/*
* hal_internal.h
* --------------
* Internal API declarations for libhal.
*
* Authors: Rob Austein, Paul Selkirk
* Copyright (c) 2015, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _HAL_INTERNAL_H_
#define _HAL_INTERNAL_H_
#include <string.h>
#include "hal.h"
#include "verilog_constants.h"
/*
* Everything in this file is part of the internal API, that is,
* subject to change without notice. Nothing outside of libhal itself
* should be looking at this file.
*/
/*
* htonl is not available in arm-none-eabi headers or libc.
*/
#ifndef STM32F4XX
#include <arpa/inet.h>
#else
#ifdef __ARMEL__ /* little endian */
inline uint32_t htonl(uint32_t w)
{
return
((w & 0x000000ff) << 24) +
((w & 0x0000ff00) << 8) +
((w & 0x00ff0000) >> 8) +
((w & 0xff000000) >> 24);
}
#else /* big endian */
#define htonl(x) (x)
#endif
#define ntohl htonl
#endif
/*
* Static memory allocation on start-up. Don't use this except where
* really necessary. By design, there's no way to free this, we don't
* want to have to manage a heap. Intent is just to allow allocation
* things like the large-ish ks_index arrays used by ks_flash.c from a
* memory source external to the executable image file (eg, from the
* secondary SDRAM chip on the Cryptech Alpha board).
*
* We shouldn't need this except on the HSM, so for now we don't bother
* with implementing a version of this based on malloc() or sbrk().
*/
extern void *hal_allocate_static_memory(const size_t size);
/*
* Longest hash block and digest we support at the moment.
*/
#define HAL_MAX_HASH_BLOCK_LENGTH SHA512_BLOCK_LEN
#define HAL_MAX_HASH_DIGEST_LENGTH SHA512_DIGEST_LEN
/*
* Dispatch structures for RPC implementation.
*
* The breakdown of which functions go into which dispatch vectors is
* based entirely on pesky details like making sure that the right
* functions get linked in the right cases, and should not be
* construed as making any particular sense in any larger context.
*
* In theory eventually we might want a fully general mechanism to
* allow us to dispatch arbitrary groups of functions either locally
* or remotely on a per-user basis. In practice, we probably want to
* run everything on the HSM except for hashing and digesting, so just
* code for that case initially while leaving the design open for a
* more general mechanism later if warranted.
*
* So we have three cases:
*
* - We're the HSM, so we do everything locally (ie, we run the RPC
* server functions.
*
* - We're the host, so we do everything remotely (ie, we do
* everything using the client-side RPC calls.
*
* - We're the host but are doing hashing locally, so we do a mix.
* This is slightly more complicated than it might at first appear,
* because we must handle the case of one of the pkey functions
* taking a hash context instead of a literal hash value, in which
* case we have to extract the hash value from the context and
* supply it to the pkey RPC client code as a literal value.
*
* ...Except that for PKCS #11 we also have to handle the case of
* "session keys", ie, keys which are not stored on the HSM.
* Apparently people really do use these, mostly for public keys, in
* order to conserve expensive memory on the HSM. So this is another
* feature of mixed mode: keys with HAL_KEY_FLAG_PROXIMATE set live on
* the host, not in the HSM, and the mixed-mode pkey handlers deal
* with the routing. In the other two modes we ignore the flag and
* send everything where we were going to send it anyway. Restricting
* the fancy key handling to mixed mode lets us drop this complexity
* out entirely for applications which have no use for it.
