/*
* hash.c
* ------
* HAL interface to Cryptech hash cores.
*
* Authors: Joachim Str�mbergson, Paul Selkirk, Rob Austein
* Copyright (c) 2014-2018, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "hal.h"
#include "hal_internal.h"
/*
* Whether to include software implementations of the hash cores,
* for use when the Verilog cores aren't available.
*/
#ifndef HAL_ENABLE_SOFTWARE_HASH_CORES
#define HAL_ENABLE_SOFTWARE_HASH_CORES 0
#endif
/*
* Use only the software hash cores when running on remote host, without
* access to the Verilog cores.
*/
#ifndef HAL_ONLY_USE_SOFTWARE_HASH_CORES
#define HAL_ONLY_USE_SOFTWARE_HASH_CORES 0
#endif
#if HAL_ONLY_USE_SOFTWARE_HASH_CORES && ! HAL_ENABLE_SOFTWARE_HASH_CORES
#error HAL_ONLY_USE_SOFTWARE_HASH_CORES && ! HAL_ENABLE_SOFTWARE_HASH_CORES
#endif
typedef hal_error_t (*sw_hash_core_t)(hal_hash_state_t *);
#if HAL_ENABLE_SOFTWARE_HASH_CORES
static hal_error_t sw_hash_core_sha1( hal_hash_state_t *);
static hal_error_t sw_hash_core_sha256(hal_hash_state_t *);
static hal_error_t sw_hash_core_sha512(hal_hash_state_t *);
#else /* HAL_ENABLE_SOFTWARE_HASH_CORES */
#define sw_hash_core_sha1 ((sw_hash_core_t) 0)
#define sw_hash_core_sha256 ((sw_hash_core_t) 0)
#define sw_hash_core_sha512 ((sw_hash_core_t) 0)
#endif /* HAL_ENABLE_SOFTWARE_HASH_CORES */
/*
* HMAC magic numbers.
*/
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
/*
* Driver. This encapsulates whatever per-algorithm voodoo we need
* this week. At the moment, this is mostly Cryptech core addresses,
* but this is subject to change without notice.
*/
struct hal_hash_driver {
size_t length_length; /* Length of the length field */
hal_addr_t block_addr; /* Where to write hash blocks */
hal_addr_t digest_addr; /* Where to read digest */
uint8_t ctrl_mode; /* Digest mode, for cores that have modes */
sw_hash_core_t sw_core; /* Software implementation, when enabled */
size_t sw_word_size; /* Word size for software implementation */
};
/*
* Hash state. For now we assume that the only core state we need to
* save and restore is the current digest value.
*/
struct hal_hash_state {
hal_core_t *core;
const hal_hash_descriptor_t *descriptor;
const hal_hash_driver_t *driver;
uint64_t msg_length_high; /* Total data hashed in this message */
uint64_t msg_length_low; /* (128 bits in SHA-512 cases) */
uint8_t block[HAL_MAX_HASH_BLOCK_LENGTH], /* Block we're accumulating */
core_state[HAL_MAX_HASH_DIGEST_LENGTH]; /* Saved core state */
size_t block_used; /* How much of the block we've used */
unsigned block_count; /* Blocks sent */
unsigned flags;
hal_core_lru_t pomace; /* Private data for hal_core_alloc() */
};
#define STATE_FLAG_STATE_ALLOCATED 0x1 /* State buffer in use */
#define STATE_FLAG_SOFTWARE_CORE 0x2 /* Use software rather than hardware core */
#define STATE_FLAG_FREE_CORE 0x4 /* Free core after use */
/*
* HMAC state. Right now this just holds the key block and a hash
* context; if and when we figure out how PCLSR the hash cores, we
* might want to save a lot more than that, and may also want to
* reorder certain operations during HMAC initialization to get a
* performance boost for things like PBKDF2.
*/
struct hal_hmac_state {
hal_hash_state_t hash_state; /* Hash state */
uint8_t keybuf[HAL_MAX_HASH_BLOCK_LENGTH]; /* HMAC key */
};
/*
* Drivers for known digest algorithms.
*/
static const hal_hash_driver_t sha1_driver = {
SHA1_LENGTH_LEN, SHA1_ADDR_BLOCK, SHA1_ADDR_DIGEST, 0, sw_hash_core_sha1, sizeof(uint32_t)
};
static const hal_hash_driver_t sha224_driver = {
SHA256_LENGTH_LEN, SHA256_ADDR_BLOCK, SHA256_ADDR_DIGEST, SHA256_MODE_SHA_224, sw_hash_core_sha256, sizeof(uint32_t)
};
static const hal_hash_driver_t sha256_driver = {
SHA256_LENGTH_LEN, SHA256_ADDR_BLOCK, SHA256_ADDR_DIGEST, SHA256_MODE_SHA_256, sw_hash_core_sha256, sizeof(uint32_t)
};
static const hal_hash_driver_t sha512_224_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_512_224, sw_hash_core_sha512, sizeof(uint64_t)
};
static const hal_hash_driver_t sha512_256_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_512_256, sw_hash_core_sha512, sizeof(uint64_t)
};
static const hal_hash_driver_t sha384_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_384, sw_hash_core_sha512, sizeof(uint64_t)
};
static const hal_hash_driver_t sha512_driver = {
SHA512_LENGTH_LEN, SHA512_ADDR_BLOCK, SHA512_ADDR_DIGEST, SHA512_MODE_SHA_512, sw_hash_core_sha512, sizeof(uint64_t)
};
/*
* Digest algorithm identifiers: DER encoded full TLV of an
* DigestAlgorithmIdentifier SEQUENCE including OID for the algorithm in
* question and a NULL parameters value.
