/*
* hashes.c
* --------
* HAL interface to Cryptech hash cores.
*
* Authors: Joachim Strömbergson, Paul Selkirk, Rob Austein
* Copyright (c) 2014-2015, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "hal.h"
#include "verilog_constants.h"
/*
* HMAC magic numbers.
*/
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
/*
* Driver. This encapsulates whatever per-algorithm voodoo we need
* this week. At the moment, this is mostly Cryptech core addresses,
* but this is subject to change without notice.
*
* Most of the addresses in the current version could be calculated
* from a single address (the core base address), but this week's
* theory prefers the precomputed composite addresses, and doing it
* this way saves some microscopic bit of addition at runtime.
* Whatever. It'll probably all change again once we have a dynamic
* memory map, so it's not really worth overthinking at the moment.
*/
struct hal_hash_driver {
size_t length_length; /* Length of the length field */
hal_addr_t block_addr; /* Where to write hash blocks */
hal_addr_t digest_addr; /* Where to read digest */
uint8_t ctrl_mode; /* Digest mode, for cores that have modes */
};
/*
* Hash state. For now we assume that the only core state we need to
* save and restore is the current digest value.
*/
struct hal_hash_state {
const hal_core_t *core;
const hal_hash_descriptor_t *descriptor;
const hal_hash_driver_t *driver;
uint64_t msg_length_high; /* Total data hashed in this message */
uint64_t msg_length_low; /* (128 bits in SHA-512 cases) */
uint8_t block[HAL_MAX_HASH_BLOCK_LENGTH], /* Block we're accumulating */
core_state[HAL_MAX_HASH_DIGEST_LENGTH]; /* Saved core state */
size_t block_used; /* How much of the block we've used */
unsigned block_count; /* Blocks sent */
unsigned flags;
};
#define STATE_FLAG_STATE_ALLOCATED 0x1 /* State buffer dynamically allocated */
/*
* HMAC state. Right now this just holds the key block and a hash
* context; if and when we figure out how PCLSR the hash cores, we
* might want to save a lot more than that, and may also want to
* reorder certain operations during HMAC initialization to get a
* performance boost for things like PBKDF2.
*/
struct hal_hmac_state {
hal_hash_state_t hash_state; /* Hash state */
uint8_t keybuf[HAL_MAX_HASH_BLOCK_LENGTH]; /* HMAC key */
};
/*
* Drivers for known digest algorithms.
*
* Initialization of the core_name field is not a typo, we're
* concatenating two string constants and trusting the compiler to
* whine if the resulting string doesn't fit into the field.
*/
static const hal_hash_driver_t sha1_driver = {
SHA1_LENGTH_LEN, SHA1_ADDR_BLOCK, SHA1_ADDR_DIGEST, 0
};
static const hal_hash_driver_t sha256_driver = {
SHA256_LENGTH_LEN, SHA256_ADDR_BLOCK, SHA256_ADDR_DIGEST, 0
};
static const hal_hash_driver_t sha512_224_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, MODE_SHA_512_224
};
static const hal_hash_driver_t sha512_256_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, MODE_SHA_512_256
};
static const hal_hash_driver_t sha384_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, MODE_SHA_384
};
static const hal_hash_driver_t sha512_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, MODE_SHA_512
};
/*
* Digest algorithm identifiers: DER encoded full TLV of an
* DigestAlgorithmIdentifier SEQUENCE including OID for the algorithm in
* question and a NULL parameters value.
*
* See RFC 2313 and the NIST algorithm registry:
* http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
*
* The DER encoding is too complex to generate in the C preprocessor,
* and we want these as compile-time constants, so we just supply the
* raw hex encoding here. If this gets seriously out of control we'll
* write a script to generate a header file we can include.
*/
static const uint8_t
dalgid_sha1[] = { 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00 },
dalgid_sha256[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00 },
dalgid_sha384[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00 },
dalgid_sha512[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00 },
dalgid_sha512_224[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x05, 0x05, 0x00 },
dalgid_sha512_256[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x06, 0x05, 0x00 };
/*
* Descriptors. Yes, the {hash,hmac}_state_length fields are a bit
* repetitive given that they (currently) have the same value
* regardless of algorithm, but we don't want to wire in that
* assumption, so it's simplest to be explicit.