*/
typedef struct {
hal_error_t (*set_pin)(const hal_client_handle_t client,
const hal_user_t user,
const char * const newpin, const size_t newpin_len);
hal_error_t (*login)(const hal_client_handle_t client,
const hal_user_t user,
const char * const newpin, const size_t newpin_len);
hal_error_t (*logout)(const hal_client_handle_t client);
hal_error_t (*logout_all)(void);
hal_error_t (*is_logged_in)(const hal_client_handle_t client,
const hal_user_t user);
hal_error_t (*get_random)(void *buffer, const size_t length);
hal_error_t (*get_version)(uint32_t *version);
} hal_rpc_misc_dispatch_t;
typedef struct {
hal_error_t (*get_digest_length)(const hal_digest_algorithm_t alg, size_t *length);
hal_error_t (*get_digest_algorithm_id)(const hal_digest_algorithm_t alg,
uint8_t *id, size_t *len, const size_t len_max);
hal_error_t (*get_algorithm)(const hal_hash_handle_t hash, hal_digest_algorithm_t *alg);
hal_error_t (*initialize)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_hash_handle_t *hash,
const hal_digest_algorithm_t alg,
const uint8_t * const key, const size_t key_length);
hal_error_t (*update)(const hal_hash_handle_t hash,
const uint8_t * data, const size_t length);
hal_error_t (*finalize)(const hal_hash_handle_t hash,
uint8_t *digest, const size_t length);
} hal_rpc_hash_dispatch_t;
typedef struct {
hal_error_t (*load)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
const hal_key_type_t type,
const hal_curve_name_t curve,
hal_uuid_t *name,
const uint8_t * const der, const size_t der_len,
const hal_key_flags_t flags);
hal_error_t (*find)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
const hal_uuid_t * const name,
const hal_key_flags_t flags);
hal_error_t (*generate_rsa)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const unsigned key_length,
const uint8_t * const public_exponent, const size_t public_exponent_len,
const hal_key_flags_t flags);
hal_error_t (*generate_ec)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_handle_t *pkey,
hal_uuid_t *name,
const hal_curve_name_t curve,
const hal_key_flags_t flags);
hal_error_t (*close)(const hal_pkey_handle_t pkey);
hal_error_t (*delete)(const hal_pkey_handle_t pkey);
hal_error_t (*get_key_type)(const hal_pkey_handle_t pkey,
hal_key_type_t *key_type);
hal_error_t (*get_key_flags)(const hal_pkey_handle_t pkey,
hal_key_flags_t *flags);
size_t (*get_public_key_len)(const hal_pkey_handle_t pkey);
hal_error_t (*get_public_key)(const hal_pkey_handle_t pkey,
uint8_t *der, size_t *der_len, const size_t der_max);
hal_error_t (*sign)(const hal_pkey_handle_t pkey,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
uint8_t * signature, size_t *signature_len, const size_t signature_max);
hal_error_t (*verify)(const hal_pkey_handle_t pkey,
const hal_hash_handle_t hash,
const uint8_t * const input, const size_t input_len,
const uint8_t * const signature, const size_t signature_len);
hal_error_t (*list)(const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_info_t *result,
unsigned *result_len,
const unsigned result_max,
hal_key_flags_t flags);
hal_error_t (*match)(const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid);
hal_error_t (*set_attribute)(const hal_pkey_handle_t pkey,
const uint32_t type,
const uint8_t * const value,
const size_t value_len);
hal_error_t (*get_attribute)(const hal_pkey_handle_t pkey,
const uint32_t type,
uint8_t *value,
size_t *value_len,
const size_t value_max);
hal_error_t (*delete_attribute)(const hal_pkey_handle_t pkey,
const uint32_t type);
} hal_rpc_pkey_dispatch_t;
extern const hal_rpc_misc_dispatch_t hal_rpc_local_misc_dispatch, hal_rpc_remote_misc_dispatch, *hal_rpc_misc_dispatch;
extern const hal_rpc_hash_dispatch_t hal_rpc_local_hash_dispatch, hal_rpc_remote_hash_dispatch, *hal_rpc_hash_dispatch;
extern const hal_rpc_pkey_dispatch_t hal_rpc_local_pkey_dispatch, hal_rpc_remote_pkey_dispatch, hal_rpc_mixed_pkey_dispatch, *hal_rpc_pkey_dispatch;
/*
* See code in rpc_pkey.c for how this flag fits into the pkey handle.
*/
#define HAL_PKEY_HANDLE_TOKEN_FLAG (1 << 31)
/*
* Mostly used by the local_pkey code, but the mixed_pkey code needs
* it to pad hashes for RSA PKCS #1.5 signatures. This may indicate
* that we need a slightly more general internal API here, but not
* worth worrying about as long as we can treat RSA as a special case
* and just pass the plain hash for everything else.