*
* See RFC 2313 and the NIST algorithm registry:
* http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html
*
* The DER encoding is too complex to generate in the C preprocessor,
* and we want these as compile-time constants, so we just supply the
* raw hex encoding here. If this gets seriously out of control we'll
* write a script to generate a header file we can include.
*/
static const uint8_t
dalgid_sha1[] = { 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00 },
dalgid_sha256[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00 },
dalgid_sha384[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00 },
dalgid_sha512[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00 },
dalgid_sha224[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00 },
dalgid_sha512_224[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x05, 0x05, 0x00 },
dalgid_sha512_256[] = { 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x06, 0x05, 0x00 };
/*
* Descriptors. Yes, the {hash,hmac}_state_length fields are a bit
* repetitive given that they (currently) have the same value
* regardless of algorithm, but we don't want to wire in that
* assumption, so it's simplest to be explicit.
*/
const hal_hash_descriptor_t hal_hash_sha1[1] = {{
HAL_DIGEST_ALGORITHM_SHA1,
SHA1_BLOCK_LEN, SHA1_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha1, sizeof(dalgid_sha1),
&sha1_driver, SHA1_NAME, 0
}};
const hal_hash_descriptor_t hal_hash_sha224[1] = {{
HAL_DIGEST_ALGORITHM_SHA256,
SHA256_BLOCK_LEN, SHA224_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha224, sizeof(dalgid_sha224),
&sha224_driver, SHA256_NAME, 1
}};
const hal_hash_descriptor_t hal_hash_sha256[1] = {{
HAL_DIGEST_ALGORITHM_SHA256,
SHA256_BLOCK_LEN, SHA256_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha256, sizeof(dalgid_sha256),
&sha256_driver, SHA256_NAME, 1
}};
const hal_hash_descriptor_t hal_hash_sha512_224[1] = {{
HAL_DIGEST_ALGORITHM_SHA512_224,
SHA512_BLOCK_LEN, SHA512_224_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512_224, sizeof(dalgid_sha512_224),
&sha512_224_driver, SHA512_NAME, 1
}};
const hal_hash_descriptor_t hal_hash_sha512_256[1] = {{
HAL_DIGEST_ALGORITHM_SHA512_256,
SHA512_BLOCK_LEN, SHA512_256_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512_256, sizeof(dalgid_sha512_256),
&sha512_256_driver, SHA512_NAME, 1
}};
const hal_hash_descriptor_t hal_hash_sha384[1] = {{
HAL_DIGEST_ALGORITHM_SHA384,
SHA512_BLOCK_LEN, SHA384_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha384, sizeof(dalgid_sha384),
&sha384_driver, SHA512_NAME, 1
}};
const hal_hash_descriptor_t hal_hash_sha512[1] = {{
HAL_DIGEST_ALGORITHM_SHA512,
SHA512_BLOCK_LEN, SHA512_DIGEST_LEN,
sizeof(hal_hash_state_t), sizeof(hal_hmac_state_t),
dalgid_sha512, sizeof(dalgid_sha512),
&sha512_driver, SHA512_NAME, 1
}};
/*
* Static state blocks. This library is intended for a style of
* embedded programming in which one avoids heap-based allocation
* functions such as malloc() wherever possible and instead uses
* static variables when just allocating on the stack won't do.
*
* The number of each kind of state block to be allocated this way
* must be configured at compile-time. Sorry, that's life in the
* deeply embedded universe.
*/
#ifndef HAL_STATIC_HASH_STATE_BLOCKS
#define HAL_STATIC_HASH_STATE_BLOCKS 0
#endif
#ifndef HAL_STATIC_HMAC_STATE_BLOCKS
#define HAL_STATIC_HMAC_STATE_BLOCKS 0
#endif
#if HAL_STATIC_HASH_STATE_BLOCKS > 0
static hal_hash_state_t static_hash_state[HAL_STATIC_HASH_STATE_BLOCKS];
#endif
#if HAL_STATIC_HMAC_STATE_BLOCKS > 0
static hal_hmac_state_t static_hmac_state[HAL_STATIC_HMAC_STATE_BLOCKS];
#endif
/*
* Debugging control.
*/
static int debug = 0;
void hal_hash_set_debug(int onoff)
{
debug = onoff;
}
/*
* Internal utilities to allocate static state blocks.
*/
static inline hal_hash_state_t *alloc_static_hash_state(void)
{
#if HAL_STATIC_HASH_STATE_BLOCKS > 0
for (size_t i = 0; i < sizeof(static_hash_state)/sizeof(*static_hash_state); i++)
if ((static_hash_state[i].flags & STATE_FLAG_STATE_ALLOCATED) == 0)
return &static_hash_state[i];
#endif
return NULL;
}
static inline hal_hmac_state_t *alloc_static_hmac_state(void)
{
#if HAL_STATIC_HMAC_STATE_BLOCKS > 0
for (size_t i = 0; i < sizeof(static_hmac_state)/sizeof(*static_hmac_state); i++)
if ((static_hmac_state[i].hash_state.flags & STATE_FLAG_STATE_ALLOCATED) == 0)
return &static_hmac_state[i];
#endif
return NULL;
}
/*
* Internal utility to do a sort of byte-swapping memcpy() (sigh).