*/
const hal_hash_descriptor_t hal_hash_sha1[1] = {{
SHA1_BLOCK_LEN, SHA1_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha1, sizeof(dalgid_sha1),
&sha1_driver, SHA1_NAME, 0
}};
const hal_hash_descriptor_t hal_hash_sha256[1] = {{
SHA256_BLOCK_LEN, SHA256_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha256, sizeof(dalgid_sha256),
&sha256_driver, SHA256_NAME, 1
}};
const hal_hash_descriptor_t hal_hash_sha512_224[1] = {{
SHA512_BLOCK_LEN, SHA512_224_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512_224, sizeof(dalgid_sha512_224),
&sha512_224_driver, SHA512_NAME, 0
}};
const hal_hash_descriptor_t hal_hash_sha512_256[1] = {{
SHA512_BLOCK_LEN, SHA512_256_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512_256, sizeof(dalgid_sha512_256),
&sha512_256_driver, SHA512_NAME, 0
}};
const hal_hash_descriptor_t hal_hash_sha384[1] = {{
SHA512_BLOCK_LEN, SHA384_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha384, sizeof(dalgid_sha384),
&sha384_driver, SHA512_NAME, 0
}};
const hal_hash_descriptor_t hal_hash_sha512[1] = {{
SHA512_BLOCK_LEN, SHA512_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512, sizeof(dalgid_sha512),
&sha512_driver, SHA512_NAME, 0
}};
/*
* Debugging control.
*/
static int debug = 0;
void hal_hash_set_debug(int onoff)
{
debug = onoff;
}
/*
* Internal utility to do whatever checking we need of a descriptor,
* then extract the driver pointer in a way that works nicely with
* initialization of an automatic const pointer.
*
* Returns the driver pointer on success, NULL on failure.
*/
static const hal_hash_driver_t *check_driver(const hal_hash_descriptor_t * const descriptor)
{
return descriptor == NULL ? NULL : descriptor->driver;
}
/*
* Internal utility to check core against descriptor, including
* attempting to locate an appropriate core if we weren't given one.
*/
static hal_error_t check_core(const hal_core_t **core,
const hal_hash_descriptor_t * const descriptor)
{
assert(descriptor != NULL && descriptor->driver != NULL);
return hal_core_check_name(core, descriptor->core_name);
}
/*
* Initialize hash state.
*/
hal_error_t hal_hash_initialize(const hal_core_t *core,
const hal_hash_descriptor_t * const descriptor,
hal_hash_state_t **state_,
void *state_buffer, const size_t state_length)
{
const hal_hash_driver_t * const driver = check_driver(descriptor);
hal_hash_state_t *state = state_buffer;
hal_error_t err;
if (driver == NULL || state_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer != NULL && state_length < descriptor->hash_state_length)
return HAL_ERROR_BAD_ARGUMENTS;
if ((err = check_core(&core, descriptor)) != HAL_OK)
return err;
if (state_buffer == NULL && (state = malloc(descriptor->hash_state_length)) == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(state, 0, sizeof(*state));
state->descriptor = descriptor;
state->driver = driver;
state->core = core;
if (state_buffer == NULL)
state->flags |= STATE_FLAG_STATE_ALLOCATED;
*state_ = state;
return HAL_OK;
}
/*
* Clean up hash state. No-op unless memory was dynamically allocated.
*/
void hal_hash_cleanup(hal_hash_state_t **state_)
{
if (state_ == NULL)
return;
hal_hash_state_t *state = *state_;
if (state == NULL || (state->flags & STATE_FLAG_STATE_ALLOCATED) == 0)
return;
memset(state, 0, state->descriptor->hash_state_length);
free(state);
*state_ = NULL;
}
/*
* Read hash result from core. At least for now, this also serves to
* read current hash state from core.
*/
static hal_error_t hash_read_digest(const hal_core_t *core,
const hal_hash_driver_t * const driver,
uint8_t *digest,
const size_t digest_length)
{
hal_error_t err;
assert(digest != NULL && digest_length % 4 == 0);
if ((err = hal_io_wait_valid(core)) != HAL_OK)
return err;
return hal_io_read(core, driver->digest_addr, digest, digest_length);
}
/*
* Write hash state back to core.
*/
static hal_error_t hash_write_digest(const hal_core_t *core,
const hal_hash_driver_t * const driver,
const uint8_t * const digest,
const size_t digest_length)
{
hal_error_t err;
assert(digest != NULL && digest_length % 4 == 0);
if ((err = hal_io_wait_ready(core)) != HAL_OK)
return err;
return hal_io_write(core, driver->digest_addr, digest, digest_length);
}
/*
* Send one block to a core.