*/
extern hal_error_t hal_rpc_pkcs1_construct_digestinfo(const hal_hash_handle_t handle,
uint8_t *digest_info, size_t *digest_info_len,
const size_t digest_info_max);
/*
* UUID stuff. All UUIDs we use (or are likely to use) are type 4 "random" UUIDs
* Some of this may need to move to hal.h.
*/
#define HAL_UUID_TEXT_SIZE (sizeof("00112233-4455-6677-8899-aabbccddeeff"))
static inline int hal_uuid_cmp(const hal_uuid_t * const a, const hal_uuid_t * const b)
{
return memcmp(a, b, sizeof(hal_uuid_t));
}
extern hal_error_t hal_uuid_gen(hal_uuid_t *uuid);
extern hal_error_t hal_uuid_parse(hal_uuid_t *uuid, const char * const string);
extern hal_error_t hal_uuid_format(const hal_uuid_t * const uuid, char *buffer, const size_t buffer_len);
/*
* CRC-32 stuff (for flash keystore, etc). Dunno if we want a Verilog
* implementation of this, or if it would even be faster than doing it
* the main CPU taking I/O overhead and so forth into account.
*
* These prototypes were generated by pycrc.py, see notes in crc32.c.
*/
typedef uint32_t hal_crc32_t;
static inline hal_crc32_t hal_crc32_init(void)
{
return 0xffffffff;
}
extern hal_crc32_t hal_crc32_update(hal_crc32_t crc, const void *data, size_t data_len);
static inline hal_crc32_t hal_crc32_finalize(hal_crc32_t crc)
{
return crc ^ 0xffffffff;
}
/*
* Sizes for ASN.1-encoded keys, this may not be exact due to ASN.1
* INTEGER encoding rules but should be good enough for buffer sizing:
*
* 2048-bit RSA: 1194 bytes
* 4096-bit RSA: 2351 bytes
* 8192-bit RSA: 4655 bytes
* EC P-256: 121 bytes
* EC P-384: 167 bytes
* EC P-521: 223 bytes
*
* Plus we need a bit of AES-keywrap overhead, since we're storing the
* wrapped form (see hal_aes_keywrap_cyphertext_length()).
*
* A buffer big enough for a 8192-bit RSA key would overflow one
* sub-sector on the flash chip we're using on the Alpha. We could
* invent some more complex scheme where key blocks are allowed to
* span multiple sub-sectors, but since an 8192-bit RSA key would also
* be unusably slow with the current RSA implementation, for the
* moment we take the easy way out and cap this at 4096-bit RSA.
*/
#define HAL_KS_WRAPPED_KEYSIZE ((2351 + 15) & ~7)
/*
* PINs.
*
* The functions here might want renaming, eg, to hal_pin_*().
*/
#ifndef HAL_PIN_SALT_LENGTH
#define HAL_PIN_SALT_LENGTH 16
#endif
typedef struct {
uint32_t iterations;
uint8_t pin[HAL_MAX_HASH_DIGEST_LENGTH];
uint8_t salt[HAL_PIN_SALT_LENGTH];
} hal_ks_pin_t;
extern hal_error_t hal_set_pin_default_iterations(const hal_client_handle_t client,
const uint32_t iterations);
extern hal_error_t hal_get_pin(const hal_user_t user,
const hal_ks_pin_t **pin);
extern hal_error_t hal_set_pin(const hal_user_t user,
const hal_ks_pin_t * const pin);
/*
* Master key memory (MKM) and key-encryption-key (KEK).
*
* Providing a mechanism for storing the KEK in flash is a horrible
* kludge which defeats the entire purpose of having the MKM. We
* support it for now because the Alpha hardware does not yet have
* a working battery backup for the MKM, but it should go away RSN.
*/
#ifndef HAL_MKM_FLASH_BACKUP_KLUDGE
#define HAL_MKM_FLASH_BACKUP_KLUDGE 1
#endif
#ifndef KEK_LENGTH
#define KEK_LENGTH (bitsToBytes(256))
#endif
extern hal_error_t hal_mkm_get_kek(uint8_t *kek, size_t *kek_len, const size_t kek_max);
extern hal_error_t hal_mkm_volatile_read(uint8_t *buf, const size_t len);
extern hal_error_t hal_mkm_volatile_write(const uint8_t * const buf, const size_t len);
extern hal_error_t hal_mkm_volatile_erase(const size_t len);
#if HAL_MKM_FLASH_BACKUP_KLUDGE
/* #warning MKM flash backup kludge enabled. Do NOT use this in production! */
extern hal_error_t hal_mkm_flash_read(uint8_t *buf, const size_t len);
extern hal_error_t hal_mkm_flash_write(const uint8_t * const buf, const size_t len);
extern hal_error_t hal_mkm_flash_erase(const size_t len);
#endif
/*
* Keystore API for use by the pkey implementation.
