/* * hashsig.c * --------- * Implementation of draft-mcgrew-hash-sigs-15.txt * * Copyright (c) 2018, NORDUnet A/S All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the NORDUnet nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "hal.h" #include "hashsig.h" #include "ks.h" #include "asn1_internal.h" #include "xdr_internal.h" typedef struct { uint8_t bytes[32]; } bytestring32; typedef struct { uint8_t bytes[16]; } bytestring16; #define D_PBLC 0x8080 #define D_MESG 0x8181 #define D_LEAF 0x8282 #define D_INTR 0x8383 #define u32str(X) htonl(X) #define u16str(X) htons(X) #define u8str(X) ((X) & 0xff) #define check(op) do { hal_error_t _err = (op); if (_err != HAL_OK) return _err; } while (0) /* ---------------------------------------------------------------- */ /* * XDR extensions */ static inline hal_error_t hal_xdr_encode_bytestring32(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring32 * const value) { return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring32)); } static inline hal_error_t hal_xdr_decode_bytestring32_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 **value) { return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring32)); } static inline hal_error_t hal_xdr_decode_bytestring32(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring32 * const value) { return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring32)); } static inline hal_error_t hal_xdr_encode_bytestring16(uint8_t ** const outbuf, const uint8_t * const limit, const bytestring16 *value) { return hal_xdr_encode_fixed_opaque(outbuf, limit, (const uint8_t *)value, sizeof(bytestring16)); } static inline hal_error_t hal_xdr_decode_bytestring16_ptr(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 **value) { return hal_xdr_decode_fixed_opaque_ptr(inbuf, limit, (const uint8_t ** const)value, sizeof(bytestring16)); } static inline hal_error_t hal_xdr_decode_bytestring16(const uint8_t ** const inbuf, const uint8_t * const limit, bytestring16 * const value) { return hal_xdr_decode_fixed_opaque(inbuf, limit, (uint8_t * const)value, sizeof(bytestring16)); } /* ---------------------------------------------------------------- */ /* * ASN.1 extensions */ static inline hal_error_t hal_asn1_encode_size_t(const size_t n, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_uint32((const uint32_t)n, der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_size_t(size_t *np, const uint8_t * const der, size_t *der_len, const size_t der_max) { /* trust the compiler to optimize out the unused code path */ if (sizeof(size_t) == sizeof(uint32_t)) { return hal_asn1_decode_uint32((uint32_t *)np, der, der_len, der_max); } else { uint32_t n; hal_error_t err; if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK) *np = (size_t)n; return err; } } static inline hal_error_t hal_asn1_encode_lms_algorithm(const hal_lms_algorithm_t type, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_lms_algorithm(hal_lms_algorithm_t *type, const uint8_t * const der, size_t *der_len, const size_t der_max) { uint32_t n; hal_error_t err; if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK) *type = (hal_lms_algorithm_t)n; return err; } static inline hal_error_t hal_asn1_encode_lmots_algorithm(const hal_lmots_algorithm_t type, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_uint32((const uint32_t)type, der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_lmots_algorithm(hal_lmots_algorithm_t *type, const uint8_t * const der, size_t *der_len, const size_t der_max) { uint32_t n; hal_error_t err; if ((err = hal_asn1_decode_uint32(&n, der, der_len, der_max)) == HAL_OK) *type = (hal_lmots_algorithm_t)n; return err; } #if 0 /* currently unused */ static inline hal_error_t hal_asn1_encode_uuid(const hal_uuid_t * const data, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(hal_uuid_t), der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_uuid(hal_uuid_t *data, const uint8_t * const der, size_t *der_len, const size_t der_max) { return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(hal_uuid_t), der, der_len, der_max); } #endif static inline hal_error_t hal_asn1_encode_bytestring16(const bytestring16 * const data, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring16), der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_bytestring16(bytestring16 *data, const uint8_t * const der, size_t *der_len, const size_t der_max) { return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring16), der, der_len, der_max); } static inline hal_error_t hal_asn1_encode_bytestring32(const bytestring32 * const data, uint8_t *der, size_t *der_len, const size_t der_max) { return hal_asn1_encode_octet_string((const uint8_t * const)data, sizeof(bytestring32), der, der_len, der_max); } static inline hal_error_t hal_asn1_decode_bytestring32(bytestring32 *data, const uint8_t * const der, size_t *der_len, const size_t der_max) { return hal_asn1_decode_octet_string((uint8_t *)data, sizeof(bytestring32), der, der_len, der_max); } /* ---------------------------------------------------------------- */ /* * LM-OTS */ typedef const struct lmots_parameter_set { hal_lmots_algorithm_t type; size_t n, w, p, ls; } lmots_parameter_t; static lmots_parameter_t lmots_parameters[] = { { hal_lmots_sha256_n32_w1, 32, 1, 265, 7 }, { hal_lmots_sha256_n32_w2, 32, 2, 133, 6 }, { hal_lmots_sha256_n32_w4, 32, 4, 67, 4 }, { hal_lmots_sha256_n32_w8, 32, 8, 34, 0 }, }; typedef struct lmots_key { hal_key_type_t type; lmots_parameter_t *lmots; bytestring16 I; size_t q; bytestring32 * x; bytestring32 K; } lmots_key_t; static inline lmots_parameter_t *lmots_select_parameter_set(const hal_lmots_algorithm_t lmots_type) { if (lmots_type < hal_lmots_sha256_n32_w1 || lmots_type > hal_lmots_sha256_n32_w8) return NULL; else return &lmots_parameters[lmots_type - hal_lmots_sha256_n32_w1]; } static inline size_t lmots_private_key_len(lmots_parameter_t * const lmots) { /* u32str(type) || I || u32str(q) || x[0] || x[1] || ... || x[p-1] */ return 2 * sizeof(uint32_t) + sizeof(bytestring16) + (lmots->p * lmots->n); } #if 0 /* currently unused */ static inline size_t lmots_public_key_len(lmots_parameter_t * const lmots) { /* u32str(type) || I || u32str(q) || K */ return 2 * sizeof(uint32_t) + sizeof(bytestring16) + lmots->n; } #endif static inline size_t lmots_signature_len(lmots_parameter_t * const lmots) { /* u32str(type) || C || y[0] || ... || y[p-1] */ return sizeof(uint32_t) + (lmots->p + 1) * lmots->n; } #if RPC_CLIENT == RPC_CLIENT_LOCAL /* Given a key with most fields filled in, generate the lmots private and * public key components (x and K). * Let the caller worry about storage. */ static hal_error_t lmots_generate(lmots_key_t * const key, bytestring32 *seed) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || key->lmots == NULL || key->x == NULL) return HAL_ERROR_BAD_ARGUMENTS; // Algorithm 0: Generating a Private Key // 3. set n and p according to the typecode and Table 1 size_t n = key->lmots->n; size_t p = key->lmots->p; size_t w = key->lmots->w; if (seed == NULL) { // 4. compute the array x as follows: // for ( i = 0; i < p; i = i + 1 ) { // set x[i] to a uniformly random n-byte string // } for (size_t i = 0; i < p; ++i) check(hal_rpc_get_random(&key->x[i], n)); } else { for (size_t i = 0; i < p; ++i) { // Appendix