/*
* hashsig.c
* ---------
* Implementation of draft-mcgrew-hash-sigs-10.txt
*
* Copyright (c) 2018, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "hal.h"
#include "hashsig.h"
#include "ks.h"
#include "asn1_internal.h"
#include "xdr_internal.h"
typedef struct { uint8_t bytes[32]; } bytestring32;
typedef struct { uint8_t bytes[16]; } bytestring16;
#define D_PBLC 0x8080
#define D_MESG 0x8181
#define D_LEAF 0x8282
#define D_INTR 0x8383
#define u32str(X) htonl(X)
#define u16str(X) htons(X)
#define u8str(X) (X & 0xff)
#define check(op) do { hal_error_t _err = (op); if (_err != HAL_OK) return _err; } while (0)
/* ---------------------------------------------------------------- */
/*
* XDR extensions
*/
static inline hal_error_t hal_xdr_encode_bytestring32(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring32 * const value)
{
return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring32));
}
static inline hal_error_t hal_xdr_decode_bytestring32_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 **value)
{
return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring32));
}
static inline hal_error_t hal_xdr_decode_bytestring32(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 * const value)
{
return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring32));
}
static inline hal_error_t hal_xdr_encode_bytestring16(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring16 *value)
{
return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring16));
}
static inline hal_error_t hal_xdr_decode_bytestring16_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 **value)
{
return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring16));
}
static inline hal_error_t hal_xdr_decode_bytestring16(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 * const value)
{
return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring16));
}
/* ---------------------------------------------------------------- */
/*
* ASN.1 extensions
*/
#define hal_asn1_encode_size_t(n, der, der_len, der_max) \
hal_asn1_encode_uint32((const uint32_t)n, der, der_len, der_max)
#define hal_asn1_decode_size_t(np, der, der_len, der_max) \
hal_asn1_decode_uint32((uint32_t *)np, der, der_len, der_max)
#define hal_asn1_encode_lms_algorithm(type, der, der_len, der_max) \
hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max)
#define hal_asn1_decode_lms_algorithm(type, der, der_len, der_max) \
hal_asn1_decode_uint32((uint32_t *)type, der, der_len, der_max)
#define hal_asn1_encode_lmots_algorithm(type, der, der_len, der_max) \
hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max)
#define hal_asn1_decode_lmots_algorithm(type, der, der_len, der_max) \
hal_asn1_decode_uint32((uint32_t *)type, der, der_len, der_max)
#define hal_asn1_encode_uuid(data, der, der_len, der_max) \
hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(hal_uuid_t), der, der_len, der_max)
#define hal_asn1_decode_uuid(data, der, der_len, der_max) \
hal_asn1_decode_octet_string((uint8_t *)data, sizeof(hal_uuid_t), der, der_len, der_max)
#define hal_asn1_encode_bytestring16(data, der, der_len, der_max) \
hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring16), der, der_len, der_max)
#define hal_asn1_decode_bytestring16(data, der, der_len, der_max) \
hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring16), der, der_len, der_max)
#define hal_asn1_encode_bytestring32(data, der, der_len, der_max) \
hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring32), der, der_len, der_max)
#define hal_asn1_decode_bytestring32(data, der, der_len, der_max) \
hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring32), der, der_len, der_max)
/* ---------------------------------------------------------------- */
/*
* LM-OTS
*/
typedef const struct lmots_parameter_set {
lmots_algorithm_t type;
size_t n, w, p, ls;
} lmots_parameter_t;
static lmots_parameter_t lmots_parameters[] = {
{ lmots_sha256_n32_w1, 32, 1, 265, 7 },
{ lmots_sha256_n32_w2, 32, 2, 133, 6 },
{ lmots_sha256_n32_w4, 32, 4, 67, 4 },
{ lmots_sha256_n32_w8, 32, 8, 34, 0 },
};
typedef struct lmots_key {
hal_key_type_t type;
lmots_parameter_t *lmots;
bytestring16 I;
size_t q;
bytestring32 * x;
bytestring32 K;
} lmots_key_t;
static inline lmots_parameter_t *lmots_select_parameter_set(const lmots_algorithm_t lmots_type)
{
if (lmots_type < lmots_sha256_n32_w1 || lmots_type > lmots_sha256_n32_w8)
return NULL;
else
return &lmots_parameters[lmots_type - lmots_sha256_n32_w1];
}
static inline size_t lmots_private_key_len(lmots_parameter_t * const lmots)
{
/* u32str(type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1] */
return 2 * sizeof(uint32_t) + sizeof(bytestring16) + (lmots->p * lmots->n);
}
static inline size_t lmots_public_key_len(lmots_parameter_t * const lmots)
{
/* u32str(type) || I || u32str(q) || K */
return 2 * sizeof(uint32_t) + sizeof(bytestring16) + lmots->n;
}
static inline size_t lmots_signature_len(lmots_parameter_t * const lmots)
{
/* u32str(type) || C || y[0] || ... || y[p-1] */
return sizeof(uint32_t) + (lmots->p + 1) * lmots->n;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
/* Given a key with most fields filled in, generate the lmots private and
* public key components (x and K).
* Let the caller worry about storage.