* This is only used by the software hash cores, but it's simpler to define it unconditionally.
*/
static inline hal_error_t swytebop(void *out_, const void * const in_, const size_t n, const size_t w)
{
const uint8_t order[] = { 0x01, 0x02, 0x03, 0x04 };
const uint8_t * const in = in_;
uint8_t *out = out_;
/* w must be a power of two */
hal_assert(in != out && in != NULL && out != NULL && w && !(w & (w - 1)));
switch (* (uint32_t *) order) {
case 0x01020304:
memcpy(out, in, n);
break;
case 0x04030201:
for (size_t i = 0; i < n; i += w)
for (size_t j = 0; j < w && i + j < n; j++)
out[i + j] = in[i + w - j - 1];
break;
default:
hal_assert((* (uint32_t *) order) == 0x01020304 || (* (uint32_t *) order) == 0x04030201);
}
return HAL_OK;
}
/*
* Internal utility to check core against descriptor, including
* attempting to locate an appropriate core if we weren't given one.
*/
static inline hal_error_t check_core(hal_core_t **core,
const hal_hash_descriptor_t * const descriptor,
unsigned *flags,
hal_core_lru_t *pomace)
{
if (core == NULL || descriptor == NULL || descriptor->driver == NULL || flags == NULL)
return HAL_ERROR_IMPOSSIBLE;
hal_error_t err = HAL_ERROR_CORE_NOT_FOUND;
#if !HAL_ONLY_USE_SOFTWARE_HASH_CORES
if (*core != NULL)
return HAL_OK;
if ((err = hal_core_alloc(descriptor->core_name, core, pomace)) == HAL_OK) {
*flags |= STATE_FLAG_FREE_CORE;
return HAL_OK;
}
#endif
if (*core != NULL)
return HAL_ERROR_IMPOSSIBLE;
#if HAL_ENABLE_SOFTWARE_HASH_CORES
if (descriptor->driver->sw_core && err == HAL_ERROR_CORE_NOT_FOUND) {
*flags |= STATE_FLAG_SOFTWARE_CORE;
return HAL_OK;
}
#endif
return err;
}
/*
* Internal utility to do whatever checking we need of a descriptor,
* then extract the driver pointer in a way that works nicely with
* initialization of an automatic const pointer.
*
* Returns the driver pointer on success, NULL on failure.
*/
static inline const hal_hash_driver_t *check_driver(const hal_hash_descriptor_t * const descriptor)
{
return descriptor == NULL ? NULL : descriptor->driver;
}
/*
* Initialize hash state.
*/
hal_error_t hal_hash_initialize(hal_core_t *core,
const hal_hash_descriptor_t * const descriptor,
hal_hash_state_t **state_,
void *state_buffer, const size_t state_length)
{
const hal_hash_driver_t * const driver = check_driver(descriptor);
hal_hash_state_t *state = state_buffer;
hal_core_lru_t pomace = 0;
unsigned flags = 0;
hal_error_t err;
if (driver == NULL || state_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer != NULL && state_length < descriptor->hash_state_length)
return HAL_ERROR_BAD_ARGUMENTS;
if ((err = check_core(&core, descriptor, &flags, &pomace)) != HAL_OK)
return err;
if ((flags & STATE_FLAG_FREE_CORE) != 0)
hal_core_free(core);
/* A dynamically allocated core that can't restore state isn't going to work. */
if (!state->descriptor->can_restore_state && (flags & STATE_FLAG_FREE_CORE) != 0)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer == NULL && (state = alloc_static_hash_state()) == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
memset(state, 0, sizeof(*state));
state->descriptor = descriptor;
state->driver = driver;
state->core = core;
state->flags = flags | STATE_FLAG_STATE_ALLOCATED;
state->pomace = pomace;
*state_ = state;
return HAL_OK;
}
/*
* Clean up hash state.
*/
void hal_hash_cleanup(hal_hash_state_t **state)
{
if (state == NULL || *state == NULL)
return;
memset(*state, 0, (*state)->descriptor->hash_state_length);
*state = NULL;
}
#if ! HAL_ONLY_USE_SOFTWARE_HASH_CORES
/*
* Read hash result from core. At least for now, this also serves to
* read current hash state from core.
*/
static hal_error_t hash_read_digest(const hal_core_t *core,
const hal_hash_driver_t * const driver,
uint8_t *digest,
const size_t digest_length)
{
hal_error_t err;
hal_assert(digest != NULL && digest_length % 4 == 0);
if ((err = hal_io_wait_valid(core)) != HAL_OK)
return err;
return hal_io_read(core, driver->digest_addr, digest, digest_length);
}
/*
* Write hash state back to core.
*/
static hal_error_t hash_write_digest(const hal_core_t *core,
const hal_hash_driver_t * const driver,
const uint8_t * const digest,
const size_t digest_length)
{
hal_error_t err;
hal_assert(digest != NULL && digest_length % 4 == 0);
if ((err = hal_io_wait_ready(core)) != HAL_OK)
return err;
return hal_io_write(core, driver->digest_addr, digest, digest_length);
}
#endif
/*
* Send one block to a core.