A. Pseudorandom Key Generation // x_q[i] = H(I || u32str(q) || u16str(i) || u8str(0xff) || SEED) uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint32_t l; uint16_t s; uint8_t b; check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); b = u8str(0xff); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b))); check(hal_hash_update(state, (const uint8_t *)seed, sizeof(bytestring32))); check(hal_hash_finalize(state, (uint8_t *)&key->x[i], sizeof(bytestring32))); } } // Algorithm 1: Generating a One Time Signature Public Key From a // Private Key // 4. compute the string K as follows: uint8_t statebuf[512]; hal_hash_state_t *state = NULL; bytestring32 y[p]; uint32_t l; uint16_t s; uint8_t b; // for ( i = 0; i < p; i = i + 1 ) { for (size_t i = 0; i < p; ++i) { // tmp = x[i] bytestring32 tmp; memcpy(&tmp, &key->x[i], sizeof(tmp)); // for ( j = 0; j < 2^w - 1; j = j + 1 ) { for (size_t j = 0; j < (1U << w) - 1; ++j) { // tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b))); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); } // y[i] = tmp memcpy(&y[i], &tmp, sizeof(tmp)); // } } // K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1]) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); for (size_t i = 0; i < p; ++i) check(hal_hash_update(state, (const uint8_t *)&y[i], sizeof(y[i]))); check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K))); return HAL_OK; } #endif /* strings of w-bit elements */ static uint8_t coef(const uint8_t * const S, const size_t i, size_t w) { switch (w) { case 1: return (S[i/8] >> (7 - (i % 8))) & 0x01; case 2: return (S[i/4] >> (6 - (2 * (i % 4)))) & 0x03; case 4: return (S[i/2] >> (4 - (4 * (i % 2)))) & 0x0f; case 8: return S[i]; default: return 0; } } /* checksum */ static uint16_t Cksm(const uint8_t * const S, lmots_parameter_t *lmots) { uint16_t sum = 0; for (size_t i = 0; i < (lmots->n * 8 / lmots->w); ++i) sum += ((1 << lmots->w) - 1) - coef(S, i, lmots->w); return (sum << lmots->ls); } #if RPC_CLIENT == RPC_CLIENT_LOCAL static hal_error_t lmots_sign(lmots_key_t *key, const uint8_t * const msg, const size_t msg_len, uint8_t * sig, size_t *sig_len, const size_t sig_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; // Algorithm 3: Generating a One Time Signature From a Private Key and a // Message // 1. set type to the typecode of the algorithm // // 2. set n, p, and w according to the typecode and Table 1 size_t n = key->lmots->n; size_t p = key->lmots->p; size_t w = key->lmots->w; if (sig_max < lmots_signature_len(key->lmots)) return HAL_ERROR_BAD_ARGUMENTS; // 3. determine x, I and q from the private key // // 4. set C to a uniformly random n-byte string bytestring32 C; check(hal_rpc_get_random(&C, n)); // 5. compute the array y as follows: uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint8_t Q[n + 2]; /* hash || 16-bit checksum */ uint32_t l; uint16_t s; uint8_t b; // Q = H(I || u32str(q) || u16str(D_MESG) || C || message) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C))); check(hal_hash_update(state, msg, msg_len)); check(hal_hash_finalize(state, Q, n)); /* append checksum */ *(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots)); bytestring32 y[p]; // for ( i = 0; i < p; i = i + 1 ) { for (size_t i = 0; i < p; ++i) { // a = coef(Q || Cksm(Q), i, w) uint8_t a = coef(Q, i, w); // tmp = x[i] bytestring32 tmp; memcpy(&tmp, &key->x[i], sizeof(tmp)); // for ( j = 0; j < a; j = j + 1 ) { for (size_t j = 0; j < (size_t)a; ++j) { // tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b))); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); // } } // y[i] = tmp memcpy(&y[i], &tmp, sizeof(tmp)); } // 6. return u32str(type) || C || y[0] || ... || y[p-1] uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_max; check(hal_xdr_encode_int(&sigptr, siglim, key->lmots->type)); check(hal_xdr_encode_bytestring32(&sigptr, siglim, &C)); for (size_t i = 0; i < p; ++i) check(hal_xdr_encode_bytestring32(&sigptr, siglim, &y[i])); if (sig_len != NULL) *sig_len = sigptr - sig; return HAL_OK; } #endif static hal_error_t lmots_public_key_candidate(const lmots_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len) { if (key == NULL || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* Skip the length checks here, because we did a unitary length check * at the start of lms_verify. */ // 1. if the signature is not at least four bytes long, return INVALID // // 2. parse sigtype, C, and y from the signature as follows: // a. sigtype = strTou32(first 4 bytes of signature) const uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_len; uint32_t sigtype; check(hal_xdr_decode_int(&sigptr, siglim, &sigtype)); // b. if sigtype is not equal to pubtype, return INVALID if ((hal_lmots_algorithm_t)sigtype != key->lmots->type) return HAL_ERROR_INVALID_SIGNATURE; // c. set n and p according to the pubtype and Table 1; if the // signature is not exactly 4 + n * (p+1) bytes long, return INVALID size_t n = key->lmots->n; size_t p = key->lmots->p; size_t w = key->lmots->w; // d. C = next n bytes of signature bytestring32 C; check(hal_xdr_decode_bytestring32(&sigptr, siglim, &C)); // e. y[0] = next n bytes of signature // y[1] = next n bytes of signature // ... // y[p-1] = next n bytes of signature bytestring32 y[p]; for (size_t i = 0; i < p; ++i) check(hal_xdr_decode_bytestring32(&sigptr, siglim, &y[i])); // 3. compute the string Kc as follows uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint8_t Q[n + 2]; /* hash || 16-bit checksum */ uint32_t l; uint16_t s; uint8_t b; // Q = H(I || u32str(q) || u16str(D_MESG) || C || message) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_MESG); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&C, sizeof(C))); check(hal_hash_update(state, msg, msg_len)); check(hal_hash_finalize(state, Q, n)); /* append checksum */ *(uint16_t *)&Q[n] = u16str(Cksm((uint8_t *)Q, key->lmots)); bytestring32 z[p]; // for ( i = 0; i < p; i = i + 1 ) { for (size_t i = 0; i < p; ++i) { // a = coef(Q || Cksm(Q), i, w) uint8_t a = coef(Q, i, w); // tmp = y[i] bytestring32 tmp; memcpy(&tmp, &y[i], sizeof(tmp)); // for ( j = a; j < 2^w - 1; j = j + 1 ) { for (size_t j = (size_t)a; j < (1U << w) - 1; ++j) { // tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(i); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); b = u8str(j); check(hal_hash_update(state, (const uint8_t *)&b, sizeof(b))); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); // } } // z[i] = tmp memcpy(&z[i], &tmp, sizeof(tmp)); // } } // Kc = H(I || u32str(q) || u16str(D_PBLC) || z[0] || z[1] || ... || z[p-1]) check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(key->q); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_PBLC); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); for (size_t i = 0; i < p; ++i) check(hal_hash_update(state, (const uint8_t *)&z[i], sizeof(z[i]))); check(hal_hash_finalize(state, (uint8_t *)&key->K, sizeof(key->K))); // 4. return Kc return HAL_OK; } #if RPC_CLIENT == RPC_CLIENT_LOCAL static hal_error_t lmots_private_key_to_der(const lmots_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMOTS) return HAL_ERROR_BAD_ARGUMENTS; // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1] /* K is not an integral part of the private key, but we store it to speed up restart */ /* * Calculate