*/
static hal_error_t lmots_generate(lmots_key_t * const key)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || key->lmots == NULL || key->x == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
// Algorithm 0: Generating a Private Key
// 3. set n and p according to the typecode and Table 1
size_t n = key->lmots->n;
size_t p = key->lmots->p;
size_t w = key->lmots->w;
// 4. compute the array x as follows:
// for ( i = 0; i < p; i = i + 1 ) {
// set x[i] to a uniformly random n-byte string
// }
for (size_t i = 0; i < p; ++i)
check(hal_rpc_get_random(&key->x[i], n));
// Algorithm 1: Generating a One Time Signature Public Key From a
// Private Key
// 4. compute the string K as follows:
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
bytestring32 y[p];
uint32_t l;
uint16_t s;
uint8_t b;
// for ( i = 0; i < p; i = i + 1 ) {
for (size_t i = 0; i < p; ++i) {
// tmp = x[i]
bytestring32 tmp;
memcpy(&tmp, &key->x[i], sizeof(tmp));
// for ( j = 0; j < 2^w - 1; j = j + 1 ) {
for (size_t j = 0; j < (1U << w) - 1; ++j) {
// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
}
// y[i] = tmp
memcpy(&y[i], &tmp, sizeof(tmp));
// }
}
// K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1])
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
for (size_t i = 0; i < p; ++i)
check(hal_hash_update(state, (const uint8_t *)&y[i], sizeof(y[i])));
check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K)));
return HAL_OK;
}
#endif
/* strings of w-bit elements */
static uint8_t coef(const uint8_t * const S, const size_t i, size_t w)
{
switch (w) {
case 1:
return (S[i/8] >> (7 - (i % 8))) & 0x01;
case 2:
return (S[i/4] >> (6 - (2 * (i % 4)))) & 0x03;
case 4:
return (S[i/2] >> (4 - (4 * (i % 2)))) & 0x0f;
case 8:
return S[i];
default:
return 0;
}
}
/* checksum */
static uint16_t Cksm(const uint8_t * const S, lmots_parameter_t *lmots)
{
uint16_t sum = 0;
for (size_t i = 0; i < (lmots->n * 8 / lmots->w); ++i)
sum += ((1 << lmots->w) - 1) - coef(S, i, lmots->w);
return (sum << lmots->ls);
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static hal_error_t lmots_sign(lmots_key_t *key,
const uint8_t * const msg, const size_t msg_len,
uint8_t * sig, size_t *sig_len, const size_t sig_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
// Algorithm 3: Generating a One Time Signature From a Private Key and a
// Message
// 1. set type to the typecode of the algorithm
//
// 2. set n, p, and w according to the typecode and Table 1
size_t n = key->lmots->n;
size_t p = key->lmots->p;
size_t w = key->lmots->w;
if (sig_max < lmots_signature_len(key->lmots))
return HAL_ERROR_BAD_ARGUMENTS;
// 3. determine x, I and q from the private key
//
// 4. set C to a uniformly random n-byte string
bytestring32 C;
check(hal_rpc_get_random(&C, n));
// 5. compute the array y as follows:
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint8_t Q[n + 2]; /* hash || 16-bit checksum */
uint32_t l;
uint16_t s;
uint8_t b;
// Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C)));
check(hal_hash_update(state, msg, msg_len));
check(hal_hash_finalize(state, Q, n));
/* append checksum */
*(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots));
bytestring32 y[p];
// for ( i = 0; i < p; i = i + 1 ) {
for (size_t i = 0; i < p; ++i) {
// a = coef(Q || Cksm(Q), i, w)
uint8_t a = coef(Q, i, w);
// tmp = x[i]
bytestring32 tmp;
memcpy(&tmp, &key->x[i], sizeof(tmp));
// for ( j = 0; j < a; j = j + 1 ) {
for (size_t j = 0; j < (size_t)a; ++j) {
// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
// }
}
// y[i] = tmp
memcpy(&y[i], &tmp, sizeof(tmp));
}
// 6. return u32str(type) || C || y[0] || ... || y[p-1]
uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_max;
check(hal_xdr_encode_int(&sigptr, siglim, key->lmots->type));
check(hal_xdr_encode_bytestring32(&sigptr, siglim, &C));
for (size_t i = 0; i < p; ++i)
check(hal_xdr_encode_bytestring32(&sigptr, siglim, &y[i]));
if (sig_len != NULL)
*sig_len = sigptr - sig;
return HAL_OK;
}
#endif
static hal_error_t lmots_public_key_candidate(const lmots_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len)
{
if (key == NULL || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
/* Skip the length checks here, because we did a unitary length check
* at the start of lms_verify.
*/
// 1. if the signature is not at least four bytes long, return INVALID
//
// 2. parse sigtype, C, and y from the signature as follows:
// a. sigtype = strTou32(first 4 bytes of signature)
const uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_len;
uint32_t sigtype;
check(hal_xdr_decode_int(&sigptr, siglim, &sigtype));
// b. if sigtype is not equal to pubtype, return INVALID
if ((lmots_algorithm_t)sigtype != key->lmots->type)
return HAL_ERROR_INVALID_SIGNATURE;
// c. set n and p according to the pubtype and Table 1; if the
// signature is not exactly 4 + n * (p+1) bytes long, return INVALID
size_t n = key->lmots->n;
size_t p = key->lmots->p;
size_t w = key->lmots->w;
// d. C = next n bytes of signature
bytestring32 C;
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &C));
// e. y[0] = next n bytes of signature
// y[1] = next n bytes of signature
// ...
// y[p-1] = next n bytes of signature
bytestring32 y[p];
for (size_t i = 0; i < p; ++i)
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &y[i]));
// 3. compute the string Kc as follows
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint8_t Q[n + 2]; /* hash || 16-bit checksum */
uint32_t l;
uint16_t s;
uint8_t b;
// Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C)));
check(hal_hash_update(state, msg, msg_len));
check(hal_hash_finalize(state, Q, n));
/* append checksum */
*(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots));
bytestring32 z[p];
// for ( i = 0; i < p; i = i + 1 ) {
for (size_t i = 0; i < p; ++i) {
// a = coef(Q || Cksm(Q), i, w)
uint8_t a = coef(Q, i, w);
// tmp = y[i]
bytestring32 tmp;
memcpy(&tmp, &y[i], sizeof(tmp));
// for ( j = a; j < 2^w - 1; j = j + 1 ) {
for (size_t j = (size_t)a; j < (1U << w) - 1; ++j) {
// tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b)));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
// }
}
// z[i] = tmp
memcpy(&z[i], &tmp, sizeof(tmp));
// }
}
// Kc = H(I || u32str(q) || u16str(D_PBLC) || z[0] || z[1] || ... || z[p-1])
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
for (size_t i = 0; i < p; ++i)
check(hal_hash_update(state, (const uint8_t *)&z[i], sizeof(z[i])));
check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K)));
// 4. return Kc
return HAL_OK;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS)
return HAL_ERROR_BAD_ARGUMENTS;
// u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1]
/* K is not an integral part of the private key, but we store it to speed up restart */
/*
* Calculate data length.
*/
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring32(&key->K, NULL, &len, 0)); vlen += len;
for (size_t i = 0; i < key->lmots->p; ++i) {
check(hal_asn1_encode_bytestring32(&key->x[i], NULL, &len, 0)); vlen += len;
}
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
uint8_t *d = der + hlen;
memset(d, 0, vlen);
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len;
for (size_t i = 0; i < key->lmots->p; ++i) {
check(hal_asn1_encode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len;
}
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
static size_t lmots_private_key_to_der_len(const lmots_key_t * const key)
{
size_t len = 0;
return (lmots_private_key_to_der(key, NULL, &len, 0) == HAL_OK) ? len : 0;
}
static hal_error_t lmots_private_key_from_der(lmots_key_t *key,
const uint8_t *der, const size_t der_len)
{
if (key == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
key->type = HAL_KEY_TYPE_HASHSIG_LMOTS;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len));
if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen));
const uint8_t *d = privkey + hlen;
size_t len;
// u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1]
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, vlen)); d += len; vlen -= len;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_decode_size_t(&key->q, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_decode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len;
if (key->x != NULL) {
for (size_t i = 0; i < key->lmots->p; ++i) {
check(hal_asn1_decode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len;
}
if (d != privkey + privkey_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
}
return HAL_OK;
}
#endif
/* ---------------------------------------------------------------- */
/*
* LMS
*/
typedef const struct lms_parameter_set {
lms_algorithm_t type;
size_t m, h;
} lms_parameter_t;
static lms_parameter_t lms_parameters[] = {
{ lms_sha256_n32_h5, 32, 5 },
{ lms_sha256_n32_h10, 32, 10 },
{ lms_sha256_n32_h15, 32, 15 },
{ lms_sha256_n32_h20, 32, 20 },
{ lms_sha256_n32_h25, 32, 25 },
};
typedef struct lms_key {
hal_key_type_t type;
size_t level;
lms_parameter_t *lms;
lmots_parameter_t *lmots;
bytestring16 I;
size_t q; /* index of next lmots signing key */
hal_uuid_t *lmots_keys; /* private key components */
bytestring32 *T; /* public key components */
bytestring32 T1; /* copy of T[1] */
uint8_t *pubkey; /* in XDR format */
size_t pubkey_len;
uint8_t *signature; /* of public key by parent lms key */
size_t signature_len;
} lms_key_t;
static inline lms_parameter_t *lms_select_parameter_set(const lms_algorithm_t lms_type)
{
if (lms_type < lms_sha256_n32_h5 || lms_type > lms_sha256_n32_h25)
return NULL;
else
return &lms_parameters[lms_type - lms_sha256_n32_h5];
}
static inline size_t lms_public_key_len(lms_parameter_t * const lms)
{
/* u32str(type) || u32str(otstype) || I || T[1] */
return 2 * sizeof(uint32_t) + 16 + lms->m;
}
static inline size_t lms_signature_len(lms_parameter_t * const lms, lmots_parameter_t * const lmots)
{
/* u32str(q) || ots_signature || u32str(type) || path[0] || path[1] || ... || path[h-1] */
return 2 * sizeof(uint32_t) + lmots_signature_len(lmots) + lms->h * lms->m;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
/* Given a key with most fields filled in, generate the lms private and
* public key components.