*/
static hal_error_t hash_write_block(hal_hash_state_t * const state)
{
uint8_t ctrl_cmd[4];
hal_error_t err;
assert(state != NULL && state->descriptor != NULL && state->driver != NULL);
assert(state->descriptor->block_length % 4 == 0);
assert(state->descriptor->digest_length <= sizeof(state->core_state) ||
!state->descriptor->can_restore_state);
if (debug)
fprintf(stderr, "[ %s ]\n", state->block_count == 0 ? "init" : "next");
if ((err = hal_io_wait_ready(state->core)) != HAL_OK)
return err;
if (state->descriptor->can_restore_state &&
state->block_count != 0 &&
(err = hash_write_digest(state->core, state->driver, state->core_state,
state->descriptor->digest_length)) != HAL_OK)
return err;
if ((err = hal_io_write(state->core, state->driver->block_addr, state->block,
state->descriptor->block_length)) != HAL_OK)
return err;
ctrl_cmd[0] = ctrl_cmd[1] = ctrl_cmd[2] = 0;
ctrl_cmd[3] = state->block_count == 0 ? CTRL_INIT : CTRL_NEXT;
ctrl_cmd[3] |= state->driver->ctrl_mode;
if ((err = hal_io_write(state->core, ADDR_CTRL, ctrl_cmd, sizeof(ctrl_cmd))) != HAL_OK)
return err;
if (state->descriptor->can_restore_state &&
(err = hash_read_digest(state->core, state->driver, state->core_state,
state->descriptor->digest_length)) != HAL_OK)
return err;
return hal_io_wait_valid(state->core);
}
/*
* Add data to hash.
*/
hal_error_t hal_hash_update(hal_hash_state_t *state, /* Opaque state block */
const uint8_t * const data_buffer, /* Data to be hashed */
size_t data_buffer_length) /* Length of data_buffer */
{
const uint8_t *p = data_buffer;
hal_error_t err;
size_t n;
if (state == NULL || data_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (data_buffer_length == 0)
return HAL_OK;
assert(state->descriptor != NULL && state->driver != NULL);
assert(state->descriptor->block_length <= sizeof(state->block));
while ((n = state->descriptor->block_length - state->block_used) <= data_buffer_length) {
/*
* We have enough data for another complete block.
*/
if (debug)
fprintf(stderr, "[ Full block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
memcpy(state->block + state->block_used, p, n);
if ((state->msg_length_low += n) < n)
state->msg_length_high++;
state->block_used = 0;
data_buffer_length -= n;
p += n;
if ((err = hash_write_block(state)) != HAL_OK)
return err;
state->block_count++;
}
if (data_buffer_length > 0) {
/*
* Data left over, but not enough for a full block, stash it.
*/
if (debug)
fprintf(stderr, "[ Partial block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
assert(data_buffer_length < n);
memcpy(state->block + state->block_used, p, data_buffer_length);
if ((state->msg_length_low += data_buffer_length) < data_buffer_length)
state->msg_length_high++;
state->block_used += data_buffer_length;
}
return HAL_OK;
}
/*
* Finish hash and return digest.
*/
hal_error_t hal_hash_finalize(hal_hash_state_t *state, /* Opaque state block */
uint8_t *digest_buffer, /* Returned digest */
const size_t digest_buffer_length) /* Length of digest_buffer */
{
uint64_t bit_length_high, bit_length_low;
hal_error_t err;
uint8_t *p;
size_t n;
int i;
if (state == NULL || digest_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
assert(state->descriptor != NULL && state->driver != NULL);
if (digest_buffer_length < state->descriptor->digest_length)
return HAL_ERROR_BAD_ARGUMENTS;
assert(state->descriptor->block_length <= sizeof(state->block));
/*
* Add padding, then pull result from the core
*/
bit_length_low = (state->msg_length_low << 3);
bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61);
/* Initial pad byte */
assert(state->block_used < state->descriptor->block_length);
state->block[state->block_used++] = 0x80;
/* If not enough room for bit count, zero and push current block */
if ((n = state->descriptor->block_length - state->block_used) < state->driver->length_length) {
if (debug)
fprintf(stderr, "[ Overflow block, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
if (n > 0)
memset(state->block + state->block_used, 0, n);
if ((err = hash_write_block(state)) != HAL_OK)
return err;
state->block_count++;
state->block_used = 0;
}
/* Pad final block */
n = state->descriptor->block_length - state->block_used;
assert(n >= state->driver->length_length);
if (n > 0)
memset(state->block + state->block_used, 0, n);
if (debug)
fprintf(stderr, "[ Final block, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
p = state->block + state->descriptor->block_length;
for (i = 0; (bit_length_low || bit_length_high) && i < state->driver->length_length; i++) {
*--p = (uint8_t) (bit_length_low & 0xFF);
bit_length_low >>= 8;
if (bit_length_high) {
bit_length_low |= ((bit_length_high & 0xFF) << 56);
bit_length_high >>= 8;
}
}
/* Push final block */
if ((err = hash_write_block(state)) != HAL_OK)
return err;
state->block_count++;
/* All data pushed to core, now we just need to read back the result */
if ((err = hash_read_digest(state->core, state->driver, digest_buffer, state->descriptor->digest_length)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Initialize HMAC state.
