (not erase) a flash block. Just need to zero the first page.
*/
static hal_error_t block_zero(const unsigned blockno)
{
uint8_t page[KEYSTORE_PAGE_SIZE] = {0};
/* Sigh, magic numeric return codes */
if (keystore_write_data(block_offset(blockno), page, sizeof(page)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
/*
* Erase a flash block. Also see block_erase_maybe(), below.
*/
static hal_error_t block_erase(const unsigned blockno)
{
assert(blockno < NUM_FLASH_BLOCKS);
/* Sigh, magic numeric return codes */
if (keystore_erase_subsectors(blockno, blockno) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
/*
* Erase a flash block if it hasn't already been erased.
* We have to disable fast read for this to work properly.
* May not be necessary, trying to avoid unnecessary wear.
*
* Unclear whether there's any sane reason why this needs to be
* constant time, given how slow erasure is. But side channel attacks
* can be tricky things, and it's theoretically possible that we could
* leak information about, eg, key length, so we do constant time.
*/
static hal_error_t block_erase_maybe(const unsigned blockno)
{
uint8_t mask = 0xFF;
for (uint32_t a = block_offset(blockno); a < block_offset(blockno + 1); a += KEYSTORE_PAGE_SIZE) {
uint8_t page[KEYSTORE_PAGE_SIZE];
if (keystore_read_data(a, page, sizeof(page)) != 1)
return HAL_ERROR_KEYSTORE_ACCESS;
for (int i = 0; i < KEYSTORE_PAGE_SIZE; i++)
mask &= page[i];
}
return mask == 0xFF ? HAL_OK : block_erase(blockno);
}
/*
* Initialize keystore. This includes some tricky bits that attempt
* to preserve the free list ordering across reboots, to improve our
* simplistic attempt at wear leveling.
*/
static hal_error_t ks_init(const hal_ks_driver_t * const driver)
{
/*
* Initialize the in-memory database.
*/
const size_t len = (sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS +
sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS +
sizeof(*db.cache) * KS_FLASH_CACHE_SIZE);
uint8_t *mem = hal_allocate_static_memory(len);
if (mem == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(&db, 0, sizeof(db));
memset(mem, 0, len);
db.ksi.size = NUM_FLASH_BLOCKS;
db.ksi.index = (void *) mem; mem += sizeof(*db.ksi.index) * NUM_FLASH_BLOCKS;
db.ksi.names = (void *) mem; mem += sizeof(*db.ksi.names) * NUM_FLASH_BLOCKS;
db.cache = (void *) mem;
for (int i = 0; i < KS_FLASH_CACHE_SIZE; i++)
db.cache[i].blockno = ~0;
/*
* Scan existing content of flash to figure out what we've got.
* This gets a bit involved due to the need to recover from things
* like power failures at inconvenient times.
*/
flash_block_type_t block_types[NUM_FLASH_BLOCKS];
flash_block_t *block = cache_pick_lru();
int first_erased = -1;
int saw_pins = 0;
hal_error_t err;
uint16_t n = 0;
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
/*
* Read one block. If the CRC is bad or the block type is
* unknown, it's old data we don't understand, something we were
* writing when we crashed, or bad flash; in any of these cases,
* we want the block to ends up near the end of the free list.
*/
err = block_read(i, block);
if (err == HAL_ERROR_KEYSTORE_BAD_CRC || err == HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE)
block_types[i] = FLASH_UNKNOWN;
else if (err == HAL_OK)
block_types[i] = block_get_type(block);
else
return err;
/*
* First erased block we see is head of the free list.
*/
if (block_types[i] == FLASH_ERASED && first_erased < 0)
first_erased = i;
/*
* If it is or was a key block, remember its name.
* PIN blocks get the all-zeros UUID for ks_index purposes.
*/
if (block_types[i] == FLASH_KEYBLK || block_types[i] == FLASH_KEYOLD)
db.ksi.names[i] = block->key.name;
/*
* If it is or was a PIN block, remember the PINs, but don't
* overwrite PINs from a current PIN block with PINs from a
* deprecated PIN block.
*/
if (block_types[i] == FLASH_PINBLK || (block_types[i] == FLASH_PINOLD && !saw_pins)) {
db.wheel_pin = block->pin.wheel_pin;
db.so_pin = block->pin.so_pin;
db.user_pin = block->pin.user_pin;
saw_pins = 1;
}
/*
* If it's a current block, include it in the index.
*/
if (block_types[i] == FLASH_KEYBLK || block_types[i] == FLASH_PINBLK)
db.ksi.index[n++] = i;
}
db.ksi.used = n;
assert(db.ksi.used <= db.ksi.size);
/*
* At this point we've built the (unsorted) index from all the
* current blocks. Now we need to insert free, deprecated, and
* unrecognized blocks into the free list in our preferred order.