* Let the caller worry about storage.
*/
static hal_error_t lms_generate(lms_key_t *key)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || key->lms == NULL || key->lmots == NULL || key->lmots_keys == NULL || key->T == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
check(hal_uuid_gen((hal_uuid_t *)&key->I));
key->q = 0;
bytestring32 x[key->lmots->p];
lmots_key_t lmots_key = {
.type = HAL_KEY_TYPE_HASHSIG_LMOTS,
.lmots = key->lmots,
.x = x
};
memcpy(&lmots_key.I, &key->I, sizeof(key->I));
hal_pkey_slot_t slot = {
.type = HAL_KEY_TYPE_HASHSIG_LMOTS,
.curve = HAL_CURVE_NONE,
.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0)
};
hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint32_t l;
uint16_t s;
size_t h2 = (1 << key->lms->h);
/* private key - array of lmots key names */
for (size_t q = 0; q < h2; ++q) {
/* generate the lmots private and public key components */
lmots_key.q = q;
check(lmots_generate(&lmots_key));
/* store the lmots key */
uint8_t der[lmots_private_key_to_der_len(&lmots_key)];
size_t der_len;
check(lmots_private_key_to_der(&lmots_key, der, &der_len, sizeof(der)));
check(hal_uuid_gen(&slot.name));
hal_error_t err = hal_ks_store(ks, &slot, der, der_len);
memset(&x, 0, sizeof(x));
memset(der, 0, sizeof(der));
if (err != HAL_OK) return err;
/* record the lmots keystore name */
memcpy(&key->lmots_keys[q], &slot.name, sizeof(slot.name));
/* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[r-2^h]) */
size_t r = h2 + q;
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)));
check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r])));
hal_task_yield_maybe();
}
/* generate the rest of T[r] = H(I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1]) */
for (size_t r = h2 - 1; r > 0; --r) {
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&key->T[2*r], sizeof(key->T[r])));
check(hal_hash_update(state, (const uint8_t *)&key->T[2*r+1], sizeof(key->T[r])));
check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r])));
hal_task_yield_maybe();
}
memcpy(&key->T1, &key->T[1], sizeof(key->T1));
/* generate the XDR encoding of the public key, which will be signed
* by the previous lms key
*/
uint8_t *pubkey = key->pubkey;
const uint8_t * const publim = key->pubkey + key->pubkey_len;
// u32str(lms_type) || u32str(lmots_type) || I || T[1]
check(hal_xdr_encode_int(&pubkey, publim, key->lms->type));
check(hal_xdr_encode_int(&pubkey, publim, key->lmots->type));
check(hal_xdr_encode_bytestring16(&pubkey, publim, &key->I));
check(hal_xdr_encode_bytestring32(&pubkey, publim, &key->T1));
return HAL_OK;
}
static hal_error_t lms_delete(const lms_key_t * const key)
{
hal_pkey_slot_t slot = {0};
hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
/* delete the lmots keys */
for (size_t i = 0; i < (1U << key->lms->h); ++i) {
memcpy(&slot.name, &key->lmots_keys[i], sizeof(slot.name));
check(hal_ks_delete(ks, &slot));
hal_task_yield_maybe();
}
/* delete the lms key */
memcpy(&slot.name, &key->I, sizeof(slot.name));
return hal_ks_delete(ks, &slot);
}
static hal_error_t lms_private_key_to_der(const lms_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max);
static hal_error_t lms_sign(lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
uint8_t *sig, size_t *sig_len, const size_t sig_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (key->q >= (1U << key->lms->h))
return HAL_ERROR_HASHSIG_KEY_EXHAUSTED;
if (sig_max < lms_signature_len(key->lms, key->lmots))
return HAL_ERROR_RESULT_TOO_LONG;
/* u32str(q) || ots_signature || u32str(lms_type) || path[0] || path[1] || ... || path[h-1] */
uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_max;
check(hal_xdr_encode_int(&sigptr, siglim, key->q));
/* fetch and decode the lmots signing key from the keystore */
hal_pkey_slot_t slot;
memset(&slot, 0, sizeof(slot));
memcpy(&slot.name, &key->lmots_keys[key->q], sizeof(slot.name));
lmots_key_t lmots_key;
memset(&lmots_key, 0, sizeof(lmots_key));
bytestring32 x[key->lmots->p];
memset(&x, 0, sizeof(x));
lmots_key.x = x;
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile;
check(hal_ks_fetch(ks, &slot, der, &der_len, sizeof(der)));
check(lmots_private_key_from_der(&lmots_key, der, der_len));
memset(&der, 0, sizeof(der));
//? check lmots_type and I vs. lms key?
/* generate the lmots signature */
size_t lmots_sig_len;
check(lmots_sign(&lmots_key, msg, msg_len, sigptr, &lmots_sig_len, sig_max - (sigptr - sig)));
memset(&x, 0, sizeof(x));
sigptr += lmots_sig_len;
check(hal_xdr_encode_int(&sigptr, siglim, key->lms->type));
/* generate the path array */
for (size_t r = (1 << key->lms->h) + key->q; r > 1; r /= 2)
check(hal_xdr_encode_bytestring32(&sigptr, siglim, ((r & 1) ? &key->T[r-1] : &key->T[r+1])));
if (sig_len != NULL)
*sig_len = sigptr - sig;
/* update and store q before returning the signature */
++key->q;
check(lms_private_key_to_der(key, der, &der_len, sizeof(der)));
slot.type = HAL_KEY_TYPE_HASHSIG_LMS;
slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN : 0);
memcpy(&slot.name, &key->I, sizeof(slot.name));
check(hal_ks_rewrite_der(ks, &slot, der, der_len));
return HAL_OK;
}
#endif
static hal_error_t lms_public_key_candidate(const lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len,
bytestring32 * Tc);
static hal_error_t lms_verify(const lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len)
{
if (key == NULL || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
/* We can do one length check right now, rather than the 3 in
* Algorithm 6b and 2 in Algorithm 4b, because the lms and lmots types
* in the signature have to match the key.