*
* In an attempt to emulate what current theory says will eventually
* be the behavior of the underlying Cryptech Verilog "hardware",
* these functions automatically apply the AES keywrap transformations.
*
* Unclear whether these should also call the ASN.1 encode/decode
* functions. For the moment, the answer is no, but we may need to
* revisit this as the underlying Verilog API evolves.
*
* hal_pkey_slot_t is defined here too, so that keystore drivers can
* piggyback on the pkey database for storage related to keys on which
* the user currently has an active pkey handle. Nothing outside the
* pkey and keystore code should touch this.
*/
typedef struct {
hal_client_handle_t client_handle;
hal_session_handle_t session_handle;
hal_pkey_handle_t pkey_handle;
hal_key_type_t type;
hal_curve_name_t curve;
hal_key_flags_t flags;
hal_uuid_t name;
int hint;
/*
* This might be where we'd stash a (hal_core_t *) pointing to a
* core which has already been loaded with the key, if we were
* trying to be clever about using multiple signing cores. Moot
* point (ie, no way we could possibly test such a thing) as long as
* the FPGA is too small to hold more than one modexp core and ECDSA
* is entirely software, so skip it for now, but the implied
* semantics are interesting: a pkey handle starts to resemble an
* initialized signing core, and once all the cores are in use, one
* can't load another key without closing an existing pkey handle.
*/
} hal_pkey_slot_t;
typedef struct hal_ks_driver hal_ks_driver_t;
typedef struct hal_ks hal_ks_t;
struct hal_ks_driver {
hal_error_t (*init)(const hal_ks_driver_t * const driver);
hal_error_t (*shutdown)(const hal_ks_driver_t * const driver);
hal_error_t (*open)(const hal_ks_driver_t * const driver,
hal_ks_t **ks);
hal_error_t (*close)(hal_ks_t *ks);
hal_error_t (*store)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len);
hal_error_t (*fetch)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max);
hal_error_t (*delete)(hal_ks_t *ks,
hal_pkey_slot_t *slot);
hal_error_t (*list)(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_info_t *result,
unsigned *result_len,
const unsigned result_max);
hal_error_t (*match)(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid);
hal_error_t (*set_attribute)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type,
const uint8_t * const value,
const size_t value_len);
hal_error_t (*get_attribute)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type,
uint8_t *value,
size_t *value_len,
const size_t value_max);
hal_error_t (*delete_attribute)(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type);
};
struct hal_ks {
const hal_ks_driver_t *driver;
/*
* Any other common portions of hal_ks_t go here.
*/
/*
* Driver-specific stuff is handled by a form of subclassing:
* driver module embeds this structure at the head of whatever
* else it needs, and performs casts as needed.