* There's probably a more efficient way to do this, but this is
* just integer comparisons in a fairly small data set, so all of
* these loops should be pretty fast.
*/
if (n < db.ksi.size)
for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
if (block_types[i] == FLASH_ERASED)
db.ksi.index[n++] = i;
if (n < db.ksi.size)
for (int i = first_erased; i < NUM_FLASH_BLOCKS; i++)
if (block_types[i] == FLASH_ZEROED)
db.ksi.index[n++] = i;
if (n < db.ksi.size)
for (int i = 0; i < first_erased; i++)
if (block_types[i] == FLASH_ZEROED)
db.ksi.index[n++] = i;
if (n < db.ksi.size)
for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
if (block_types[i] == FLASH_KEYOLD || block_types[i] == FLASH_PINOLD)
db.ksi.index[n++] = i;
if (n < db.ksi.size)
for (int i = 0; i < NUM_FLASH_BLOCKS; i++)
if (block_types[i] == FLASH_UNKNOWN)
db.ksi.index[n++] = i;
assert(n == db.ksi.size);
/*
* Initialize the ks_index stuff.
*/
if ((err = hal_ks_index_setup(&db.ksi)) != HAL_OK)
return err;
/*
* Deal with deprecated blocks. These are tombstones left behind
* when something bad happened while we updating a block. If write
* of the updated block completed, we have nothing to do other than
* cleaning up the tombstone, but if the write didn't complete, we
* need to resurrect the data from the tombstone.
*/
for (int i = 0; i < NUM_FLASH_BLOCKS; i++) {
flash_block_type_t restore_type;
switch (block_types[i]) {
case FLASH_KEYOLD: restore_type = FLASH_KEYBLK; break;
case FLASH_PINOLD: restore_type = FLASH_PINBLK; break;
default: continue;
}
err = hal_ks_index_find(&db.ksi, &db.ksi.names[i], NULL);
if (err != HAL_OK && err != HAL_ERROR_KEY_NOT_FOUND)
return err;
unsigned b = ~0;
if (err == HAL_ERROR_KEY_NOT_FOUND) {
/*
* Block did not exist, need to resurrect.
*/
hal_uuid_t name = db.ksi.names[i]; /* Paranoia */
if ((err = block_read(i, block)) != HAL_OK)
return err;
block->header.block_type = restore_type;
if ((err = hal_ks_index_add(&db.ksi, &name, &b)) != HAL_OK ||
(err = block_erase(b)) != HAL_OK ||
(err = block_write(b, block)) != HAL_OK)
return err;
if (restore_type == FLASH_PINBLK)
saw_pins = 1;
}
/*
* Done with the tombstone, zero it.
*/
if ((unsigned) i != b && (err = block_zero(i)) != HAL_OK)
return err;
}
/*
* If we didn't see a PIN block, create one, with the user and so
* PINs cleared and the wheel PIN set to the last-gasp value. The
* last-gasp WHEEL PIN is a terrible answer, but we need some kind
* of bootstrapping mechanism when all else fails. If you have a
* better suggestion, we'd love to hear it.
*/
if (!saw_pins) {
unsigned b;
memset(block, 0xFF, sizeof(*block));
db.wheel_pin = hal_last_gasp_pin;
block->header.block_type = FLASH_PINBLK;
block->pin.wheel_pin = db.wheel_pin;
block->pin.so_pin = db.so_pin;
block->pin.user_pin = db.user_pin;
if ((err = hal_ks_index_add(&db.ksi, &pin_uuid, &b)) != HAL_OK)
return err;
cache_mark_used(block, b);
if ((err = block_erase_maybe(b)) == HAL_OK)
err = block_write(b, block);
cache_release(block);
if (err != HAL_OK)
return err;
}
/*
* Erase first block on free list if it's not already erased.
*/
if (db.ksi.used < db.ksi.size &&
(err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK)
return err;
/*
* And we're finally done.