*/
static hal_error_t hash_write_block(hal_hash_state_t * const state)
{
hal_assert(state != NULL && state->descriptor != NULL && state->driver != NULL);
hal_assert(state->descriptor->block_length % 4 == 0);
hal_assert(state->descriptor->digest_length <= sizeof(state->core_state) ||
!state->descriptor->can_restore_state);
if (debug)
hal_log(HAL_LOG_DEBUG, "[ %s ]\n", state->block_count == 0 ? "init" : "next");
#if HAL_ENABLE_SOFTWARE_HASH_CORES
if ((state->flags & STATE_FLAG_SOFTWARE_CORE) != 0)
return state->driver->sw_core(state);
#endif
#if ! HAL_ONLY_USE_SOFTWARE_HASH_CORES
uint8_t ctrl_cmd[4];
hal_error_t err;
if ((err = hal_io_wait_ready(state->core)) != HAL_OK)
return err;
if (state->descriptor->can_restore_state &&
state->block_count != 0 &&
(err = hash_write_digest(state->core, state->driver, state->core_state,
state->descriptor->digest_length)) != HAL_OK)
return err;
if ((err = hal_io_write(state->core, state->driver->block_addr, state->block,
state->descriptor->block_length)) != HAL_OK)
return err;
ctrl_cmd[0] = ctrl_cmd[1] = ctrl_cmd[2] = 0;
ctrl_cmd[3] = state->block_count == 0 ? CTRL_INIT : CTRL_NEXT;
ctrl_cmd[3] |= state->driver->ctrl_mode;
if ((err = hal_io_write(state->core, ADDR_CTRL, ctrl_cmd, sizeof(ctrl_cmd))) != HAL_OK)
return err;
if (state->descriptor->can_restore_state &&
(err = hash_read_digest(state->core, state->driver, state->core_state,
state->descriptor->digest_length)) != HAL_OK)
return err;
return hal_io_wait_valid(state->core);
#endif
/*NOTREACHED*/
return HAL_ERROR_IMPOSSIBLE;
}
/*
* Add data to hash.
*/
hal_error_t hal_hash_update(hal_hash_state_t *state, /* Opaque state block */
const uint8_t * const data_buffer, /* Data to be hashed */
size_t data_buffer_length) /* Length of data_buffer */
{
const uint8_t *p = data_buffer;
hal_error_t err = HAL_OK;
size_t n;
if (state == NULL || data_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (data_buffer_length == 0)
return HAL_OK;
hal_assert(state->descriptor != NULL && state->driver != NULL);
hal_assert(state->descriptor->block_length <= sizeof(state->block));
if ((state->flags & STATE_FLAG_FREE_CORE) != 0) {
err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
if (err == HAL_ERROR_CORE_REASSIGNED) {
state->core = NULL;
err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
}
if (err != HAL_OK)
return err;
}
while ((n = state->descriptor->block_length - state->block_used) <= data_buffer_length) {
/*
* We have enough data for another complete block.
*/
if (debug)
hal_log(HAL_LOG_DEBUG, "[ Full block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
memcpy(state->block + state->block_used, p, n);
if ((state->msg_length_low += n) < n)
state->msg_length_high++;
state->block_used = 0;
data_buffer_length -= n;
p += n;
if ((err = hash_write_block(state)) != HAL_OK)
goto out;
state->block_count++;
}
if (data_buffer_length > 0) {
/*
* Data left over, but not enough for a full block, stash it.
*/
if (debug)
hal_log(HAL_LOG_DEBUG, "[ Partial block, data_buffer_length %lu, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) data_buffer_length, (unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
hal_assert(data_buffer_length < n);
memcpy(state->block + state->block_used, p, data_buffer_length);
if ((state->msg_length_low += data_buffer_length) < data_buffer_length)
state->msg_length_high++;
state->block_used += data_buffer_length;
}
out:
if ((state->flags & STATE_FLAG_FREE_CORE) != 0)
hal_core_free(state->core);
return err;
}
/*
* Finish hash and return digest.
*/
hal_error_t hal_hash_finalize(hal_hash_state_t *state, /* Opaque state block */
uint8_t *digest_buffer, /* Returned digest */
const size_t digest_buffer_length) /* Length of digest_buffer */
{
uint64_t bit_length_high, bit_length_low;
hal_error_t err;
uint8_t *p;
size_t n;
size_t i;
if (state == NULL || digest_buffer == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_assert(state->descriptor != NULL && state->driver != NULL);
if (digest_buffer_length < state->descriptor->digest_length)
return HAL_ERROR_BAD_ARGUMENTS;
hal_assert(state->descriptor->block_length <= sizeof(state->block));
if ((state->flags & STATE_FLAG_FREE_CORE) != 0) {
err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
if (err == HAL_ERROR_CORE_REASSIGNED) {
state->core = NULL;
err = hal_core_alloc(state->descriptor->core_name, &state->core, &state->pomace);
}
if (err != HAL_OK)
return err;
}
/*
* Add padding, then pull result from the core
*/
bit_length_low = (state->msg_length_low << 3);
bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61);
/* Initial pad byte */
hal_assert(state->block_used < state->descriptor->block_length);
state->block[state->block_used++] = 0x80;
/* If not enough room for bit count, zero and push current block */
if ((n = state->descriptor->block_length - state->block_used) < state->driver->length_length) {
if (debug)
hal_log(HAL_LOG_DEBUG, "[ Overflow block, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
if (n > 0)
memset(state->block + state->block_used, 0, n);
if ((err = hash_write_block(state)) != HAL_OK)
goto out;
state->block_count++;
state->block_used = 0;
}
/* Pad final block */
n = state->descriptor->block_length - state->block_used;
hal_assert(n >= state->driver->length_length);
if (n > 0)
memset(state->block + state->block_used, 0, n);
if (debug)
hal_log(HAL_LOG_DEBUG, "[ Final block, used %lu, n %lu, msg_length %llu ]\n",
(unsigned long) state->block_used, (unsigned long) n, (unsigned long long)state->msg_length_low);
p = state->block + state->descriptor->block_length;
for (i = 0; (bit_length_low || bit_length_high) && i < state->driver->length_length; i++) {
*--p = (uint8_t) (bit_length_low & 0xFF);
bit_length_low >>= 8;
if (bit_length_high) {
bit_length_low |= ((bit_length_high & 0xFF) << 56);
bit_length_high >>= 8;
}
}
/* Push final block */
if ((err = hash_write_block(state)) != HAL_OK)
goto out;
state->block_count++;
/* All data pushed to core, now we just need to read back the result */
#if HAL_ENABLE_SOFTWARE_HASH_CORES
if ((state->flags & STATE_FLAG_SOFTWARE_CORE) != 0)
return swytebop(digest_buffer, state->core_state, state->descriptor->digest_length,
state->driver->sw_word_size);
#endif
#if ! HAL_ONLY_USE_SOFTWARE_HASH_CORES
if ((state->flags & STATE_FLAG_SOFTWARE_CORE) == 0)
err = hash_read_digest(state->core, state->driver, digest_buffer, state->descriptor->digest_length);
#endif
out:
if ((state->flags & STATE_FLAG_FREE_CORE) != 0)
hal_core_free(state->core);
return err;
}
/*
* Initialize HMAC state.