*/
if (sig_len != lms_signature_len(key->lms, key->lmots))
return HAL_ERROR_INVALID_SIGNATURE;
// Algorithm 6: LMS Signature Verification
//
// 1. if the public key is not at least eight bytes long, return
// INVALID
//
// 2. parse pubtype, I, and T[1] from the public key as follows:
//
// a. pubtype = strTou32(first 4 bytes of public key)
//
// b. ots_typecode = strTou32(next 4 bytes of public key)
//
// c. set m according to pubtype, based on Table 2
//
// d. if the public key is not exactly 24 + m bytes
// long, return INVALID
//
// e. I = next 16 bytes of the public key
//
// f. T[1] = next m bytes of the public key
//
// 3. compute the candidate LMS root value Tc from the signature,
// message, identifier and pubtype using Algorithm 6b.
bytestring32 Tc;
check(lms_public_key_candidate(key, msg, msg_len, sig, sig_len, &Tc));
// 4. if Tc is equal to T[1], return VALID; otherwise, return INVALID
return (memcmp(&Tc, &key->T1, sizeof(Tc)) ? HAL_ERROR_INVALID_SIGNATURE : HAL_OK);
}
static hal_error_t lms_public_key_candidate(const lms_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len,
bytestring32 * Tc)
{
// Algorithm 6b: Computing an LMS Public Key Candidate from a Signature,
// Message, Identifier, and algorithm typecode
/* XXX and pubotstype */
// 1. if the signature is not at least eight bytes long, return INVALID
//
// 2. parse sigtype, q, ots_signature, and path from the signature as
// follows:
//
// a. q = strTou32(first 4 bytes of signature)
const uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_len;
uint32_t q;
check(hal_xdr_decode_int(&sigptr, siglim, &q));
// b. otssigtype = strTou32(next 4 bytes of signature)
uint32_t otssigtype;
check(hal_xdr_decode_int_peek(&sigptr, siglim, &otssigtype));
// c. if otssigtype is not the OTS typecode from the public key, return INVALID
if ((lmots_algorithm_t)otssigtype != key->lmots->type)
return HAL_ERROR_INVALID_SIGNATURE;
// d. set n, p according to otssigtype and Table 1; if the
// signature is not at least 12 + n * (p + 1) bytes long, return INVALID
//
// e. ots_signature = bytes 8 through 8 + n * (p + 1) - 1 of signature
/* XXX Technically, this is also wrong - this is the remainder of
* ots_signature after otssigtype. The full ots_signature would be
* bytes 4 through 8 + n * (p + 1) - 1.
*/
const uint8_t * const ots_signature = sigptr;
sigptr += lmots_signature_len(key->lmots);
// f. sigtype = strTou32(4 bytes of signature at location 8 + n * (p + 1))
uint32_t sigtype;
check(hal_xdr_decode_int(&sigptr, siglim, &sigtype));
// f. if sigtype is not the LM typecode from the public key, return INVALID
if ((lms_algorithm_t)sigtype != key->lms->type)
return HAL_ERROR_INVALID_SIGNATURE;
// g. set m, h according to sigtype and Table 2
size_t m = key->lms->m;
size_t h = key->lms->h;
size_t h2 = (1 << key->lms->h);
// h. if q >= 2^h or the signature is not exactly 12 + n * (p + 1) + m * h bytes long, return INVALID
if (q >= h2)
return HAL_ERROR_INVALID_SIGNATURE;
// i. set path as follows:
// path[0] = next m bytes of signature
// path[1] = next m bytes of signature
// ...
// path[h-1] = next m bytes of signature
bytestring32 path[h];
for (size_t i = 0; i < h; ++i)
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &path[i]));
// 3. Kc = candidate public key computed by applying Algorithm 4b
// to the signature ots_signature, the message, and the
// identifiers I, q
lmots_key_t lmots_key = {
.type = HAL_KEY_TYPE_HASHSIG_LMOTS,
.lmots = key->lmots,
.q = q
};
memcpy(&lmots_key.I, &key->I, sizeof(lmots_key.I));
check(lmots_public_key_candidate(&lmots_key, msg, msg_len, ots_signature, lmots_signature_len(key->lmots)));
// 4. compute the candidate LMS root value Tc as follows:
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
uint32_t l;
uint16_t s;
// node_num = 2^h + q
size_t r = h2 + q;
// tmp = H(I || u32str(node_num) || u16str(D_LEAF) || Kc)
bytestring32 tmp;
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&lmots_key.I, sizeof(lmots_key.I)));
l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K)));
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
// i = 0
// while (node_num > 1) {
// if (node_num is odd):
// tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || path[i] || tmp)
// else:
// tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || tmp || path[i])
// node_num = node_num/2
// i = i + 1
// }
for (size_t i = 0; r > 1; r /= 2, ++i) {
check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf)));
check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I)));
l = u32str(r/2); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l)));
s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
if (r & 1) {
check(hal_hash_update(state, (const uint8_t *)&path[i], m));
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
}
else {
check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp)));
check(hal_hash_update(state, (const uint8_t *)&path[i], m));
}
check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp)));
}
// Tc = tmp
memcpy(Tc, &tmp, sizeof(*Tc));
return HAL_OK;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static hal_error_t lms_private_key_to_der(const lms_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS)
return HAL_ERROR_BAD_ARGUMENTS;
/*
* Calculate data length.
*/
// u32str(lms_type) || u32str(lmots_type) || I || q
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
uint8_t *d = der + hlen;
memset(d, 0, vlen);
check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len;
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
static size_t lms_private_key_to_der_len(const lms_key_t * const key)
{
size_t len = 0;
return lms_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
static hal_error_t lms_private_key_from_der(lms_key_t *key,
const uint8_t *der, const size_t der_len)
{
if (key == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
key->type = HAL_KEY_TYPE_HASHSIG_LMS;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len));
if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen));
const uint8_t *d = privkey + hlen;
size_t n;
// u32str(lms_type) || u32str(lmots_type) || I || q
lms_algorithm_t lms_type;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n;
key->lms = lms_select_parameter_set(lms_type);
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n;
check(hal_asn1_decode_size_t(&key->q, d, &n, vlen)); d += n; vlen -= n;
if (d != privkey + privkey_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
#endif
/* ---------------------------------------------------------------- */
/*
* HSS
*/
/* For purposes of the external API, the key type is "hal_hashsig_key_t".
* Internally, we refer to it as "hss_key_t".