*/
db.ks.driver = driver;
return HAL_OK;
}
static hal_error_t ks_shutdown(const hal_ks_driver_t * const driver)
{
if (db.ks.driver != driver)
return HAL_ERROR_KEYSTORE_ACCESS;
return HAL_OK;
}
static hal_error_t ks_open(const hal_ks_driver_t * const driver,
hal_ks_t **ks)
{
if (driver != hal_ks_token_driver || ks == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*ks = &db.ks;
return HAL_OK;
}
static hal_error_t ks_close(hal_ks_t *ks)
{
if (ks != NULL && ks != &db.ks)
return HAL_ERROR_BAD_ARGUMENTS;
return HAL_OK;
}
static inline int acceptable_key_type(const hal_key_type_t type)
{
switch (type) {
case HAL_KEY_TYPE_RSA_PRIVATE:
case HAL_KEY_TYPE_EC_PRIVATE:
case HAL_KEY_TYPE_RSA_PUBLIC:
case HAL_KEY_TYPE_EC_PUBLIC:
return 1;
default:
return 0;
}
}
static hal_error_t ks_store(hal_ks_t *ks,
const hal_pkey_slot_t * const slot,
const uint8_t * const der, const size_t der_len)
{
if (ks != &db.ks || slot == NULL || der == NULL || der_len == 0 || !acceptable_key_type(slot->type))
return HAL_ERROR_BAD_ARGUMENTS;
flash_block_t *block = cache_pick_lru();
flash_key_block_t *k = &block->key;
uint8_t kek[KEK_LENGTH];
size_t kek_len;
hal_error_t err;
unsigned b;
if (block == NULL)
return HAL_ERROR_IMPOSSIBLE;
if ((err = hal_ks_index_add(&db.ksi, &slot->name, &b)) != HAL_OK)
return err;
cache_mark_used(block, b);
memset(block, 0xFF, sizeof(*block));
block->header.block_type = FLASH_KEYBLK;
k->name = slot->name;
k->type = slot->type;
k->curve = slot->curve;
k->flags = slot->flags;
k->der_len = sizeof(k->der);
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keywrap(NULL, kek, kek_len, der, der_len, k->der, &k->der_len);
memset(kek, 0, sizeof(kek));
if (err == HAL_OK &&
(err = block_erase_maybe(b)) == HAL_OK &&
(err = block_write(b, block)) == HAL_OK)
return HAL_OK;
memset(block, 0, sizeof(*block));
cache_release(block);
(void) hal_ks_index_delete(&db.ksi, &slot->name, NULL);
return err;
}
static hal_error_t ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks != &db.ks || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = hal_ks_index_find(&db.ksi, &slot->name, &b)) != HAL_OK ||
(err = block_read_cached(b, &block)) != HAL_OK)
return err;
cache_mark_used(block, b);
flash_key_block_t *k = &block->key;
slot->type = k->type;
slot->curve = k->curve;
slot->flags = k->flags;
if (der == NULL && der_len != NULL)
*der_len = k->der_len;
if (der != NULL) {
uint8_t kek[KEK_LENGTH];
size_t kek_len, der_len_;
hal_error_t err;
if (der_len == NULL)
der_len = &der_len_;
*der_len = der_max;
if ((err = hal_mkm_get_kek(kek, &kek_len, sizeof(kek))) == HAL_OK)
err = hal_aes_keyunwrap(NULL, kek, kek_len, k->der, k->der_len, der, der_len);
memset(kek, 0, sizeof(kek));
if (err != HAL_OK)
return err;
}
return HAL_OK;
}
static hal_error_t ks_delete(hal_ks_t *ks,
const hal_pkey_slot_t * const slot)
{
if (ks != &db.ks || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err;
unsigned b;
if ((err = hal_ks_index_delete(&db.ksi, &slot->name, &b)) != HAL_OK)
return err;
/*
* If we wanted to double-check the flash block itself against what
* we got from the index, this is where we'd do it.
*/
cache_release(cache_find_block(b));
if ((err = block_zero(b)) != HAL_OK ||
(err = block_erase_maybe(db.ksi.index[db.ksi.used])) != HAL_OK)
return err;
return HAL_OK;
}
static hal_error_t ks_list(hal_ks_t *ks,
hal_pkey_info_t *result,
unsigned *result_len,
const unsigned result_max)
{
if (ks != &db.ks || result == NULL || result_len == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (db.ksi.used > result_max)
return HAL_ERROR_RESULT_TOO_LONG;
flash_block_t *block;
hal_error_t err;
unsigned b;
*result_len = 0;
for (int i = 0; i < db.ksi.used; i++) {
b = db.ksi.index[i];
if ((err = block_read_cached(b, &block)) != HAL_OK)
return err;
if (block_get_type(block) != FLASH_KEYBLK)
continue;
result[*result_len].type = block->key.type;
result[*result_len].curve = block->key.curve;
result[*result_len].flags = block->key.flags;
result[*result_len].name = block->key.name;
++ *result_len;
}
return HAL_OK;
}
const hal_ks_driver_t hal_ks_token_driver[1] = {{
ks_init,
ks_shutdown,
ks_open,
ks_close,
ks_store,
ks_fetch,
ks_delete,
ks_list
}};
/*
* The remaining functions aren't really part of the keystore API per se,
* but they all involve non-key data which we keep in the keystore
* because it's the flash we've got.
*/
/*
* Fetch PIN. This is always cached, so just returned cached value.
*/
hal_error_t hal_get_pin(const hal_user_t user,
const hal_ks_pin_t **pin)
{
if (pin == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
switch (user) {
case HAL_USER_WHEEL: *pin = &db.wheel_pin; break;
case HAL_USER_SO: *pin = &db.so_pin; break;
case HAL_USER_NORMAL: *pin = &db.user_pin; break;
default: return HAL_ERROR_BAD_ARGUMENTS;
}
return HAL_OK;
}
/*
* Fetch PIN block.