*/
hal_error_t hal_hmac_initialize(hal_core_t *core,
const hal_hash_descriptor_t * const descriptor,
hal_hmac_state_t **state_,
void *state_buffer, const size_t state_length,
const uint8_t * const key, const size_t key_length)
{
const hal_hash_driver_t * const driver = check_driver(descriptor);
hal_hmac_state_t *state = state_buffer;
hal_error_t err;
size_t i;
if (descriptor == NULL || driver == NULL || state_ == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer != NULL && state_length < descriptor->hmac_state_length)
return HAL_ERROR_BAD_ARGUMENTS;
if (state_buffer == NULL && (state = alloc_static_hmac_state()) == NULL)
return HAL_ERROR_ALLOCATION_FAILURE;
hal_hash_state_t *h = &state->hash_state;
hal_assert(descriptor->block_length <= sizeof(state->keybuf));
#if 0
/*
* RFC 2104 frowns upon keys shorter than the digest length.
* ... but most of the test vectors fail this test!
*/
if (key_length < descriptor->digest_length)
return HAL_ERROR_UNSUPPORTED_KEY;
#endif
if ((err = hal_hash_initialize(core, descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK)
goto fail;
/*
* If the supplied HMAC key is longer than the hash block length, we
* need to hash the supplied HMAC key to get the real HMAC key.
* Otherwise, we just use the supplied HMAC key directly.
*/
memset(state->keybuf, 0, sizeof(state->keybuf));
if (key_length <= descriptor->block_length)
memcpy(state->keybuf, key, key_length);
else if ((err = hal_hash_update(h, key, key_length)) != HAL_OK ||
(err = hal_hash_finalize(h, state->keybuf, sizeof(state->keybuf))) != HAL_OK ||
(err = hal_hash_initialize(core, descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK)
goto fail;
/*
* XOR the key with the IPAD value, then start the inner hash.
*/
for (i = 0; i < descriptor->block_length; i++)
state->keybuf[i] ^= HMAC_IPAD;
if ((err = hal_hash_update(h, state->keybuf, descriptor->block_length)) != HAL_OK)
goto fail;
/*
* Prepare the key for the final hash. Since we just XORed key with
* IPAD, we need to XOR with both IPAD and OPAD to get key XOR OPAD.
*/
for (i = 0; i < descriptor->block_length; i++)
state->keybuf[i] ^= HMAC_IPAD ^ HMAC_OPAD;
/*
* If we had some good way of saving all of our state (including
* state internal to the hash core), this would be a good place to
* do it, since it might speed up algorithms like PBKDF2 which do
* repeated HMAC operations using the same key. Revisit this if and
* when the hash cores support such a thing.
*/
*state_ = state;
return HAL_OK;
fail:
if (state_buffer == NULL)
free(state);
return err;
}
/*
* Clean up HMAC state.
*/
void hal_hmac_cleanup(hal_hmac_state_t **state)
{
if (state == NULL || *state == NULL)
return;
memset(*state, 0, (*state)->hash_state.descriptor->hmac_state_length);
*state = NULL;
}
/*
* Add data to HMAC.
*/
hal_error_t hal_hmac_update(hal_hmac_state_t *state,
const uint8_t * data, const size_t length)
{
if (state == NULL || data == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return hal_hash_update(&state->hash_state, data, length);
}
/*
* Finish and return HMAC.
*/
hal_error_t hal_hmac_finalize(hal_hmac_state_t *state,
uint8_t *hmac, const size_t length)
{
if (state == NULL || hmac == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_hash_state_t *h = &state->hash_state;
const hal_hash_descriptor_t *descriptor = h->descriptor;
uint8_t d[HAL_MAX_HASH_DIGEST_LENGTH];
hal_error_t err;
hal_assert(descriptor != NULL && descriptor->digest_length <= sizeof(d));
/*
* Finish up inner hash and extract digest, then perform outer hash
* to get HMAC. Key was prepared for this in hal_hmac_initialize().