*/
typedef struct hal_hashsig_key hss_key_t;
struct hal_hashsig_key {
hal_key_type_t type;
hss_key_t *next;
hal_uuid_t name;
size_t L;
lms_parameter_t *lms;
lmots_parameter_t *lmots;
bytestring16 I;
bytestring32 T1;
lms_key_t *lms_keys;
};
const size_t hal_hashsig_key_t_size = sizeof(hss_key_t);
static hss_key_t *hss_keys = NULL;
static inline size_t hss_public_key_len(lms_parameter_t * const lms)
{
/* L || pub[0] */
return sizeof(uint32_t) + lms_public_key_len(lms);
}
static inline size_t hss_signature_len(const size_t L, lms_parameter_t * const lms, lmots_parameter_t * const lmots)
{
/* u32str(Nspk) || sig[0] || pub[1] || ... || sig[Nspk-1] || pub[Nspk] || sig[Nspk] */
return sizeof(uint32_t) + L * lms_signature_len(lms, lmots) + (L - 1) * lms_public_key_len(lms);
}
size_t hal_hashsig_signature_len(const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type)
{
lms_parameter_t * const lms = lms_select_parameter_set(lms_type);
if (lms == NULL)
return 0;
lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type);
if (lmots == NULL)
return 0;
return hss_signature_len(L, lms, lmots);
}
size_t hal_hashsig_lmots_private_key_len(const lmots_algorithm_t lmots_type)
{
lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type);
if (lmots == NULL)
return 0;
return lmots_private_key_len(lmots);
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
static int restart_in_progress = 0;
static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size)
{
if (mem == NULL || *mem == NULL || len == NULL || size > *len)
return NULL;
void *ret = *mem;
*mem += size;
*len -= size;
return ret;
}
static hal_error_t hss_alloc(hal_hashsig_key_t **key_,
const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type)
{
if (key_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (L == 0 || L > 8)
return HAL_ERROR_BAD_ARGUMENTS;
lms_parameter_t *lms = lms_select_parameter_set(lms_type);
if (lms == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
size_t h2 = (1 << lms->h);
lmots_parameter_t *lmots = lmots_select_parameter_set(lmots_type);
if (lmots == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
/* w=1 fails on the Alpha, because the key exceeds the keystore block
* size. The XDR encoding of the key is going to differ from the DER
* encoding, but it's at least in the ballpark to tell us whether the key
* will fit.
*/
if (lmots_private_key_len(lmots) > HAL_KS_BLOCK_SIZE)
return HAL_ERROR_UNSUPPORTED_KEY;
if (hss_signature_len(L, lms, lmots) > HAL_RPC_MAX_PKT_SIZE)
return HAL_ERROR_UNSUPPORTED_KEY;
/* check volatile keystore for space to store the lower-level trees */
size_t available;
check(hal_ks_available(hal_ks_volatile, &available));
if (available < (L - 1) * (h2 + 1))
return HAL_ERROR_NO_KEY_INDEX_SLOTS;
size_t lms_sig_len = lms_signature_len(lms, lmots);
size_t lms_pub_len = lms_public_key_len(lms);
/* allocate lms tree nodes and lmots key names, atomically */
size_t len = (sizeof(hss_key_t) +
L * sizeof(lms_key_t) +
L * lms_sig_len +
L * lms_pub_len +
L * h2 * sizeof(hal_uuid_t) +
L * (2 * h2) * sizeof(bytestring32));
uint8_t *mem = hal_allocate_static_memory(len);
if (mem == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(mem, 0, len);
/* allocate the key that will stay in working memory */
hss_key_t *key = gnaw(&mem, &len, sizeof(hss_key_t));
*key_ = key;
key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE;
key->L = L;
key->lms = lms;
key->lmots = lmots;
/* add to the list of active keys */
key->next = hss_keys;
hss_keys = key;
/* allocate the list of lms trees */
key->lms_keys = gnaw(&mem, &len, L * sizeof(lms_key_t));
for (size_t i = 0; i < L; ++i) {
/* XXX some of this is redundant to lms_private_key_from_der */
lms_key_t * lms_key = &key->lms_keys[i];
lms_key->type = HAL_KEY_TYPE_HASHSIG_LMS;
lms_key->lms = lms;
lms_key->lmots = lmots;
lms_key->level = i;
lms_key->lmots_keys = (hal_uuid_t *)gnaw(&mem, &len, h2 * sizeof(hal_uuid_t));
lms_key->T = gnaw(&mem, &len, (2 * h2) * sizeof(bytestring32));
lms_key->signature = gnaw(&mem, &len, lms_sig_len);
lms_key->signature_len = lms_sig_len;
lms_key->pubkey = gnaw(&mem, &len, lms_pub_len);
lms_key->pubkey_len = lms_pub_len;
}
return HAL_OK;
}
/* called from pkey_local_generate_hashsig */
hal_error_t hal_hashsig_key_gen(hal_core_t *core,
hal_hashsig_key_t **key_,
const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type)
{
/* hss_alloc does most of the checks */
if (restart_in_progress)
return HAL_ERROR_NOT_READY;
/* check flash keystore for space to store the root tree */
lms_parameter_t *lms = lms_select_parameter_set(lms_type);
if (lms == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
size_t available;
check(hal_ks_available(hal_ks_token, &available));
if (available < (1U << lms->h) + 2)
return HAL_ERROR_NO_KEY_INDEX_SLOTS;
check(hss_alloc(key_, L, lms_type, lmots_type));
hss_key_t *key = *key_;
/* generate the lms trees */
for (size_t i = 0; i < L; ++i) {
lms_key_t * lms_key = &key->lms_keys[i];
check(lms_generate(lms_key));
if (i > 0)
/* sign this tree with the previous */
check(lms_sign(&key->lms_keys[i-1],
(const uint8_t * const)lms_key->pubkey, lms_public_key_len(key->lms),
lms_key->signature, NULL, lms_signature_len(key->lms, key->lmots)));
/* store the lms key */
hal_pkey_slot_t slot = {
.type = HAL_KEY_TYPE_HASHSIG_LMS,
.curve = HAL_CURVE_NONE,
.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((i == 0) ? HAL_KEY_FLAG_TOKEN: 0)
};
hal_ks_t *ks = (i == 0) ? hal_ks_token : hal_ks_volatile;
uint8_t der[lms_private_key_to_der_len(lms_key)];
size_t der_len;
memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)));
check(hal_ks_store(ks, &slot, der, der_len));
}
memcpy(&key->I, &key->lms_keys[0].I, sizeof(key->I));
memcpy(&key->T1, &key->lms_keys[0].T1, sizeof(key->T1));
/* pkey_local_generate_hashsig stores the key */
return HAL_OK;
}
/* caller will delete the hss key from the keystore */
hal_error_t hal_hashsig_key_delete(const hal_hashsig_key_t * const key)
{
if (restart_in_progress)
return HAL_ERROR_NOT_READY;
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
/* delete the lms trees and their lmots keys */
for (size_t level = 0; level < key->L; ++level)
check(lms_delete(&key->lms_keys[level]));
/* XXX free memory, if supported */
(void)hal_free_static_memory(key);
/* remove from global hss_keys linked list */
/* XXX or mark it unused, for possible re-use */
if (hss_keys == key) {
hss_keys = key->next;
}
else {
for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) {
if (prev->next == key) {
prev->next = key->next;
break;
}
}
}
return HAL_OK;
}
hal_error_t hal_hashsig_sign(hal_core_t *core,
const hal_hashsig_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
uint8_t *sig, size_t *sig_len, const size_t sig_max)
{
if (restart_in_progress)
return HAL_ERROR_NOT_READY;
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE || msg == NULL || sig == NULL || sig_len == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (sig_max < hss_signature_len(key->L, key->lms, key->lmots))
return HAL_ERROR_RESULT_TOO_LONG;
// To sign a message using the private key prv, the following steps are
// performed:
//
// If prv[L-1] is exhausted, then determine the smallest integer d
// such that all of the private keys prv[d], prv[d+1], ... , prv[L-1]
// are exhausted. If d is equal to zero, then the HSS key pair is
// exhausted, and it MUST NOT generate any more signatures.