*/
};
extern const hal_ks_driver_t
hal_ks_volatile_driver[1],
hal_ks_token_driver[1];
static inline hal_error_t hal_ks_init(const hal_ks_driver_t * const driver)
{
if (driver == NULL || driver->init == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return driver->init(driver);
}
static inline hal_error_t hal_ks_shutdown(const hal_ks_driver_t * const driver)
{
if (driver == NULL || driver->shutdown == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return driver->shutdown(driver);
}
static inline hal_error_t hal_ks_open(const hal_ks_driver_t * const driver,
hal_ks_t **ks)
{
if (driver == NULL || driver->open == NULL || ks == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return driver->open(driver, ks);
}
static inline hal_error_t hal_ks_close(hal_ks_t *ks)
{
if (ks == NULL || ks->driver == NULL || ks->driver->close == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->close(ks);
}
static inline hal_error_t hal_ks_store(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint8_t * const der, const size_t der_len)
{
if (ks == NULL || ks->driver == NULL || ks->driver->store == NULL || slot == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->store(ks, slot, der, der_len);
}
static inline hal_error_t hal_ks_fetch(hal_ks_t *ks,
hal_pkey_slot_t *slot,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (ks == NULL || ks->driver == NULL || ks->driver->fetch == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->fetch(ks, slot, der, der_len, der_max);
}
static inline hal_error_t hal_ks_delete(hal_ks_t *ks,
hal_pkey_slot_t *slot)
{
if (ks == NULL || ks->driver == NULL || ks->driver->delete == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->delete(ks, slot);
}
static inline hal_error_t hal_ks_list(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
hal_pkey_info_t *result,
unsigned *result_len,
const unsigned result_max)
{
if (ks == NULL || ks->driver == NULL || ks->driver->list == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->list(ks, client, session, result, result_len, result_max);
}
static inline hal_error_t hal_ks_match(hal_ks_t *ks,
const hal_client_handle_t client,
const hal_session_handle_t session,
const hal_key_type_t type,
const hal_curve_name_t curve,
const hal_key_flags_t flags,
hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len,
hal_uuid_t *result,
unsigned *result_len,
const unsigned result_max,
const hal_uuid_t * const previous_uuid)
{
if (ks == NULL || ks->driver == NULL || ks->driver->match == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->match(ks, client, session, type, curve, flags, attributes, attributes_len,
result, result_len, result_max, previous_uuid);
}
static inline hal_error_t hal_ks_set_attribute(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type,
const uint8_t * const value,
const size_t value_len)
{
if (ks == NULL || ks->driver == NULL || ks->driver->set_attribute == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->set_attribute(ks, slot, type, value, value_len);
}
static inline hal_error_t hal_ks_get_attribute(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type,
uint8_t *value,
size_t *value_len,
const size_t value_max)
{
if (ks == NULL || ks->driver == NULL || ks->driver->get_attribute == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->get_attribute(ks, slot, type, value, value_len, value_max);
}
static inline hal_error_t hal_ks_delete_attribute(hal_ks_t *ks,
hal_pkey_slot_t *slot,
const uint32_t type)
{
if (ks == NULL || ks->driver == NULL || ks->driver->delete_attribute == NULL || slot == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
return ks->driver->delete_attribute(ks, slot, type);
}
/*
* Keystore index. This is intended to be usable by both memory-based
* (in-memory, mmap(), ...) keystores and keystores based on raw flash.
* Some of the features aren't really necessary for memory-based keystores,
* but should be harmless.
*
* General approach is multiple arrays, all but one of which are
* indexed by "block" numbers, where a block number might be a slot in
* yet another static array, the number of a flash sub-sector, or
* whatever is the appropriate unit for holding one keystore record.
*
* The index array contains nothing but flags and block numbers, and
* is deliberately a small data structure so that moving data around
* within it is relatively cheap.
*
* The index array is divided into two portions: the index proper, and
* the free queue. The index proper is ordered according to the names
* (UUIDs) of the corresponding blocks; the free queue is a FIFO, to
* support a simplistic form of wear leveling in flash-based keystores.
*
* Key names are kept in a separate array, indexed by block number.
* Key names here are a composite of the key's UUID and a "chunk"
* number; the latter allows storage of keys whose total size exceeds
* one block (whatever a block is). For the moment we keep the UUID
* and the chunk number in a single array, which may provide (very)
* slightly better performance due to reference locality in SDRAM, but
* this may change if we need to reclaim the space wasted by structure
* size rounding.
*
* The all-zeros UUID, which (by definition) cannot be a valid key
* UUID, is reserved for the (non-key) block used to stash PINs and
* other small data which aren't really part of the keystore proper
* but are kept with it because the keystore is the flash we have.
*
* Note that this API deliberately says nothing about how the keys
* themselves are stored, that's up to the keystore driver. This
* portion of the API is only concerned with allocation and naming.
*/
typedef struct {
hal_uuid_t name; /* Key name */
uint8_t chunk; /* Key chunk number */
} hal_ks_name_t;
typedef struct {
unsigned size; /* Array length */
unsigned used; /* How many blocks are in use */
uint16_t *index; /* Index/freelist array */
hal_ks_name_t *names; /* Keyname array */
} hal_ks_index_t;
/*
* Finish setting up key index. Caller must populate index, free
* list, and name array.