*
* For silly reasons, reusing the core value from the hash state
* block here would require nontrivial refactoring, so for the
* moment pass NULL and let the core allocator deal. Fix someday.
*/
if ((err = hal_hash_finalize(h, d, sizeof(d))) != HAL_OK ||
(err = hal_hash_initialize(NULL, descriptor, &h, &state->hash_state,
sizeof(state->hash_state))) != HAL_OK ||
(err = hal_hash_update(h, state->keybuf, descriptor->block_length)) != HAL_OK ||
(err = hal_hash_update(h, d, descriptor->digest_length)) != HAL_OK ||
(err = hal_hash_finalize(h, hmac, length)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Pull descriptor pointer from state block.
*/
const hal_hash_descriptor_t *hal_hash_get_descriptor(const hal_hash_state_t * const state)
{
return state == NULL ? NULL : state->descriptor;
}
const hal_hash_descriptor_t *hal_hmac_get_descriptor(const hal_hmac_state_t * const state)
{
return state == NULL ? NULL : state->hash_state.descriptor;
}
#if HAL_ENABLE_SOFTWARE_HASH_CORES
/*
* Software implementations of hash cores.
*
* This is based in part on a mix of Tom St Denis's libtomcrypt C
* implementation and Joachim Str�mbergson's Python models for the
* Cryptech hash cores.
*
* This is not a particularly high performance implementation, as
* we've given priority to portability and simplicity over speed.
* We assume that any reasonable modern compiler can handle inline
* functions, loop unrolling, and optimization of expressions which
* become constant upon inlining and unrolling.
*/
/*
* K constants for SHA-2. SHA-1 only uses four K constants, which are handled inline
* due to other peculiarities of the SHA-1 algorithm).
*/
static const uint32_t sha256_K[64] = {
0x428A2F98UL, 0x71374491UL, 0xB5C0FBCFUL, 0xE9B5DBA5UL, 0x3956C25BUL, 0x59F111F1UL, 0x923F82A4UL, 0xAB1C5ED5UL,
0xD807AA98UL, 0x12835B01UL, 0x243185BEUL, 0x550C7DC3UL, 0x72BE5D74UL, 0x80DEB1FEUL, 0x9BDC06A7UL, 0xC19BF174UL,
0xE49B69C1UL, 0xEFBE4786UL, 0x0FC19DC6UL, 0x240CA1CCUL, 0x2DE92C6FUL, 0x4A7484AAUL, 0x5CB0A9DCUL, 0x76F988DAUL,
0x983E5152UL, 0xA831C66DUL, 0xB00327C8UL, 0xBF597FC7UL, 0xC6E00BF3UL, 0xD5A79147UL, 0x06CA6351UL, 0x14292967UL,
0x27B70A85UL, 0x2E1B2138UL, 0x4D2C6DFCUL, 0x53380D13UL, 0x650A7354UL, 0x766A0ABBUL, 0x81C2C92EUL, 0x92722C85UL,
0xA2BFE8A1UL, 0xA81A664BUL, 0xC24B8B70UL, 0xC76C51A3UL, 0xD192E819UL, 0xD6990624UL, 0xF40E3585UL, 0x106AA070UL,
0x19A4C116UL, 0x1E376C08UL, 0x2748774CUL, 0x34B0BCB5UL, 0x391C0CB3UL, 0x4ED8AA4AUL, 0x5B9CCA4FUL, 0x682E6FF3UL,
0x748F82EEUL, 0x78A5636FUL, 0x84C87814UL, 0x8CC70208UL, 0x90BEFFFAUL, 0xA4506CEBUL, 0xBEF9A3F7UL, 0xC67178F2UL
};
static const uint64_t sha512_K[80] = {
0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL, 0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL,
0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL, 0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL,
0xD807AA98A3030242ULL, 0x12835B0145706FBEULL, 0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL, 0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL,
0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL, 0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL,
0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL, 0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL, 0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL,
0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL, 0x06CA6351E003826FULL, 0x142929670A0E6E70ULL,
0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL, 0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL, 0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL,
0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL, 0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL,
0xD192E819D6EF5218ULL, 0xD69906245565A910ULL, 0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL, 0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL,
0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL, 0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL,
0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL, 0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL, 0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL,
0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL, 0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL,
0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL, 0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL, 0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL,
0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL, 0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL
};
/*
* Various bit twiddling operations. We use inline functions rather than macros to get better
* data type checking, sane argument semantics, and simpler expressions (this stuff is
* confusing enough without adding a lot of unnecessary C macro baggage).