data length. */ size_t len, vlen = 0, hlen; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring32(&key->K, NULL, &len, 0)); vlen += len; for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_encode_bytestring32(&key->x[i], NULL, &len, 0)); vlen += len; } check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)); if (der == NULL) return HAL_OK; /* * Encode data. */ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); uint8_t *d = der + hlen; memset(d, 0, vlen); check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len; for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_encode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len; } return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); } static size_t lmots_private_key_to_der_len(const lmots_key_t * const key) { size_t len = 0; return (lmots_private_key_to_der(key, NULL, &len, 0) == HAL_OK) ? len : 0; } static hal_error_t lmots_private_key_from_der(lmots_key_t *key, const uint8_t *der, const size_t der_len) { if (key == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; key->type = HAL_KEY_TYPE_HASHSIG_LMOTS; size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len; const uint8_t *alg_oid, *curve_oid, *privkey; check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &privkey, &privkey_len, der, der_len)); if (alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 || curve_oid_len != 0) return HAL_ERROR_ASN1_PARSE_FAILED; check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)); const uint8_t *d = privkey + hlen; size_t len; // u32str(lmots_type) || I || u32str(q) || K || x[0] || x[1] || ... || x[p-1] hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, vlen)); d += len; vlen -= len; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_decode_size_t(&key->q, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_decode_bytestring32(&key->K, d, &len, vlen)); d += len; vlen -= len; if (key->x != NULL) { for (size_t i = 0; i < key->lmots->p; ++i) { check(hal_asn1_decode_bytestring32(&key->x[i], d, &len, vlen)); d += len; vlen -= len; } if (d != privkey + privkey_len) return HAL_ERROR_ASN1_PARSE_FAILED; } return HAL_OK; } #endif /* ---------------------------------------------------------------- */ /* * LMS */ typedef const struct lms_parameter_set { hal_lms_algorithm_t type; size_t m, h; } lms_parameter_t; static lms_parameter_t lms_parameters[] = { { hal_lms_sha256_n32_h5, 32, 5 }, { hal_lms_sha256_n32_h10, 32, 10 }, { hal_lms_sha256_n32_h15, 32, 15 }, { hal_lms_sha256_n32_h20, 32, 20 }, { hal_lms_sha256_n32_h25, 32, 25 }, }; typedef struct lms_key { hal_key_type_t type; size_t level; lms_parameter_t *lms; lmots_parameter_t *lmots; bytestring16 I; size_t q; /* index of next lmots signing key */ size_t q_end; hal_uuid_t *lmots_keys; /* private key components */ bytestring32 *T; /* public key components */ bytestring32 T1; /* copy of T[1] */ uint8_t *pubkey; /* in XDR format */ size_t pubkey_len; uint8_t *signature; /* of public key by parent lms key */ size_t signature_len; } lms_key_t; static inline lms_parameter_t *lms_select_parameter_set(const hal_lms_algorithm_t lms_type) { if (lms_type < hal_lms_sha256_n32_h5 || lms_type > hal_lms_sha256_n32_h25) return NULL; else return &lms_parameters[lms_type - hal_lms_sha256_n32_h5]; } static inline size_t lms_public_key_len(lms_parameter_t * const lms) { /* u32str(type) || u32str(otstype) || I || T[1] */ return 2 * sizeof(uint32_t) + 16 + lms->m; } static inline size_t lms_signature_len(lms_parameter_t * const lms, lmots_parameter_t * const lmots) { /* u32str(q) || ots_signature || u32str(type) || path[0] || path[1] || ... || path[h-1] */ return 2 * sizeof(uint32_t) + lmots_signature_len(lmots) + lms->h * lms->m; } #if RPC_CLIENT == RPC_CLIENT_LOCAL static hal_error_t lms_compute_T_leaf(lms_key_t *key, lmots_key_t *lmots_key) { /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */ size_t r = (1U << key->lms->h) + lmots_key->q; uint8_t statebuf[512]; hal_hash_state_t *state = NULL; check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&lmots_key->I, sizeof(lmots_key->I))); uint32_t l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); uint16_t s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&lmots_key->K, sizeof(lmots_key->K))); check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r]))); return HAL_OK; } static hal_error_t lms_compute_T_intr(lms_key_t *key) { /* generate the rest of T[r] = H(I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1]) */ for (size_t r = (1U << key->lms->h) - 1; r > 0; --r) { uint8_t statebuf[512]; hal_hash_state_t *state = NULL; check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); uint32_t l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); uint16_t s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&key->T[2*r], sizeof(key->T[r]))); check(hal_hash_update(state, (const uint8_t *)&key->T[2*r+1], sizeof(key->T[r]))); check(hal_hash_finalize(state, (uint8_t *)&key->T[r], sizeof(key->T[r]))); hal_task_yield_maybe(); } return HAL_OK; } static hal_error_t lms_generate_lmots(lms_key_t *key, size_t q, bytestring32 *seed) { bytestring32 x[key->lmots->p]; lmots_key_t lmots_key = { .type = HAL_KEY_TYPE_HASHSIG_LMOTS, .lmots = key->lmots, .q = q, .x = x }; memcpy(&lmots_key.I, &key->I, sizeof(key->I)); /* generate the lmots private and public key components */ check(lmots_generate(&lmots_key, seed)); /* Note: we have to generate all the lmots keys, even if q > 0 or * q_end < 2^h, because we need them to calculate T[]. * We just don't need to store the ones that are out of range. */ if (q >= key->q && q < key->q_end) { /* store the lmots key */ hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMOTS, .curve = HAL_CURVE_NONE, .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0) }; uint8_t der[lmots_private_key_to_der_len(&lmots_key)]; size_t der_len; check(lmots_private_key_to_der(&lmots_key, der, &der_len, sizeof(der))); check(hal_uuid_gen(&slot.name)); hal_error_t err = hal_ks_store(ks, &slot, der, der_len); memset(&x, 0, sizeof(x)); memset(der, 0, sizeof(der)); if (err != HAL_OK) return err; /* record the lmots keystore name */ memcpy(&key->lmots_keys[q], &slot.name, sizeof(slot.name)); } else memset(&x, 0, sizeof(x)); /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */ check(lms_compute_T_leaf(key, &lmots_key)); return HAL_OK; } /* Given a key with most fields filled in, generate the lms private and * public key components. * Let the caller worry about storage. */ static hal_error_t lms_generate(lms_key_t *key, bytestring32 *seed) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || key->lms == NULL || key->lmots == NULL || key->lmots_keys == NULL || key->T == NULL) return HAL_ERROR_BAD_ARGUMENTS; hal_uuid_t I_0 = {{0}}; if (hal_uuid_cmp((hal_uuid_t *)&key->I, &I_0) == 0) check(hal_uuid_gen((hal_uuid_t *)&key->I)); /* private key - array of lmots key names */ for (size_t q = 0; q < (1U << key->lms->h); ++q) { check(lms_generate_lmots(key, q, seed)); hal_task_yield_maybe(); } /* generate the rest of T[r] = H(I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1]) */ check(lms_compute_T_intr(key)); memcpy(&key->T1, &key->T[1], sizeof(key->T1)); /* generate the XDR encoding of the public key, which will be signed * by the previous lms key */ uint8_t *pubkey = key->pubkey; const uint8_t * const publim = key->pubkey + key->pubkey_len; // u32str(lms_type) || u32str(lmots_type) || I || T[1] check(hal_xdr_encode_int(&pubkey, publim, key->lms->type)); check(hal_xdr_encode_int(&pubkey, publim, key->lmots->type)); check(hal_xdr_encode_bytestring16(&pubkey, publim, &key->I)); check(hal_xdr_encode_bytestring32(&pubkey, publim, &key->T1)); return HAL_OK; } static hal_error_t lms_delete(const lms_key_t * const key) { hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; hal_pkey_slot_t slot = {{0}}; hal_uuid_t uuid_0 = {{0}}; /* delete the lmots keys */ for (size_t i = 0; i < (1U << key->lms->h); ++i) { if (hal_uuid_cmp(&key->lmots_keys[i], &uuid_0) != 0) { memcpy(&slot.name, &key->lmots_keys[i], sizeof(slot.name)); (void)hal_ks_delete(ks, &slot); hal_task_yield_maybe(); } } /* delete the lms key */ memcpy(&slot.name, &key->I, sizeof(slot.name)); return hal_ks_delete(ks, &slot); } static hal_error_t lms_private_key_to_der(const lms_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max); static hal_error_t lms_sign(lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, uint8_t *sig, size_t *sig_len, const size_t sig_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (key->q >= key->q_end) return HAL_ERROR_HASHSIG_KEY_EXHAUSTED; if (sig_max < lms_signature_len(key->lms, key->lmots)) return HAL_ERROR_RESULT_TOO_LONG; /* u32str(q) || ots_signature || u32str(lms_type) || path[0] || path[1] || ... || path[h-1] */ uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_max; check(hal_xdr_encode_int(&sigptr, siglim, key->q)); /* fetch and decode the lmots signing key from the keystore */ hal_pkey_slot_t slot = {0}; memcpy(&slot.name, &key->lmots_keys[key->q], sizeof(slot.name)); lmots_key_t lmots_key; memset(&lmots_key, 0, sizeof(lmots_key)); bytestring32 x[key->lmots->p]; memset(&x, 0, sizeof(x)); lmots_key.x = x; uint8_t der[HAL_KS_WRAPPED_KEYSIZE]; size_t der_len; hal_ks_t *ks = (key->level == 0) ? hal_ks_token : hal_ks_volatile; check(hal_ks_fetch(ks, &slot, der, &der_len, sizeof(der))); check(lmots_private_key_from_der(&lmots_key, der, der_len)); memset(&der, 0, sizeof(der)); //? check lmots_type and I vs. lms key? /* generate the lmots signature */ size_t lmots_sig_len; check(lmots_sign(&lmots_key, msg, msg_len, sigptr, &lmots_sig_len, sig_max - (sigptr - sig))); memset(&x, 0, sizeof(x)); sigptr += lmots_sig_len; check(hal_xdr_encode_int(&sigptr, siglim, key->lms->type)); /* generate the path array */ for (size_t r = (1 << key->lms->h) + key->q; r > 1; r /= 2) check(hal_xdr_encode_bytestring32(&sigptr, siglim, ((r & 1) ? &key->T[r-1] : &key->T[r+1]))); if (sig_len != NULL) *sig_len = sigptr - sig; /* update and store q before returning the signature */ ++key->q; check(lms_private_key_to_der(key, der, &der_len, sizeof(der))); slot.type = HAL_KEY_TYPE_HASHSIG_LMS; slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((key->level == 0) ? HAL_KEY_FLAG_TOKEN : 0); memcpy(&slot.name, &key->I, sizeof(slot.name)); check(hal_ks_rewrite_der(ks, &slot, der, der_len)); return HAL_OK; } #endif static hal_error_t lms_public_key_candidate(const lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len, bytestring32 * Tc); static hal_error_t lms_verify(const lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len) { if (key == NULL || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* We can do one length check right now, rather than the 3 in * Algorithm 6b and 2 in Algorithm 4b, because the lms and lmots types * in the signature have to match the key. */ if (sig_len != lms_signature_len(key->lms, key->lmots)) return HAL_ERROR_INVALID_SIGNATURE; // Algorithm 6: LMS Signature Verification // // 1. if the public key is not at least eight bytes long, return // INVALID // // 2. parse pubtype, I, and T[1] from the public key as follows: // // a. pubtype = strTou32(first 4 bytes of public key) // // b. ots_typecode = strTou32(next 4 bytes of public key) // // c. set m according to pubtype, based on Table 2 // // d. if the public key is not exactly 24 + m bytes // long, return INVALID // // e. I = next 16 bytes of the public key // // f. T[1] = next m bytes of the public key // // 3. compute the candidate LMS root value Tc from the signature, // message, identifier and pubtype using Algorithm 6b. bytestring32 Tc; check(lms_public_key_candidate(key, msg, msg_len, sig, sig_len, &Tc)); // 4. if Tc is equal to T[1], return VALID; otherwise, return INVALID return (memcmp(&Tc, &key->T1, sizeof(Tc)) ? HAL_ERROR_INVALID_SIGNATURE : HAL_OK); } static hal_error_t lms_public_key_candidate(const lms_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len, bytestring32 * Tc) { // Algorithm 6b: Computing an LMS Public Key Candidate from a Signature, // Message, Identifier, and algorithm typecode /* XXX and pubotstype */ // 1. if the signature is not at least eight bytes long, return INVALID // // 2. parse sigtype, q, ots_signature, and path from the signature as // follows: // // a. q = strTou32(first 4 bytes of signature) const uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_len; uint32_t q; check(hal_xdr_decode_int(&sigptr, siglim, &q)); // b. otssigtype = strTou32(next 4 bytes of signature) uint32_t otssigtype; check(hal_xdr_decode_int_peek(&sigptr, siglim, &otssigtype)); // c. if otssigtype is not the OTS typecode from the public key, return INVALID if ((hal_lmots_algorithm_t)otssigtype != key->lmots->type) return HAL_ERROR_INVALID_SIGNATURE; // d. set n, p according to otssigtype and Table 1; if the // signature is not at least 12 + n * (p + 1) bytes long, return INVALID // // e. ots_signature = bytes 8 through 8 + n * (p + 1) - 1 of signature /* XXX Technically, this is also wrong - this is the remainder of * ots_signature after otssigtype. The full ots_signature would be * bytes 4 through 8 + n * (p + 1) - 1. */ const uint8_t * const ots_signature = sigptr; sigptr += lmots_signature_len(key->lmots); // f. sigtype = strTou32(4 bytes of signature at location 8 + n * (p + 1)) uint32_t sigtype; check(hal_xdr_decode_int(&sigptr, siglim, &sigtype)); // f. if sigtype is not the LM typecode from the public key, return INVALID if ((hal_lms_algorithm_t)sigtype != key->lms->type) return HAL_ERROR_INVALID_SIGNATURE; // g. set m, h according to sigtype and Table 2 size_t m = key->lms->m; size_t h = key->lms->h; size_t h2 = (1 << key->lms->h); // h. if q >= 2^h or the signature is not exactly 12 + n * (p + 1) + m * h bytes long, return INVALID if (q >= h2) return HAL_ERROR_INVALID_SIGNATURE; // i. set path as follows: // path[0] = next m bytes of signature // path[1] = next m bytes of signature // ... // path[h-1] = next m bytes of signature bytestring32 path[h]; for (size_t i = 0; i < h; ++i) check(hal_xdr_decode_bytestring32(&sigptr, siglim, &path[i])); // 3. Kc = candidate public key computed by applying Algorithm 4b // to the signature ots_signature, the message, and the // identifiers I, q lmots_key_t lmots_key = { .type = HAL_KEY_TYPE_HASHSIG_LMOTS, .lmots = key->lmots, .q = q }; memcpy(&lmots_key.I, &key->I, sizeof(lmots_key.I)); check(lmots_public_key_candidate(&lmots_key, msg, msg_len, ots_signature, lmots_signature_len(key->lmots))); // 4. compute the candidate LMS root value Tc as follows: uint8_t statebuf[512]; hal_hash_state_t *state = NULL; uint32_t l; uint16_t s; // node_num = 2^h + q size_t r = h2 + q; // tmp = H(I || u32str(node_num) || u16str(D_LEAF) || Kc) bytestring32 tmp; check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&lmots_key.I, sizeof(lmots_key.I))); l = u32str(r); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_LEAF); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); check(hal_hash_update(state, (const uint8_t *)&lmots_key.K, sizeof(lmots_key.K))); check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); // i = 0 // while (node_num > 1) { // if (node_num is odd): // tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || path[i] || tmp) // else: // tmp = H(I || u32str(node_num/2) || u16str(D_INTR) || tmp || path[i]) // node_num = node_num/2 // i = i + 1 // } for (size_t i = 0; r > 1; r /= 2, ++i) { check(hal_hash_initialize(NULL, hal_hash_sha256, &state, statebuf, sizeof(statebuf))); check(hal_hash_update(state, (const uint8_t *)&key->I, sizeof(key->I))); l = u32str(r/2); check(hal_hash_update(state, (const uint8_t *)&l, sizeof(l))); s = u16str(D_INTR); check(hal_hash_update(state, (const uint8_t *)&s, sizeof(s))); if (r & 1) { check(hal_hash_update(state, (const uint8_t *)&path[i], m)); check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); } else { check(hal_hash_update(state, (const uint8_t *)&tmp, sizeof(tmp))); check(hal_hash_update(state, (const uint8_t *)&path[i], m)); } check(hal_hash_finalize(state, (uint8_t *)&tmp, sizeof(tmp))); } // Tc = tmp memcpy(Tc, &tmp, sizeof(*Tc)); return HAL_OK; } #if RPC_CLIENT == RPC_CLIENT_LOCAL static hal_error_t lms_private_key_to_der(const lms_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_LMS) return HAL_ERROR_BAD_ARGUMENTS; /* * Calculate data length. */ // u32str(lms_type) || u32str(lmots_type) || I || q || q_end size_t len, vlen = 0, hlen; check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q_end, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)); if (der == NULL) return HAL_OK; /* * Encode data. */ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); uint8_t *d = der + hlen; memset(d, 0, vlen); check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q_end, d, &len, vlen)); d += len; vlen -= len; return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); } static size_t lms_private_key_to_der_len(const lms_key_t * const key) { size_t len = 0; return lms_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } static hal_error_t lms_private_key_from_der(lms_key_t *key, const uint8_t *der, const size_t der_len) { if (key == NULL || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; memset(key, 0, sizeof(*key)); key->type = HAL_KEY_TYPE_HASHSIG_LMS; size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len; const uint8_t *alg_oid, *curve_oid, *privkey; check(hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &privkey, &privkey_len, der, der_len)); if (alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 || curve_oid_len != 0) return HAL_ERROR_ASN1_PARSE_FAILED; check(hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)); const uint8_t *d = privkey + hlen; size_t n; // u32str(lms_type) || u32str(lmots_type) || I || q || q_end hal_lms_algorithm_t lms_type; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n; key->lms = lms_select_parameter_set(lms_type); hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_size_t(&key->q, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_size_t(&key->q_end, d, &n, vlen)); d += n; vlen -= n; if (d != privkey + privkey_len) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } #endif /* ---------------------------------------------------------------- */ /* * HSS */ /* For purposes of the external API, the key type is "hal_hashsig_key_t". * Internally, we refer to it as "hss_key_t". */ typedef struct hal_hashsig_key hss_key_t; struct hal_hashsig_key { hal_key_type_t type; hss_key_t *next; hal_uuid_t name; size_t L; lms_parameter_t *lms; lmots_parameter_t *lmots; bytestring16 I; size_t q_start, q_end; bytestring32 T1; bytestring32 seed; lms_key_t *lms_keys; }; const size_t hal_hashsig_key_t_size = sizeof(hss_key_t); static hss_key_t *hss_keys = NULL; static hss_key_t *hss_find(bytestring16 *I) { for (hss_key_t *key = hss_keys; key != NULL; key = key->next) { if (memcmp(&key->I, I, sizeof(*I)) == 0) return key; } return NULL; } #if 0 /* currently unused */ static inline size_t hss_public_key_len(lms_parameter_t * const lms) { /* L || pub[0] */ return sizeof(uint32_t) + lms_public_key_len(lms); } #endif static inline size_t hss_signature_len(const size_t L, lms_parameter_t * const lms, lmots_parameter_t * const lmots) { /* u32str(Nspk) || sig[0] || pub[1] || ... || sig[Nspk-1] || pub[Nspk] || sig[Nspk] */ return sizeof(uint32_t) + L * lms_signature_len(lms, lmots) + (L - 1) * lms_public_key_len(lms); } size_t hal_hashsig_signature_len(const size_t L, const hal_lms_algorithm_t lms_type, const hal_lmots_algorithm_t lmots_type) { lms_parameter_t * const lms = lms_select_parameter_set(lms_type); if (lms == NULL) return 0; lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type); if (lmots == NULL) return 0; return hss_signature_len(L, lms, lmots); } size_t hal_hashsig_lmots_private_key_len(const hal_lmots_algorithm_t lmots_type) { lmots_parameter_t * const lmots = lmots_select_parameter_set(lmots_type); if (lmots == NULL) return 0; return lmots_private_key_len(lmots); } #if RPC_CLIENT == RPC_CLIENT_LOCAL static int restart_in_progress = 0; static inline void *gnaw(uint8_t **mem, size_t *len, const size_t size) { if (mem == NULL || *mem == NULL || len == NULL || size > *len) return NULL; void *ret = *mem; *mem += size; *len -= size; return ret; } static hal_error_t hss_alloc(hal_hashsig_key_t **key_) { if (key_ == NULL || *key_ == NULL || (*key_)->type != HAL_KEY_TYPE_HASHSIG_PRIVATE || (*key_)->L == 0 || (*key_)->L > 8 || (*key_)->lms == NULL || (*key_)->lmots == NULL) return HAL_ERROR_BAD_ARGUMENTS; size_t L = (*key_)->L; lms_parameter_t *lms = (*key_)->lms; lmots_parameter_t *lmots = (*key_)->lmots; size_t h2 = (1U << lms->h); /* w=1 fails on the Alpha, because the key exceeds the keystore block * size. The XDR encoding of the key is going to differ from the DER * encoding, but it's at least in the ballpark to tell us whether the key * will fit. */ if (lmots_private_key_len(lmots) > HAL_KS_BLOCK_SIZE) return HAL_ERROR_UNSUPPORTED_KEY; if (hss_signature_len(L, lms, lmots) > HAL_RPC_MAX_PKT_SIZE) return HAL_ERROR_UNSUPPORTED_KEY; /* check volatile keystore for space to store the lower-level trees */ size_t available; check(hal_ks_available(hal_ks_volatile, &available)); if (available < (L - 1) * (h2 + 1)) return HAL_ERROR_NO_KEY_INDEX_SLOTS; size_t lms_sig_len = lms_signature_len(lms, lmots); size_t lms_pub_len = lms_public_key_len(lms); /* allocate lms tree nodes and lmots key names, atomically */ size_t len = (sizeof(hss_key_t) + L * sizeof(lms_key_t) + L * lms_sig_len + L * lms_pub_len + L * h2 * sizeof(hal_uuid_t) + L * (2 * h2) * sizeof(bytestring32)); uint8_t *mem = hal_allocate_static_memory(len); if (mem == NULL) return HAL_ERROR_ALLOCATION_FAILURE; memset(mem, 0, len); /* allocate the key that will stay in working memory */ hss_key_t *key = gnaw(&mem, &len, sizeof(*key)); /* initialize it from the transitory key */ memcpy(key, *key_, sizeof(*key)); *key_ = key; /* add the in-memory key to the list of active keys */ key->next = hss_keys; hss_keys = key; /* allocate the list of lms trees */ key->lms_keys = gnaw(&mem, &len, L * sizeof(lms_key_t)); for (size_t i = 0; i < L; ++i) { lms_key_t * lms_key = &key->lms_keys[i]; lms_key->type = HAL_KEY_TYPE_HASHSIG_LMS; lms_key->lms = lms; lms_key->lmots = lmots; lms_key->level = i; lms_key->lmots_keys = (hal_uuid_t *)gnaw(&mem, &len, h2 * sizeof(hal_uuid_t)); lms_key->T = gnaw(&mem, &len, (2 * h2) * sizeof(bytestring32)); lms_key->signature = gnaw(&mem, &len, lms_sig_len); lms_key->signature_len = lms_sig_len; lms_key->pubkey = gnaw(&mem, &len, lms_pub_len); lms_key->pubkey_len = lms_pub_len; lms_key->q_end = h2; } return HAL_OK; } static hal_error_t hss_generate(hss_key_t **key_, const hal_key_flags_t flags) { /* Hashsig keys can only be used for signing, so it makes sense to check * that now, rather than waiting until the user tries to sign. * * Also, the top-level tree must be stored in the token (flash) keystore. * I experimented with allowing keys to be stored in the volatile * keystore, but that had some ugly consequences around the fact that * volatile keys are automatically deleted when the user logs out. I'm * also not sure there's a good use case for volatile hashsig keys. */ if (!(flags & HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE) || !(flags & HAL_KEY_FLAG_TOKEN)) return HAL_ERROR_FORBIDDEN; if (key_ == NULL || *key_ == NULL || (*key_)->lms == NULL) return HAL_ERROR_BAD_ARGUMENTS; /* hss_alloc does most of the sanity checks */ /* check flash keystore for space to store the root tree: * 2^h lmots keys + 1 lms key + 1 hss key */ size_t available; check(hal_ks_available(hal_ks_token, &available)); if (available < (*key_)->q_end - (*key_)->q_start + 2) return HAL_ERROR_NO_KEY_INDEX_SLOTS; check(hss_alloc(key_)); hss_key_t *key = *key_; hal_error_t err; /* generate the lms trees */ for (size_t i = 0; i < key->L; ++i) { lms_key_t * lms_key = &key->lms_keys[i]; bytestring32 *seed = NULL; if (i == 0) { memcpy(&lms_key->I, &key->I, sizeof(key->I)); lms_key->q = key->q_start; lms_key->q_end = key->q_end; /* If we're called from import, seed will be filled in. * If called from key_gen, seed will be 0, and we may need to * generate it. */ bytestring32 seed_0 = {{0}}; if (memcmp(&key->seed, &seed_0, sizeof(seed_0)) != 0) { seed = &key->seed; } else if (flags & HAL_KEY_FLAG_EXPORTABLE) { seed = &key->seed; if ((err = hal_rpc_get_random(seed, sizeof(*seed))) != HAL_OK) goto err_out; } } if ((err = lms_generate(lms_key, seed)) != HAL_OK) goto err_out; if (i > 0) /* sign this tree with the previous */ if ((err = lms_sign(&key->lms_keys[i-1], (const uint8_t * const)lms_key->pubkey, lms_public_key_len(key->lms), lms_key->signature, NULL, lms_signature_len(key->lms, key->lmots))) != HAL_OK) goto err_out; /* store the lms key */ hal_ks_t *ks = (i == 0) ? hal_ks_token : hal_ks_volatile; hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | ((i == 0) ? HAL_KEY_FLAG_TOKEN: 0) }; uint8_t der[lms_private_key_to_der_len(lms_key)]; size_t der_len; memcpy(&slot.name, &lms_key->I, sizeof(slot.name)); if ((err = lms_private_key_to_der(lms_key, der, &der_len, sizeof(der))) != HAL_OK || (err = hal_ks_store(ks, &slot, der, der_len)) != HAL_OK) goto err_out; } memcpy(&key->I, &key->lms_keys[0].I, sizeof(key->I)); memcpy(&key->T1, &key->lms_keys[0].T1, sizeof(key->T1)); /* pkey_local_generate_hashsig stores the key */ return HAL_OK; err_out: (void)hal_free_static_memory(key); return err; } /* called from pkey_local_generate_hashsig * caller will store the key */ hal_error_t hal_hashsig_key_gen(hal_core_t *core, hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const size_t L, const hal_lms_algorithm_t lms_type, const hal_lmots_algorithm_t lmots_type, const hal_key_flags_t flags) { if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hss_key_t)) return HAL_ERROR_BAD_ARGUMENTS; if (restart_in_progress) return HAL_ERROR_NOT_READY; hss_key_t *key = *key_ = keybuf; memset(key, 0, sizeof(*key)); key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE; key->L = L; key->lms = lms_select_parameter_set(lms_type); key->lmots = lmots_select_parameter_set(lmots_type); key->q_end = (1U << key->lms->h); return hss_generate(key_, flags); } static void hss_delete(hss_key_t *key) { /* remove key from global hss_keys linked list */ if (hss_keys == key) { hss_keys = key->next; } else { for (hss_key_t *prev = hss_keys; prev != NULL; prev = prev->next) { if (prev->next == key) { prev->next = key->next; break; } } } /* delete the lms trees and their lmots keys */ for (size_t level = 0; level < key->L; ++level) (void)lms_delete(&key->lms_keys[level]); /* free memory, if possible */ (void)hal_free_static_memory(key); } /* caller will delete the hss key from the keystore */ hal_error_t hal_hashsig_delete(const hal_uuid_t * const name) { if (restart_in_progress) return HAL_ERROR_NOT_READY; hal_pkey_slot_t slot = { .name = *name }; uint8_t der[HAL_KS_WRAPPED_KEYSIZE]; size_t der_len; check(hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der))); hal_hashsig_key_t keybuf, *key; check(hal_hashsig_private_key_from_der(&key, &keybuf, sizeof(keybuf), der, der_len)); /* hal_hashsig_private_key_from_der returns the key in the list of * active hashsig keys, so we don't need this temporary key. */ memset(der, 0, sizeof(der)); memset(&keybuf, 0, sizeof(keybuf)); /* OTOH, if we found the key in the keystore, but not in the list of * active hashsig keys, that's Bad. */ if (key == &keybuf) return HAL_ERROR_KEY_NOT_FOUND; hss_delete(key); return HAL_OK; } hal_error_t hal_hashsig_sign(hal_core_t *core, const hal_hashsig_key_t * const key, const uint8_t * const msg, const size_t msg_len, uint8_t *sig, size_t *sig_len, const size_t sig_max) { if (restart_in_progress) return HAL_ERROR_NOT_READY; if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE || msg == NULL || sig == NULL || sig_len == NULL) return HAL_ERROR_BAD_ARGUMENTS; if (sig_max < hss_signature_len(key->L, key->lms, key->lmots)) return HAL_ERROR_RESULT_TOO_LONG; // To sign a message using the private key prv, the following steps are // performed: // // If prv[L-1] is exhausted, then determine the smallest integer d // such that all of the private keys prv[d], prv[d+1], ... , prv[L-1] // are exhausted. If d is equal to zero, then the HSS key pair is // exhausted, and it MUST NOT generate any more signatures. // Otherwise, the key pairs for levels d through L-1 must be // regenerated during the signature generation process, as follows. // For i from d to L-1, a new LMS public and private key pair with a // new identifier is generated, pub[i] and prv[i] are set to those // values, then the public key pub[i] is signed with prv[i-1], and // sig[i-1] is set to the resulting value. if (key->lms_keys[key->L-1].q >= key->lms_keys[key->L-1].q_end) { size_t d; for (d = key->L-1; d > 0 && key->lms_keys[d-1].q >= key->lms_keys[d-1].q_end; --d) { } if (d == 0) return HAL_ERROR_HASHSIG_KEY_EXHAUSTED; for ( ; d < key->L; ++d) { lms_key_t *lms_key = &key->lms_keys[d]; /* Delete then regenerate the LMS key. We don't worry about * power-cycling in the middle, because the lower-level trees are * all stored in the volatile keystore, so we'd have to regenerate * them anyway on restart; and this way we don't have to allocate * any additional memory. */ check(lms_delete(lms_key)); lms_key->q = 0; check(lms_generate(lms_key, NULL)); check(lms_sign(&key->lms_keys[d-1], (const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len, lms_key->signature, NULL, lms_key->signature_len)); hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .curve = HAL_CURVE_NONE, .