*/
hal_error_t hal_hmac_initialize(const hal_core_t *core,
const hal_hash_descriptor_t * const descriptor,
hal_hmac_state_t **state_,
void *state_buffer, const size_t state_length,
const uint8_t * const key, const size_t key_length)
{
const hal_hash_driver_t * const driver = check_driver(descriptor);
hal_hmac_state_t *state = state_buffer;
hal_error_t err;
int i;
if (descriptor == NULL || driver == NULL || state_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer != NULL && state_length < descriptor->hmac_state_length)
return HAL_ERROR_BAD_ARGUMENTS;
if ((err = check_core(&core, descriptor)) != HAL_OK)
return err;
if (state_buffer == NULL && (state = malloc(descriptor->hmac_state_length)) == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
hal_hash_state_t *h = &state->hash_state;
assert(descriptor->block_length <= sizeof(state->keybuf));
#if 0
/*
* RFC 2104 frowns upon keys shorter than the digest length.
* ... but most of the test vectors fail this test!
*/
if (key_length < descriptor->digest_length)
return HAL_ERROR_UNSUPPORTED_KEY;
#endif
if ((err = hal_hash_initialize(core, descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK)
goto fail;
if (state_buffer == NULL)
h->flags |= STATE_FLAG_STATE_ALLOCATED;
/*
* If the supplied HMAC key is longer than the hash block length, we
* need to hash the supplied HMAC key to get the real HMAC key.
* Otherwise, we just use the supplied HMAC key directly.
*/
memset(state->keybuf, 0, sizeof(state->keybuf));
if (key_length <= descriptor->block_length)
memcpy(state->keybuf, key, key_length);
else if ((err = hal_hash_update(h, key, key_length)) != HAL_OK ||
(err = hal_hash_finalize(h, state->keybuf, sizeof(state->keybuf))) != HAL_OK ||
(err = hal_hash_initialize(core, descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK)
goto fail;
/*
* XOR the key with the IPAD value, then start the inner hash.
*/
for (i = 0; i < descriptor->block_length; i++)
state->keybuf[i] ^= HMAC_IPAD;
if ((err = hal_hash_update(h, state->keybuf, descriptor->block_length)) != HAL_OK)
goto fail;
/*
* Prepare the key for the final hash. Since we just XORed key with
* IPAD, we need to XOR with both IPAD and OPAD to get key XOR OPAD.
*/
for (i = 0; i < descriptor->block_length; i++)
state->keybuf[i] ^= HMAC_IPAD ^ HMAC_OPAD;
/*
* If we had some good way of saving all of our state (including
* state internal to the hash core), this would be a good place to
* do it, since it might speed up algorithms like PBKDF2 which do
* repeated HMAC operations using the same key. Revisit this if and
* when the hash cores support such a thing.
*/
*state_ = state;
return HAL_OK;
fail:
if (state_buffer == NULL)
free(state);
return err;
}
/*
* Clean up HMAC state. No-op unless memory was dynamically allocated.
*/
void hal_hmac_cleanup(hal_hmac_state_t **state_)
{
if (state_ == NULL)
return;
hal_hmac_state_t *state = *state_;
if (state == NULL)
return;
hal_hash_state_t *h = &state->hash_state;
if ((h->flags & STATE_FLAG_STATE_ALLOCATED) == 0)
return;
memset(state, 0, h->descriptor->hmac_state_length);
free(state);
*state_ = NULL;
}
/*
* Add data to HMAC.
*/
hal_error_t hal_hmac_update(hal_hmac_state_t *state,
const uint8_t * data, const size_t length)
{
if (state == NULL || data == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return hal_hash_update(&state->hash_state, data, length);
}
/*
* Finish and return HMAC.
*/
hal_error_t hal_hmac_finalize(hal_hmac_state_t *state,
uint8_t *hmac, const size_t length)
{
if (state == NULL || hmac == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_hash_state_t *h = &state->hash_state;
const hal_hash_descriptor_t *descriptor = h->descriptor;
uint8_t d[HAL_MAX_HASH_DIGEST_LENGTH];
hal_error_t err;
assert(descriptor != NULL && descriptor->digest_length <= sizeof(d));
/*
* Finish up inner hash and extract digest, then perform outer hash
* to get HMAC. Key was prepared for this in hal_hmac_initialize().
*/
if ((err = hal_hash_finalize(h, d, sizeof(d))) != HAL_OK ||
(err = hal_hash_initialize(h->core, descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK ||
(err = hal_hash_update(h, state->keybuf, descriptor->block_length)) != HAL_OK ||
(err = hal_hash_update(h, d, descriptor->digest_length)) != HAL_OK ||
(err = hal_hash_finalize(h, hmac, length)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* "Any programmer who fails to comply with the standard naming, formatting,
* or commenting conventions should be shot. If it so happens that it is
* inconvenient to shoot him, then he is to be politely requested to recode
* his program in adherence to the above standard."
* -- Michael Spier, Digital Equipment Corporation
*
* Local variables:
* indent-tabs-mode: nil
* End:
*/