*/
static inline uint32_t rot_l_32(uint32_t x, unsigned n) { return ((x << n) | (x >> (32 - n))); }
static inline uint32_t rot_r_32(uint32_t x, unsigned n) { return ((x >> n) | (x << (32 - n))); }
static inline uint32_t lsh_r_32(uint32_t x, unsigned n) { return (x >> n); }
static inline uint64_t rot_r_64(uint64_t x, unsigned n) { return ((x >> n) | (x << (64 - n))); }
static inline uint64_t lsh_r_64(uint64_t x, unsigned n) { return (x >> n); }
static inline uint32_t Choose_32( uint32_t x, uint32_t y, uint32_t z) { return (z ^ (x & (y ^ z))); }
static inline uint32_t Majority_32(uint32_t x, uint32_t y, uint32_t z) { return ((x & y) | (z & (x | y))); }
static inline uint32_t Parity_32( uint32_t x, uint32_t y, uint32_t z) { return (x ^ y ^ z); }
static inline uint64_t Choose_64( uint64_t x, uint64_t y, uint64_t z) { return (z ^ (x & (y ^ z))); }
static inline uint64_t Majority_64(uint64_t x, uint64_t y, uint64_t z) { return ((x & y) | (z & (x | y))); }
static inline uint32_t Sigma0_32(uint32_t x) { return rot_r_32(x, 2) ^ rot_r_32(x, 13) ^ rot_r_32(x, 22); }
static inline uint32_t Sigma1_32(uint32_t x) { return rot_r_32(x, 6) ^ rot_r_32(x, 11) ^ rot_r_32(x, 25); }
static inline uint32_t Gamma0_32(uint32_t x) { return rot_r_32(x, 7) ^ rot_r_32(x, 18) ^ lsh_r_32(x, 3); }
static inline uint32_t Gamma1_32(uint32_t x) { return rot_r_32(x, 17) ^ rot_r_32(x, 19) ^ lsh_r_32(x, 10); }
static inline uint64_t Sigma0_64(uint64_t x) { return rot_r_64(x, 28) ^ rot_r_64(x, 34) ^ rot_r_64(x, 39); }
static inline uint64_t Sigma1_64(uint64_t x) { return rot_r_64(x, 14) ^ rot_r_64(x, 18) ^ rot_r_64(x, 41); }
static inline uint64_t Gamma0_64(uint64_t x) { return rot_r_64(x, 1) ^ rot_r_64(x, 8) ^ lsh_r_64(x, 7); }
static inline uint64_t Gamma1_64(uint64_t x) { return rot_r_64(x, 19) ^ rot_r_64(x, 61) ^ lsh_r_64(x, 6); }
/*
* Offset into hash state. In theory, this should works out to compile-time constants after optimization.
*/
static inline int sha1_pos(int i, int j) { return (5 + j - (i % 5)) % 5; }
static inline int sha2_pos(int i, int j) { return (8 + j - (i % 8)) % 8; }
/*
* Software implementation of SHA-1 block algorithm.
*/
static hal_error_t sw_hash_core_sha1(hal_hash_state_t *state)
{
static const uint32_t iv[5] = {0x67452301UL, 0xefcdab89UL, 0x98badcfeUL, 0x10325476UL, 0xc3d2e1f0UL};
hal_error_t err;
if (state == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
uint32_t *H = (uint32_t *) state->core_state, S[5], W[80];
if (state->block_count == 0)
memcpy(H, iv, sizeof(iv));
memcpy(S, H, sizeof(S));
if ((err = swytebop(W, state->block, 16 * sizeof(*W), sizeof(*W))) != HAL_OK)
return err;
for (int i = 16; i < 80; i++)
W[i] = rot_l_32(W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16], 1);
for (int i = 0; i < 80; i++) {
const int a = sha1_pos(i, 0), b = sha1_pos(i, 1), c = sha1_pos(i, 2), d = sha1_pos(i, 3), e = sha1_pos(i, 4);
uint32_t f, k;
if (i < 20) f = Choose_32( S[b], S[c], S[d]), k = 0x5A827999UL;
else if (i < 40) f = Parity_32( S[b], S[c], S[d]), k = 0x6ED9EBA1UL;
else if (i < 60) f = Majority_32( S[b], S[c], S[d]), k = 0x8F1BBCDCUL;
else f = Parity_32( S[b], S[c], S[d]), k = 0xCA62C1D6UL;
if (debug)
hal_log(HAL_LOG_DEBUG,
"[Round %02d < a = 0x%08x, b = 0x%08x, c = 0x%08x, d = 0x%08x, e = 0x%08x, f = 0x%08x, k = 0x%08x, w = 0x%08x]\n",
i, (unsigned)S[a], (unsigned)S[b], (unsigned)S[c], (unsigned)S[d], (unsigned)S[e], (unsigned)f, (unsigned)k, (unsigned)W[i]);
S[e] = rot_l_32(S[a], 5) + f + S[e] + k + W[i];
S[b] = rot_l_32(S[b], 30);
if (debug)
hal_log(HAL_LOG_DEBUG, "[Round %02d > a = 0x%08x, b = 0x%08x, c = 0x%08x, d = 0x%08x, e = 0x%08x]\n",
i, (unsigned)S[a], (unsigned)S[b], (unsigned)S[c], (unsigned)S[d], (unsigned)S[e]);
}
for (int i = 0; i < 5; i++)
H[i] += S[i];
return HAL_OK;
}
/*
* Software implementation of SHA-256 block algorithm, including support for same truncated variants
* that the Cryptech Verilog SHA-256 core supports.