// Otherwise, the key pairs for levels d through L-1 must be
// regenerated during the signature generation process, as follows.
// For i from d to L-1, a new LMS public and private key pair with a
// new identifier is generated, pub[i] and prv[i] are set to those
// values, then the public key pub[i] is signed with prv[i-1], and
// sig[i-1] is set to the resulting value.
size_t h2 = (1 << key->lms->h);
if (key->lms_keys[key->L-1].q >= h2) {
size_t d;
for (d = key->L-1; d > 0 && key->lms_keys[d-1].q >= h2; --d) {
}
if (d == 0)
return HAL_ERROR_HASHSIG_KEY_EXHAUSTED;
for ( ; d < key->L; ++d) {
lms_key_t *lms_key = &key->lms_keys[d];
/* Delete then regenerate the LMS key. We don't worry about
* power-cycling in the middle, because the lower-level trees are
* all stored in the volatile keystore, so we'd have to regenerate
* them anyway on restart; and this way we don't have to allocate
* any additional memory.
*/
check(lms_delete(lms_key));
check(lms_generate(lms_key));
check(lms_sign(&key->lms_keys[d-1],
(const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len,
lms_key->signature, NULL, lms_key->signature_len));
hal_pkey_slot_t slot = {
.type = HAL_KEY_TYPE_HASHSIG_LMS,
.curve = HAL_CURVE_NONE,
.flags = (lms_key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0
};
hal_ks_t *ks = (lms_key->level == 0) ? hal_ks_token : hal_ks_volatile;
uint8_t der[lms_private_key_to_der_len(lms_key)];
size_t der_len;
memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)));
check(hal_ks_store(ks, &slot, der, der_len));
}
}
// The message is signed with prv[L-1], and the value sig[L-1] is set
// to that result.
//
// The value of the HSS signature is set as follows. We let
// signed_pub_key denote an array of octet strings, where
// signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and Nspk-
// 1, inclusive, where Nspk = L-1 denotes the number of signed public
// keys. Then the HSS signature is u32str(Nspk) ||
// signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk].
uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_max;
check(hal_xdr_encode_int(&sigptr, siglim, key->L - 1));
/* copy the lms signed public keys into the signature */
for (size_t i = 1; i < key->L; ++i) {
lms_key_t *lms_key = &key->lms_keys[i];
check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->signature, lms_key->signature_len));
check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->pubkey, lms_key->pubkey_len));
}
/* sign the message with the last lms private key */
size_t len;
check(lms_sign(&key->lms_keys[key->L-1], msg, msg_len, sigptr, &len, sig_max - (sigptr - sig)));
sigptr += len;
*sig_len = sigptr - sig;
return HAL_OK;
}
#endif
hal_error_t hal_hashsig_verify(hal_core_t *core,
const hal_hashsig_key_t * const key,
const uint8_t * const msg, const size_t msg_len,
const uint8_t * const sig, const size_t sig_len)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC || msg == NULL || sig == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
core = core;
// To verify a signature sig and message using the public key pub, the
// following steps are performed:
//
// The signature S is parsed into its components as follows:
//
// Nspk = strTou32(first four bytes of S)
// if Nspk+1 is not equal to the number of levels L in pub:
// return INVALID
const uint8_t *sigptr = sig;
const uint8_t * const siglim = sig + sig_len;
uint32_t Nspk;
check(hal_xdr_decode_int(&sigptr, siglim, &Nspk));
if (Nspk + 1 != key->L)
return HAL_ERROR_INVALID_SIGNATURE;
// key = pub
// for (i = 0; i < Nspk; i = i + 1) {
// sig = next LMS signature parsed from S
// msg = next LMS public key parsed from S
// if (lms_verify(msg, key, sig) != VALID):
// return INVALID
// key = msg
// }
lms_key_t pub = {
.type = HAL_KEY_TYPE_HASHSIG_LMS,
.lms = key->lms,
.lmots = key->lmots
};
memcpy(&pub.I, &key->I, sizeof(pub.I));
memcpy(&pub.T1, &key->T1, sizeof(pub.T1));
for (size_t i = 0; i < Nspk; ++i) {
const uint8_t * const lms_sig = sigptr;
/* peek into the signature for the lmots and lms types */
/* XXX The structure of the LMS signature makes this a bigger pain
* in the ass than necessary.
*/
/* skip over q */
sigptr += 4;
/* read lmots_type out of the ots_signature */
uint32_t lmots_type;
check(hal_xdr_decode_int_peek(&sigptr, siglim, &lmots_type));
lmots_parameter_t *lmots = lmots_select_parameter_set((lmots_algorithm_t)lmots_type);
if (lmots == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
/* skip over ots_signature */
sigptr += lmots_signature_len(lmots);
/* read lms_type after ots_signature */
uint32_t lms_type;
check(hal_xdr_decode_int(&sigptr, siglim, &lms_type));
lms_parameter_t *lms = lms_select_parameter_set((lms_algorithm_t)lms_type);
if (lms == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
/* skip over the path elements of the lms signature */
sigptr += lms->h * lms->m;
/*XXX sigptr = lms_sig + lms_signature_len(lms, lmots); */
/* verify the signature over the bytestring version of the signed public key */
check(lms_verify(&pub, sigptr, lms_public_key_len(lms), lms_sig, sigptr - lms_sig));
/* parse the signed public key */
check(hal_xdr_decode_int(&sigptr, siglim, &lms_type));
pub.lms = lms_select_parameter_set((lmots_algorithm_t)lms_type);
if (pub.lms == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
check(hal_xdr_decode_int(&sigptr, siglim, &lmots_type));
pub.lmots = lmots_select_parameter_set((lmots_algorithm_t)lmots_type);
if (pub.lmots == NULL)
return HAL_ERROR_INVALID_SIGNATURE;
check(hal_xdr_decode_bytestring16(&sigptr, siglim, &pub.I));
check(hal_xdr_decode_bytestring32(&sigptr, siglim, &pub.T1));
}
/* verify the final signature over the message */
return lms_verify(&pub, msg, msg_len, sigptr, sig_len - (sigptr - sig));
}
hal_error_t hal_hashsig_private_key_to_der(const hal_hashsig_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
/*
* Calculate data length.
*/
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0));
check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max));
if (der == NULL)
return HAL_OK;
/*
* Encode data.