*/
static hal_error_t fetch_pin_block(unsigned *b, flash_block_t **block)
{
assert(b != NULL && block != NULL);
hal_error_t err;
if ((err = hal_ks_index_find(&db.ksi, &pin_uuid, b)) != HAL_OK ||
(err = block_read_cached(*b, block)) != HAL_OK)
return err;
cache_mark_used(*block, *b);
if (block_get_type(*block) != FLASH_PINBLK)
return HAL_ERROR_IMPOSSIBLE;
return HAL_OK;
}
/*
* Update the PIN block. This block should always be present, but we
* have to dance a bit to make sure we write the new PIN block before
* destroying the old one.
*/
static hal_error_t update_pin_block(const unsigned b1,
flash_block_t *block,
const flash_pin_block_t * const new_data)
{
assert(block != NULL && new_data != NULL && block_get_type(block) == FLASH_PINBLK);
hal_error_t err;
unsigned b2;
block->header.block_type = FLASH_PINOLD;
err = block_write(b1, block);
cache_release(block);
if (err != HAL_OK)
return err;
/*
* We could simplify and speed this up a bit by taking advantage of
* knowing that the PIN block is always db.ksi->index[0] (because of
* the all-zeros UUID). Maybe later.
*/
if ((err = hal_ks_index_replace(&db.ksi, &pin_uuid, &b2)) != HAL_OK)
return err;
block->pin = *new_data;
if (err == HAL_OK)
cache_mark_used(block, b2);
if (err == HAL_OK)
err = block_erase_maybe(b2);
if (err == HAL_OK)
err = block_write(b2, block);
if (err != HAL_OK)
return err;
if ((err = block_zero(b1)) != HAL_OK)
return err;
if (db.ksi.used < db.ksi.size)
err = block_erase_maybe(db.ksi.index[db.ksi.used]);
return err;
}
/*
* Change a PIN.
*/
hal_error_t hal_set_pin(const hal_user_t user,
const hal_ks_pin_t * const pin)
{
if (pin == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
flash_pin_block_t new_data = block->pin;
hal_ks_pin_t *dp, *bp;
switch (user) {
case HAL_USER_WHEEL: bp = &new_data.wheel_pin; dp = &db.wheel_pin; break;
case HAL_USER_SO: bp = &new_data.so_pin; dp = &db.so_pin; break;
case HAL_USER_NORMAL: bp = &new_data.user_pin; dp = &db.user_pin; break;
default: return HAL_ERROR_BAD_ARGUMENTS;
}
const hal_ks_pin_t old_pin = *dp;
*dp = *bp = *pin;
if ((err = update_pin_block(b, block, &new_data)) != HAL_OK)
*dp = old_pin;
return err;
}
#if HAL_MKM_FLASH_BACKUP_KLUDGE
/*
* Horrible insecure kludge in lieu of a battery for the MKM.
*
* API here is a little strange:
*
* - NULL buffer on read means do all the work without returning the
* value;
*
* - All calls pass a length parameter, but any length other than the
* compiled in constant just returns an immediate error, there's no
* notion of buffer max length vs buffer used length, querying for
* the size of buffer really needed, or anything like that.
*
* We might want to rewrite this some day, if we don't replace it with
* a battery first. For now we just preserve the API as we found it
* while re-implementing it on top of the new keystore.
*/
hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len)
{
if (buf != NULL && len != KEK_LENGTH)
return HAL_ERROR_MASTERKEY_BAD_LENGTH;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
if (block->pin.kek_set != FLASH_KEK_SET)
return HAL_ERROR_MASTERKEY_NOT_SET;
if (buf != NULL)
memcpy(buf, block->pin.kek, len);
return HAL_OK;
}
hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len)
{
if (buf == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (len != KEK_LENGTH)
return HAL_ERROR_MASTERKEY_BAD_LENGTH;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
flash_pin_block_t new_data = block->pin;
new_data.kek_set = FLASH_KEK_SET;
memcpy(new_data.kek, buf, len);
return update_pin_block(b, block, &new_data);
}
hal_error_t hal_mkm_flash_erase(const size_t len)
{
if (len != KEK_LENGTH)
return HAL_ERROR_MASTERKEY_BAD_LENGTH;
flash_block_t *block;
hal_error_t err;
unsigned b;
if ((err = fetch_pin_block(&b, &block)) != HAL_OK)
return err;
flash_pin_block_t new_data = block->pin;
new_data.kek_set = FLASH_KEK_SET;
memset(new_data.kek, 0, len);
return update_pin_block(b, block, &new_data);
}
#endif /* HAL_MKM_FLASH_BACKUP_KLUDGE */
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/