*/
static hal_error_t sw_hash_core_sha256(hal_hash_state_t *state)
{
static const uint32_t sha224_iv[8] = {0xC1059ED8UL, 0x367CD507UL, 0x3070DD17UL, 0xF70E5939UL,
0xFFC00B31UL, 0x68581511UL, 0x64F98FA7UL, 0xBEFA4FA4UL};
static const uint32_t sha256_iv[8] = {0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL};
hal_error_t err;
if (state == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
uint32_t *H = (uint32_t *) state->core_state, S[8], W[64];
if (state->block_count == 0) {
switch (state->driver->ctrl_mode & SHA256_MODE_MASK) {
case SHA256_MODE_SHA_224: memcpy(H, sha224_iv, sizeof(sha224_iv)); break;
case SHA256_MODE_SHA_256: memcpy(H, sha256_iv, sizeof(sha256_iv)); break;
default: return HAL_ERROR_IMPOSSIBLE;
}
}
memcpy(S, H, sizeof(S));
if ((err = swytebop(W, state->block, 16 * sizeof(*W), sizeof(*W))) != HAL_OK)
return err;
for (int i = 16; i < 64; i++)
W[i] = Gamma1_32(W[i - 2]) + W[i - 7] + Gamma0_32(W[i - 15]) + W[i - 16];
for (int i = 0; i < 64; i++) {
const int a = sha2_pos(i, 0), b = sha2_pos(i, 1), c = sha2_pos(i, 2), d = sha2_pos(i, 3);
const int e = sha2_pos(i, 4), f = sha2_pos(i, 5), g = sha2_pos(i, 6), h = sha2_pos(i, 7);
const uint32_t t0 = S[h] + Sigma1_32(S[e]) + Choose_32(S[e], S[f], S[g]) + sha256_K[i] + W[i];
const uint32_t t1 = Sigma0_32(S[a]) + Majority_32(S[a], S[b], S[c]);
S[d] += t0;
S[h] = t0 + t1;
}
for (int i = 0; i < 8; i++)
H[i] += S[i];
return HAL_OK;
}
/*
* Software implementation of SHA-512 block algorithm, including support for same truncated variants
* that the Cryptech Verilog SHA-512 core supports.
*/
static hal_error_t sw_hash_core_sha512(hal_hash_state_t *state)
{
static const uint64_t
sha512_iv[8] = {0x6A09E667F3BCC908ULL, 0xBB67AE8584CAA73BULL, 0x3C6EF372FE94F82BULL, 0xA54FF53A5F1D36F1ULL,
0x510E527FADE682D1ULL, 0x9B05688C2B3E6C1FULL, 0x1F83D9ABFB41BD6BULL, 0x5BE0CD19137E2179ULL};
static const uint64_t
sha384_iv[8] = {0xCBBB9D5DC1059ED8ULL, 0x629A292A367CD507ULL, 0x9159015A3070DD17ULL, 0x152FECD8F70E5939ULL,
0x67332667FFC00B31ULL, 0x8EB44A8768581511ULL, 0xDB0C2E0D64F98FA7ULL, 0x47B5481DBEFA4FA4ULL};
static const uint64_t
sha512_224_iv[8] = {0x8C3D37C819544DA2ULL, 0x73E1996689DCD4D6ULL, 0x1DFAB7AE32FF9C82ULL, 0x679DD514582F9FCFULL,
0x0F6D2B697BD44DA8ULL, 0x77E36F7304C48942ULL, 0x3F9D85A86A1D36C8ULL, 0x1112E6AD91D692A1ULL};
static const uint64_t
sha512_256_iv[8] = {0x22312194FC2BF72CULL, 0x9F555FA3C84C64C2ULL, 0x2393B86B6F53B151ULL, 0x963877195940EABDULL,
0x96283EE2A88EFFE3ULL, 0xBE5E1E2553863992ULL, 0x2B0199FC2C85B8AAULL, 0x0EB72DDC81C52CA2ULL};
hal_error_t err;
if (state == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
uint64_t *H = (uint64_t *) state->core_state, S[8], W[80];
if (state->block_count == 0) {
switch (state->driver->ctrl_mode & SHA512_MODE_MASK) {
case SHA512_MODE_SHA_512_224: memcpy(H, sha512_224_iv, sizeof(sha512_224_iv)); break;
case SHA512_MODE_SHA_512_256: memcpy(H, sha512_256_iv, sizeof(sha512_256_iv)); break;
case SHA512_MODE_SHA_384: memcpy(H, sha384_iv, sizeof(sha384_iv)); break;
case SHA512_MODE_SHA_512: memcpy(H, sha512_iv, sizeof(sha512_iv)); break;
default: return HAL_ERROR_IMPOSSIBLE;
}
}
memcpy(S, H, sizeof(S));
if ((err = swytebop(W, state->block, 16 * sizeof(*W), sizeof(*W))) != HAL_OK)
return err;
for (int i = 16; i < 80; i++)
W[i] = Gamma1_64(W[i - 2]) + W[i - 7] + Gamma0_64(W[i - 15]) + W[i - 16];
for (int i = 0; i < 80; i++) {
const int a = sha2_pos(i, 0), b = sha2_pos(i, 1), c = sha2_pos(i, 2), d = sha2_pos(i, 3);
const int e = sha2_pos(i, 4), f = sha2_pos(i, 5), g = sha2_pos(i, 6), h = sha2_pos(i, 7);
const uint64_t t0 = S[h] + Sigma1_64(S[e]) + Choose_64(S[e], S[f], S[g]) + sha512_K[i] + W[i];
const uint64_t t1 = Sigma0_64(S[a]) + Majority_64(S[a], S[b], S[c]);
S[d] += t0;
S[h] = t0 + t1;
}
for (int i = 0; i < 8; i++)
H[i] += S[i];
return HAL_OK;
}
#endif /* HAL_ENABLE_SOFTWARE_HASH_CORES */
/*
* "Any programmer who fails to comply with the standard naming, formatting,
* or commenting conventions should be shot. If it so happens that it is
* inconvenient to shoot him, then he is to be politely requested to recode
* his program in adherence to the above standard."
* -- Michael Spier, Digital Equipment Corporation
*
* Local variables:
* indent-tabs-mode: nil
* End:
*/