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | (lms_key->level == 0) ? HAL_KEY_FLAG_TOKEN: 0 }; hal_ks_t *ks = hal_ks_volatile; uint8_t der[lms_private_key_to_der_len(lms_key)]; size_t der_len; memcpy(&slot.name, &lms_key->I, sizeof(slot.name)); check(lms_private_key_to_der(lms_key, der, &der_len, sizeof(der))); check(hal_ks_store(ks, &slot, der, der_len)); } } // The message is signed with prv[L-1], and the value sig[L-1] is set // to that result. // // The value of the HSS signature is set as follows. We let // signed_pub_key denote an array of octet strings, where // signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and Nspk- // 1, inclusive, where Nspk = L-1 denotes the number of signed public // keys. Then the HSS signature is u32str(Nspk) || // signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk]. uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_max; check(hal_xdr_encode_int(&sigptr, siglim, key->L - 1)); /* copy the lms signed public keys into the signature */ for (size_t i = 1; i < key->L; ++i) { lms_key_t *lms_key = &key->lms_keys[i]; check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->signature, lms_key->signature_len)); check(hal_xdr_encode_fixed_opaque(&sigptr, siglim, lms_key->pubkey, lms_key->pubkey_len)); } /* sign the message with the last lms private key */ size_t len; check(lms_sign(&key->lms_keys[key->L-1], msg, msg_len, sigptr, &len, sig_max - (sigptr - sig))); sigptr += len; *sig_len = sigptr - sig; return HAL_OK; } #endif hal_error_t hal_hashsig_verify(hal_core_t *core, const hal_hashsig_key_t * const key, const uint8_t * const msg, const size_t msg_len, const uint8_t * const sig, const size_t sig_len) { if (key == NULL || (key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE && key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC) || msg == NULL || sig == NULL) return HAL_ERROR_BAD_ARGUMENTS; // To verify a signature sig and message using the public key pub, the // following steps are performed: // // The signature S is parsed into its components as follows: // // Nspk = strTou32(first four bytes of S) // if Nspk+1 is not equal to the number of levels L in pub: // return INVALID const uint8_t *sigptr = sig; const uint8_t * const siglim = sig + sig_len; uint32_t Nspk; check(hal_xdr_decode_int(&sigptr, siglim, &Nspk)); if (Nspk + 1 != key->L) return HAL_ERROR_INVALID_SIGNATURE; // key = pub // for (i = 0; i < Nspk; i = i + 1) { // sig = next LMS signature parsed from S // msg = next LMS public key parsed from S // if (lms_verify(msg, key, sig) != VALID): // return INVALID // key = msg // } lms_key_t pub = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .lms = key->lms, .lmots = key->lmots }; memcpy(&pub.I, &key->I, sizeof(pub.I)); memcpy(&pub.T1, &key->T1, sizeof(pub.T1)); for (size_t i = 0; i < Nspk; ++i) { const uint8_t * const lms_sig = sigptr; /* peek into the signature for the lmots and lms types */ /* XXX The structure of the LMS signature makes this a bigger pain * in the ass than necessary. */ /* skip over q */ sigptr += 4; /* read lmots_type out of the ots_signature */ uint32_t lmots_type; check(hal_xdr_decode_int_peek(&sigptr, siglim, &lmots_type)); lmots_parameter_t *lmots = lmots_select_parameter_set((hal_lmots_algorithm_t)lmots_type); if (lmots == NULL) return HAL_ERROR_INVALID_SIGNATURE; /* skip over ots_signature */ sigptr += lmots_signature_len(lmots); /* read lms_type after ots_signature */ uint32_t lms_type; check(hal_xdr_decode_int(&sigptr, siglim, &lms_type)); lms_parameter_t *lms = lms_select_parameter_set((hal_lms_algorithm_t)lms_type); if (lms == NULL) return HAL_ERROR_INVALID_SIGNATURE; /* skip over the path elements of the lms signature */ sigptr += lms->h * lms->m; /*XXX sigptr = lms_sig + lms_signature_len(lms, lmots); */ /* verify the signature over the bytestring version of the signed public key */ check(lms_verify(&pub, sigptr, lms_public_key_len(lms), lms_sig, sigptr - lms_sig)); /* parse the signed public key */ check(hal_xdr_decode_int(&sigptr, siglim, &lms_type)); pub.lms = lms_select_parameter_set((hal_lms_algorithm_t)lms_type); if (pub.lms == NULL) return HAL_ERROR_INVALID_SIGNATURE; check(hal_xdr_decode_int(&sigptr, siglim, &lmots_type)); pub.lmots = lmots_select_parameter_set((hal_lmots_algorithm_t)lmots_type); if (pub.lmots == NULL) return HAL_ERROR_INVALID_SIGNATURE; check(hal_xdr_decode_bytestring16(&sigptr, siglim, &pub.I)); check(hal_xdr_decode_bytestring32(&sigptr, siglim, &pub.T1)); } /* verify the final signature over the message */ return lms_verify(&pub, msg, msg_len, sigptr, sig_len - (sigptr - sig)); } hal_error_t hal_hashsig_private_key_to_der(const hal_hashsig_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE) return HAL_ERROR_BAD_ARGUMENTS; /* * Calculate data length. */ size_t len, vlen = 0, hlen; check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring32(&key->seed, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q_start, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_size_t(key->q_end, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)); check(hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, NULL, hlen + vlen, NULL, der_len, der_max)); if (der == NULL) return HAL_OK; /* * Encode data. */ check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); uint8_t *d = der + hlen; memset(d, 0, vlen); check(hal_asn1_encode_size_t(key->L, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring32(&key->T1, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_bytestring32(&key->seed, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q_start, d, &len, vlen)); d += len; vlen -= len; check(hal_asn1_encode_size_t(key->q_end, d, &len, vlen)); d += len; vlen -= len; return hal_asn1_encode_pkcs8_privatekeyinfo(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, d - der, der, der_len, der_max); } size_t hal_hashsig_private_key_to_der_len(const hal_hashsig_key_t * const key) { size_t len = 0; return hal_hashsig_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } hal_error_t hal_hashsig_private_key_from_der(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t *der, const size_t der_len) { if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); hss_key_t *key = *key_ = keybuf; key->type = HAL_KEY_TYPE_HASHSIG_PRIVATE; size_t hlen, vlen, alg_oid_len, curve_oid_len, privkey_len; const uint8_t *alg_oid, *curve_oid, *privkey; hal_error_t err; if ((err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, &privkey, &privkey_len, der, der_len)) != HAL_OK) return err; if (alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0 || curve_oid_len != 0) return HAL_ERROR_ASN1_PARSE_FAILED; if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, privkey, privkey_len, &hlen, &vlen)) != HAL_OK) return err; const uint8_t *d = privkey + hlen; size_t n; check(hal_asn1_decode_size_t(&key->L, d, &n, vlen)); d += n; vlen -= n; hal_lms_algorithm_t