*/
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
uint8_t *d = der + hlen;
memset(d, 0, vlen);
check(hal_asn1_encode_size_t(key->L, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len;
check(hal_asn1_encode_bytestring32(&key->T1, d, &len, vlen)); d += len; vlen -= len;
return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, d - der, der, der_len, der_max);
}
size_t hal_hashsig_private_key_to_der_len(const hal_hashsig_key_t * const key)
{
size_t len = 0;
return hal_hashsig_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t *der, const size_t der_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hss_key_t *key = *key_ = keybuf;
key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE;
size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len;
const uint8_t *alg_oid, *curve_oid, *privkey;
hal_error_t err;
if ((err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len,
&curve_oid, &curve_oid_len,
&privkey, &privkey_len,
der, der_len)) != HAL_OK)
return err;
if (alg_oid_len != hal_asn1_oid_mts_hashsig_len ||
memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 ||
curve_oid_len != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t *d = privkey + hlen;
size_t n;
check(hal_asn1_decode_size_t(&key->L, d, &n, vlen)); d += n; vlen -= n;
lms_algorithm_t lms_type;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n;
key->lms = lms_select_parameter_set(lms_type);
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n;
check(hal_asn1_decode_bytestring32(&key->T1, d, &n, vlen)); d += n; vlen -= n;
if (d != privkey + privkey_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
/* Find this key in the list of active hashsig keys, and return a
* pointer to that key structure, rather than the caller-provided key
* structure. (The caller will wipe his own key structure when done,
* and not molest ours.)
*/
for (hss_key_t *hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
if (memcmp(&key->I, &hss_key->lms_keys[0].I, sizeof(key->I)) == 0) {
*key_ = hss_key;
}
}
return HAL_OK;
}
hal_error_t hal_hashsig_public_key_to_der(const hal_hashsig_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || (key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE &&
key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC))
return HAL_ERROR_BAD_ARGUMENTS;
// L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
size_t len, vlen = 0, hlen;
check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len;
check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max));
if (der != NULL) {
uint8_t *d = der + hlen;
size_t dlen = vlen;
memset(d, 0, vlen);
check(hal_asn1_encode_size_t(key->L, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_bytestring16(&key->I, d, &len, dlen)); d += len; dlen -= len;
check(hal_asn1_encode_bytestring32(&key->T1, d, &len, dlen)); d += len; dlen -= len;
}
return hal_asn1_encode_spki(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len,
NULL, 0, der, hlen + vlen,
der, der_len, der_max);
}
size_t hal_hashsig_public_key_to_der_len(const hal_hashsig_key_t * const key)
{
size_t len = 0;
return hal_hashsig_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
hal_error_t hal_hashsig_public_key_from_der(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hss_key_t) || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hss_key_t *key = keybuf;
memset(keybuf, 0, keybuf_len);
*key_ = key;
key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC;
const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
size_t alg_oid_len, null_len, pubkey_len;
check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len));
if (null != NULL || null_len != 0 || alg_oid == NULL ||
alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
size_t len, hlen, vlen;
check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen));
const uint8_t * const pubkey_end = pubkey + hlen + vlen;
const uint8_t *d = pubkey + hlen;
// L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
lms_algorithm_t lms_type;
lmots_algorithm_t lmots_type;
check(hal_asn1_decode_size_t(&key->L, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len;
key->lms = lms_select_parameter_set(lms_type);
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len;
key->lmots = lmots_select_parameter_set(lmots_type);
check(hal_asn1_decode_bytestring16(&key->I, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_bytestring32(&key->T1, d, &len, pubkey_end - d)); d += len;
if (d != pubkey_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
hal_error_t hal_hashsig_key_load_public(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const size_t L,
const lms_algorithm_t lms_type,
const lmots_algorithm_t lmots_type,
const uint8_t * const I, const size_t I_len,
const uint8_t * const T1, const size_t T1_len)
{
if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) ||
I == NULL || I_len != sizeof(bytestring16) ||
T1 == NULL || T1_len != sizeof(bytestring32))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
hal_hashsig_key_t *key = keybuf;
key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC;
key->L = L;
key->lms = lms_select_parameter_set(lms_type);
key->lmots = lmots_select_parameter_set(lmots_type);
if (key->lms == NULL || key->lmots == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memcpy(&key->I, I, I_len);
memcpy(&key->T1, T1, T1_len);
*key_ = key;
return HAL_OK;
}
hal_error_t hal_hashsig_key_load_public_xdr(hal_hashsig_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const xdr, const size_t xdr_len)
{
const uint8_t *xdrptr = xdr;
const uint8_t * const xdrlim = xdr + xdr_len;
/* L || u32str(lms_type) || u32str(lmots_type) || I || T[1] */
uint32_t L, lms_type, lmots_type;
bytestring16 *I;
bytestring32 *T1;
check(hal_xdr_decode_int(&xdrptr, xdrlim, &L));
check(hal_xdr_decode_int(&xdrptr, xdrlim, &lms_type));
check(hal_xdr_decode_int(&xdrptr, xdrlim, &lmots_type));
check(hal_xdr_decode_bytestring16_ptr(&xdrptr, xdrlim, &I));
check(hal_xdr_decode_bytestring32_ptr(&xdrptr, xdrlim, &T1));
return hal_hashsig_key_load_public(key_, keybuf, keybuf_len, L, lms_type, lmots_type,
(const uint8_t * const)I, sizeof(bytestring16),
(const uint8_t * const)T1, sizeof(bytestring32));
}
hal_error_t hal_hashsig_public_key_der_to_xdr(const uint8_t * const der, const size_t der_len,
uint8_t * const xdr, size_t * const xdr_len , const size_t xdr_max)
{
if (der == NULL || xdr == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL;
size_t alg_oid_len, null_len, pubkey_len;
check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len));
if (null != NULL || null_len != 0 || alg_oid == NULL ||
alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
size_t len, hlen, vlen;
check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen));
const uint8_t * const pubkey_end = pubkey + hlen + vlen;
const uint8_t *d = pubkey + hlen;
// L || u32str(lms_type) || u32str(lmots_type) || I || T[1]
size_t L;
lms_algorithm_t lms_type;
lmots_algorithm_t lmots_type;
bytestring16 I;
bytestring32 T1;
check(hal_asn1_decode_size_t(&L, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_bytestring16(&I, d, &len, pubkey_end - d)); d += len;
check(hal_asn1_decode_bytestring32(&T1, d, &len, pubkey_end - d)); d += len;