*
* This function checks a few things then sorts the index proper.
*
* If driver cares about wear leveling, driver must supply the free
* list in the desired order (FIFO); figuring out what that order is a
* problem for the keystore driver.
*/
extern hal_error_t hal_ks_index_setup(hal_ks_index_t *ksi);
/*
* Find a key block, return its block number.
*/
extern hal_error_t hal_ks_index_find(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Find all the blocks in a key, return the block numbers.
*/
extern hal_error_t hal_ks_index_find_range(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned max_blocks,
unsigned *n_blocks,
unsigned *blocknos,
int *hint);
/*
* Add a key block, return its block number.
*/
extern hal_error_t hal_ks_index_add(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Delete a key block, returns its block number (driver may need it).
*/
extern hal_error_t hal_ks_index_delete(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Delete all of blocks in a key, returning the block numbers.
*/
extern hal_error_t hal_ks_index_delete_range(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned max_blocks,
unsigned *n_blocks,
unsigned *blocknos,
int *hint);
/*
* Replace a key block with a new one, return new block number.
* Name of block does not change. This is an optimization of
* a delete immediately followed by an add for the same name.
*/
extern hal_error_t hal_ks_index_replace(hal_ks_index_t *ksi,
const hal_uuid_t * const name,
const unsigned chunk,
unsigned *blockno,
int *hint);
/*
* Check the index for errors. At least for the moment, this just
* reports errors, it doesn't attempt to fix them.
*/
extern hal_error_t hal_ks_index_fsck(hal_ks_index_t *ksi);
/*
* Keystore attribute utilities, for use by keystore drivers.
*
* Basic model here is probably to replace the "der" block in a key
* object with a byte array. We could use padding to get alignment,
* but it's probably easier just to do this DNS style, pulling a
* 16-bit length and 32-bit attribute type out of the byte array
* directly. Well, maybe. I guess if we cast the uint8_t* to a
* structure pointer we could use the structure to pull out the header
* fields, but that has portability issues, particulary if the
* compiler gets tetchy about type punning.
*
* Unclear whether we should treat the key DER specially. Might just
* give it an attribute code of 0xFFFFFFFF and treat it same as
* everything else, just always first for convenience. This assumes
* that PKCS #11 will never use 0xFFFFFFFF, which is a bit risky, but
* maybe the code just treats it a little bit specially and knows to
* skip over the key DER when looking for attributes, etc.
*
* We probably don't want to let attributes span block boundaries. We
* probably do want to attempt to fit a new attribute into the first
* available space which can hold it. In theory, taken together, this
* means we will only have to update multiple blocks when required to
* add a new block (in which case the max_blocks count changes). Most
* of this only applies to flash, for volatile we can use as much
* memory as we like, although even there we might want smaller chunks
* to avoid wasting huge tracts of space that don't end up being used.
* But maybe that's just a configuration thing for the volatile
* keystore(s).
*
* If we have to rewrite a block at all we might as well compact it,
* so fragmentation in that sense is a non-issue. Might need to
* collapse blocks when deletion has freed up enough space, but that
* might be something we handle directly in ks_flash rather than in
* the ks_attribute code.
*
* We need some way of figuring out how many attributes there are.
* Options are a marker (like the IPv4 END-OF-OPTIONS option) or a
* count in the header. Count is simpler and lets us pre-allocate
* arrays so probably go with that.
*/
extern hal_error_t hal_ks_attribute_scan(const uint8_t * const bytes,
const size_t bytes_len,
hal_rpc_pkey_attribute_t *attributes,
const unsigned attributes_len,
size_t *total_len);
extern hal_error_t hal_ks_attribute_delete(uint8_t *bytes,
const size_t bytes_len,
hal_rpc_pkey_attribute_t *attributes,
unsigned *attributes_len,
size_t *total_len,
const uint32_t type);
extern hal_error_t hal_ks_attribute_insert(uint8_t *bytes, const size_t bytes_len,
hal_rpc_pkey_attribute_t *attributes,
unsigned *attributes_len,
size_t *total_len,
const uint32_t type,
const uint8_t * const value,
const size_t value_len);
/*
* RPC lowest-level send and receive routines. These are blocking, and
* transport-specific (sockets, USB).
*/
extern hal_error_t hal_rpc_send(const uint8_t * const buf, const size_t len);
extern hal_error_t hal_rpc_recv(uint8_t * const buf, size_t * const len);
extern hal_error_t hal_rpc_sendto(const uint8_t * const buf, const size_t len, void *opaque);
extern hal_error_t hal_rpc_recvfrom(uint8_t * const buf, size_t * const len, void **opaque);
extern hal_error_t hal_rpc_client_transport_init(void);
extern hal_error_t hal_rpc_client_transport_close(void);
extern hal_error_t hal_rpc_server_transport_init(void);
extern hal_error_t hal_rpc_server_transport_close(void);
/*
* RPC function numbers
*/
typedef enum {
RPC_FUNC_GET_VERSION = 0,
RPC_FUNC_GET_RANDOM,
RPC_FUNC_SET_PIN,
RPC_FUNC_LOGIN,
RPC_FUNC_LOGOUT,
RPC_FUNC_LOGOUT_ALL,
RPC_FUNC_IS_LOGGED_IN,
RPC_FUNC_HASH_GET_DIGEST_LEN,
RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID,
RPC_FUNC_HASH_GET_ALGORITHM,
RPC_FUNC_HASH_INITIALIZE,
RPC_FUNC_HASH_UPDATE,
RPC_FUNC_HASH_FINALIZE,
RPC_FUNC_PKEY_LOAD,
RPC_FUNC_PKEY_FIND,
RPC_FUNC_PKEY_GENERATE_RSA,
RPC_FUNC_PKEY_GENERATE_EC,
RPC_FUNC_PKEY_CLOSE,
RPC_FUNC_PKEY_DELETE,
RPC_FUNC_PKEY_GET_KEY_TYPE,
RPC_FUNC_PKEY_GET_KEY_FLAGS,
RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN,
RPC_FUNC_PKEY_GET_PUBLIC_KEY,
RPC_FUNC_PKEY_SIGN,
RPC_FUNC_PKEY_VERIFY,
RPC_FUNC_PKEY_LIST,
RPC_FUNC_PKEY_RENAME,
RPC_FUNC_PKEY_MATCH,
RPC_FUNC_PKEY_SET_ATTRIBUTE,
RPC_FUNC_PKEY_GET_ATTRIBUTE,
RPC_FUNC_PKEY_DELETE_ATTRIBUTE,
} rpc_func_num_t;
#define RPC_VERSION 0x01010000 /* 1.1.0.0 */
/*
* RPC client locality. These have to be defines rather than an enum,
* because they're handled by the preprocessor.
*/
#define RPC_CLIENT_LOCAL 0
#define RPC_CLIENT_REMOTE 1
#define RPC_CLIENT_MIXED 2
#define RPC_CLIENT_NONE 3
/*
* Maximum size of a HAL RPC packet.
*/
#ifndef HAL_RPC_MAX_PKT_SIZE
#define HAL_RPC_MAX_PKT_SIZE 4096
#endif
/*
* Location of AF_UNIX socket for RPC client mux daemon.
*/
#ifndef HAL_CLIENT_DAEMON_DEFAULT_SOCKET_NAME
#define HAL_CLIENT_DAEMON_DEFAULT_SOCKET_NAME "/tmp/cryptech_rpcd.socket"
#endif
/*
* Default device name and line speed for HAL RPC serial connection to HSM.
*/
#ifndef HAL_CLIENT_SERIAL_DEFAULT_DEVICE
#define HAL_CLIENT_SERIAL_DEFAULT_DEVICE "/dev/ttyUSB0"
#endif
#ifndef HAL_CLIENT_SERIAL_DEFAULT_SPEED
#define HAL_CLIENT_SERIAL_DEFAULT_SPEED 921600
#endif
/*
* Names of environment variables for setting the above in RPC clients.
*/
#define HAL_CLIENT_SERIAL_DEVICE_ENVVAR "CRYPTECH_RPC_CLIENT_SERIAL_DEVICE"
#define HAL_CLIENT_SERIAL_SPEED_ENVVAR "CRYPTECH_RPC_CLIENT_SERIAL_SPEED"
#endif /* _HAL_INTERNAL_H_ */
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/