if (d != pubkey_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
uint8_t * xdrptr = xdr;
const uint8_t * const xdrlim = xdr + xdr_max;
check(hal_xdr_encode_int(&xdrptr, xdrlim, L));
check(hal_xdr_encode_int(&xdrptr, xdrlim, lms_type));
check(hal_xdr_encode_int(&xdrptr, xdrlim, lmots_type));
check(hal_xdr_encode_bytestring16(&xdrptr, xdrlim, &I));
check(hal_xdr_encode_bytestring32(&xdrptr, xdrlim, &T1));
if (xdr_len != NULL)
*xdr_len = xdrptr - xdr;
return HAL_OK;
}
#if RPC_CLIENT == RPC_CLIENT_LOCAL
/* Reinitialize the hashsig key structures after a device restart */
hal_error_t hal_hashsig_ks_init(void)
{
const hal_client_handle_t client = { -1 };
const hal_session_handle_t session = { HAL_HANDLE_NONE };
hal_uuid_t prev_name = {{0}};
unsigned len;
hal_pkey_slot_t slot = {0};
uint8_t der[HAL_KS_WRAPPED_KEYSIZE];
size_t der_len;
restart_in_progress = 1;
/* Find all hss private keys */
while ((hal_ks_match(hal_ks_token, client, session,
HAL_KEY_TYPE_HASHSIG_PRIVATE, HAL_CURVE_NONE, 0, 0, NULL, 0,
&slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
hal_hashsig_key_t keybuf, *key;
if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK ||
hal_hashsig_private_key_from_der(&key, (void *)&keybuf, sizeof(keybuf), der, der_len) != HAL_OK) {
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
/* Make sure we have the lms key */
hal_pkey_slot_t lms_slot = {0};
lms_key_t lms_key;
memcpy(&lms_slot.name, &key->I, sizeof(lms_slot.name));
if (hal_ks_fetch(hal_ks_token, &lms_slot, der, &der_len, sizeof(der)) != HAL_OK ||
lms_private_key_from_der(&lms_key, der, der_len) != HAL_OK ||
/* check keys for consistency */
lms_key.lms != key->lms ||
lms_key.lmots != key->lmots ||
memcmp(&lms_key.I, &key->I, sizeof(lms_key.I)) != 0 ||
/* optimistically allocate the full hss key structure */
hss_alloc(&key, key->L, key->lms->type, key->lmots->type) != HAL_OK) {
(void)hal_ks_delete(hal_ks_token, &slot);
(void)hal_ks_delete(hal_ks_token, &lms_slot);
continue;
}
/* hss_alloc redefines key, so copy fields from the old version of the key */
memcpy(&key->I, &keybuf.I, sizeof(key->I));
memcpy(&key->T1, &keybuf.T1, sizeof(key->T1));
key->name = slot.name;
/* initialize top-level lms key (beyond what hss_alloc did) */
memcpy(&key->lms_keys[0].I, &lms_key.I, sizeof(lms_key.I));
key->lms_keys[0].q = lms_key.q;
prev_name = slot.name;
}
/* Delete orphaned lms keys */
memset(&prev_name, 0, sizeof(prev_name));
while ((hal_ks_match(hal_ks_token, client, session,
HAL_KEY_TYPE_HASHSIG_LMS, HAL_CURVE_NONE, 0, 0, NULL, 0,
&slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
hss_key_t *hss_key;
for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
if (memcmp(&slot.name, &hss_key->I, sizeof(slot.name)) == 0)
break;
}
if (hss_key == NULL) {
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
prev_name = slot.name;
}
/* Find all lmots keys */
memset(&prev_name, 0, sizeof(prev_name));
while ((hal_ks_match(hal_ks_token, client, session,
HAL_KEY_TYPE_HASHSIG_LMOTS, HAL_CURVE_NONE, 0, 0, NULL, 0,
&slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) {
if (hss_keys == NULL) {
/* if no hss keys were recovered, all lmots keys are orphaned */
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
lmots_key_t lmots_key = {0};
if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK ||
lmots_private_key_from_der(&lmots_key, der, der_len) != HAL_OK) {
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
hss_key_t *hss_key;
for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_key->next) {
if (memcmp(&hss_key->I, &lmots_key.I, sizeof(lmots_key.I)) == 0)
break;
}
if (hss_key == NULL) {
/* delete orphaned key */
(void)hal_ks_delete(hal_ks_token, &slot);
continue;
}
/* record this lmots key in the top-level lms key */
memcpy(&hss_key->lms_keys[0].lmots_keys[lmots_key.q], &slot.name, sizeof(slot.name));
/* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */
size_t r = (1U << hss_key->lms->h) + lmots_key.q;
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf));
hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I));
uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l));
uint16_t s = u16str(D_LEAF); hal_hash_update(state, (const uint8_t *)&s, sizeof(s));
hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K));
hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r]));
prev_name = slot.name;
}
/* After all keys have been read, scan for completeness. */
hal_uuid_t uuid_0 = {{0}};
hss_key_t *hss_key, *hss_next = NULL;
for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_next) {
hss_next = hss_key->next;
int fail = 0;
for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) {
if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) == 0) {
fail = 1;
break;
}
}
if (fail) {
fail:
/* lms key is incomplete, give up on it */
/* delete lmots keys */
for (size_t i = 0; i < (1U << hss_key->lms->h); ++i) {
if (hal_uuid_cmp(&hss_key->lms_keys[0].lmots_keys[i], &uuid_0) != 0) {
memcpy(&slot.name, &hss_key->lms_keys[0].lmots_keys[i], sizeof(slot.name));
(void)hal_ks_delete(hal_ks_token, &slot);
}
}
/* delete lms key */
memcpy(&slot.name, &hss_key->I, sizeof(slot.name));
(void)hal_ks_delete(hal_ks_token, &slot);
/* delete hss key */
slot.name = hss_key->name;
(void)hal_ks_delete(hal_ks_token, &slot);
/* remove the hss key from the key list */
if (hss_keys == hss_key) {
hss_keys = hss_key->next;
}
else {
for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) {
if (prev->next == hss_key) {
prev->next = hss_key->next;
break;
}
}
}
(void)hal_free_static_memory(hss_key);
continue;
}
/* generate the rest of T[] */
for (size_t r = (1U << hss_key->lms->h) - 1; r > 0; --r) {
uint8_t statebuf[512];
hal_hash_state_t *state = NULL;
hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf));
hal_hash_update(state, (const uint8_t *)&hss_key->I, sizeof(hss_key->I));
uint32_t l = u32str(r); hal_hash_update(state, (const uint8_t *)&l, sizeof(l));
uint16_t s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s)));
hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r], sizeof(hss_key->lms_keys[0].T[r]));
hal_hash_update(state, (const uint8_t *)&hss_key->lms_keys[0].T[2*r+1], sizeof(hss_key->lms_keys[0].T[r]));
hal_hash_finalize(state, (uint8_t *)&hss_key->lms_keys[0].T[r], sizeof(hss_key->lms_keys[0].T[r]));
}
if (memcmp(&hss_key->lms_keys[0].T[1], &hss_key->T1, sizeof(hss_key->lms_keys[0].T[1])) != 0)
goto fail;
/* generate the lower-level lms keys */
for (size_t i = 1; i < hss_key->L; ++i) {
lms_key_t * lms_key = &hss_key->lms_keys[i];
if (lms_generate(lms_key) != HAL_OK)
goto fail;
/* store the lms key */
slot.type = HAL_KEY_TYPE_HASHSIG_LMS;
slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE;
memcpy(&slot.name, &lms_key->I, sizeof(slot.name));
if (lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)) != HAL_OK ||
hal_ks_store(hal_ks_volatile, &slot, der, der_len) != HAL_OK ||
/* sign this lms key with the previous */
lms_sign(&hss_key->lms_keys[i-1],
(const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len,
lms_key->signature, NULL, lms_key->signature_len) != HAL_OK)
goto fail;
}
}
restart_in_progress = 0;
return HAL_OK;
}
#endif