lms_type; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &n, vlen)); d += n; vlen -= n; key->lms = lms_select_parameter_set(lms_type); hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &n, vlen)); d += n; vlen -= n; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_bytestring32(&key->T1, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_bytestring32(&key->seed, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_size_t(&key->q_start, d, &n, vlen)); d += n; vlen -= n; check(hal_asn1_decode_size_t(&key->q_end, d, &n, vlen)); d += n; vlen -= n; if (d != privkey + privkey_len) return HAL_ERROR_ASN1_PARSE_FAILED; /* Find this key in the list of active hashsig keys, and return a * pointer to that key structure, rather than the caller-provided key * structure. (The caller will wipe his own key structure when done, * and not molest ours.) */ hss_key_t *hss_key = hss_find(&key->I); if (hss_key != NULL) *key_ = hss_key; return HAL_OK; } hal_error_t hal_hashsig_public_key_to_der(const hal_hashsig_key_t * const key, uint8_t *der, size_t *der_len, const size_t der_max) { if (key == NULL || (key->type != HAL_KEY_TYPE_HASHSIG_PRIVATE && key->type != HAL_KEY_TYPE_HASHSIG_PUBLIC)) return HAL_ERROR_BAD_ARGUMENTS; // L || u32str(lms_type) || u32str(lmots_type) || I || T[1] size_t len, vlen = 0, hlen; check(hal_asn1_encode_size_t(key->L, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lms_algorithm(key->lms->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring16(&key->I, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_bytestring32(&key->T1, NULL, &len, 0)); vlen += len; check(hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)); if (der != NULL) { uint8_t *d = der + hlen; size_t dlen = vlen; memset(d, 0, vlen); check(hal_asn1_encode_size_t(key->L, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_lms_algorithm(key->lms->type, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_lmots_algorithm(key->lmots->type, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_bytestring16(&key->I, d, &len, dlen)); d += len; dlen -= len; check(hal_asn1_encode_bytestring32(&key->T1, d, &len, dlen)); d += len; dlen -= len; } return hal_asn1_encode_spki(hal_asn1_oid_mts_hashsig, hal_asn1_oid_mts_hashsig_len, NULL, 0, der, hlen + vlen, der, der_len, der_max); } size_t hal_hashsig_public_key_to_der_len(const hal_hashsig_key_t * const key) { size_t len = 0; return hal_hashsig_public_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0; } hal_error_t hal_hashsig_public_key_from_der(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t * const der, const size_t der_len) { if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hss_key_t) || der == NULL) return HAL_ERROR_BAD_ARGUMENTS; hss_key_t *key = keybuf; memset(keybuf, 0, keybuf_len); *key_ = key; key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC; const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL; size_t alg_oid_len, null_len, pubkey_len; check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len)); if (null != NULL || null_len != 0 || alg_oid == NULL || alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0) return HAL_ERROR_ASN1_PARSE_FAILED; size_t len, hlen, vlen; check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen)); const uint8_t * const pubkey_end = pubkey + hlen + vlen; const uint8_t *d = pubkey + hlen; // L || u32str(lms_type) || u32str(lmots_type) || I || T[1] hal_lms_algorithm_t lms_type; hal_lmots_algorithm_t lmots_type; check(hal_asn1_decode_size_t(&key->L, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len; key->lms = lms_select_parameter_set(lms_type); check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len; key->lmots = lmots_select_parameter_set(lmots_type); check(hal_asn1_decode_bytestring16(&key->I, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_bytestring32(&key->T1, d, &len, pubkey_end - d)); d += len; if (d != pubkey_end) return HAL_ERROR_ASN1_PARSE_FAILED; return HAL_OK; } hal_error_t hal_hashsig_key_load_public(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const size_t L, const hal_lms_algorithm_t lms_type, const hal_lmots_algorithm_t lmots_type, const uint8_t * const I, const size_t I_len, const uint8_t * const T1, const size_t T1_len) { if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_hashsig_key_t) || I == NULL || I_len != sizeof(bytestring16) || T1 == NULL || T1_len != sizeof(bytestring32)) return HAL_ERROR_BAD_ARGUMENTS; memset(keybuf, 0, keybuf_len); hal_hashsig_key_t *key = keybuf; key->type = HAL_KEY_TYPE_HASHSIG_PUBLIC; key->L = L; key->lms = lms_select_parameter_set(lms_type); key->lmots = lmots_select_parameter_set(lmots_type); if (key->lms == NULL || key->lmots == NULL) return HAL_ERROR_BAD_ARGUMENTS; memcpy(&key->I, I, I_len); memcpy(&key->T1, T1, T1_len); *key_ = key; return HAL_OK; } hal_error_t hal_hashsig_key_load_public_xdr(hal_hashsig_key_t **key_, void *keybuf, const size_t keybuf_len, const uint8_t * const xdr, const size_t xdr_len) { const uint8_t *xdrptr = xdr; const uint8_t * const xdrlim = xdr + xdr_len; /* L || u32str(lms_type) || u32str(lmots_type) || I || T[1] */ uint32_t L, lms_type, lmots_type; bytestring16 *I; bytestring32 *T1; check(hal_xdr_decode_int(&xdrptr, xdrlim, &L)); check(hal_xdr_decode_int(&xdrptr, xdrlim, &lms_type)); check(hal_xdr_decode_int(&xdrptr, xdrlim, &lmots_type)); check(hal_xdr_decode_bytestring16_ptr(&xdrptr, xdrlim, &I)); check(hal_xdr_decode_bytestring32_ptr(&xdrptr, xdrlim, &T1)); return hal_hashsig_key_load_public(key_, keybuf, keybuf_len, L, lms_type, lmots_type, (const uint8_t * const)I, sizeof(bytestring16), (const uint8_t * const)T1, sizeof(bytestring32)); } hal_error_t hal_hashsig_public_key_der_to_xdr(const uint8_t * const der, const size_t der_len, uint8_t * const xdr, size_t * const xdr_len , const size_t xdr_max) { if (der == NULL || xdr == NULL) return HAL_ERROR_BAD_ARGUMENTS; const uint8_t *alg_oid = NULL, *null = NULL, *pubkey = NULL; size_t alg_oid_len, null_len, pubkey_len; check(hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &null, &null_len, &pubkey, &pubkey_len, der, der_len)); if (null != NULL || null_len != 0 || alg_oid == NULL || alg_oid_len != hal_asn1_oid_mts_hashsig_len || memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) != 0) return HAL_ERROR_ASN1_PARSE_FAILED; size_t len, hlen, vlen; check(hal_asn1_decode_header(ASN1_SEQUENCE, pubkey, pubkey_len, &hlen, &vlen)); const uint8_t * const pubkey_end = pubkey + hlen + vlen; const uint8_t *d = pubkey + hlen; // L || u32str(lms_type) || u32str(lmots_type) || I || T[1] size_t L; hal_lms_algorithm_t lms_type; hal_lmots_algorithm_t lmots_type; bytestring16 I; bytestring32 T1; check(hal_asn1_decode_size_t(&L, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_lms_algorithm(&lms_type, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_lmots_algorithm(&lmots_type, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_bytestring16(&I, d, &len, pubkey_end - d)); d += len; check(hal_asn1_decode_bytestring32(&T1, d, &len, pubkey_end - d)); d += len; if (d != pubkey_end) return HAL_ERROR_ASN1_PARSE_FAILED; uint8_t * xdrptr = xdr; const uint8_t * const xdrlim = xdr + xdr_max; check(hal_xdr_encode_int(&xdrptr, xdrlim, L)); check(hal_xdr_encode_int(&xdrptr, xdrlim, lms_type)); check(hal_xdr_encode_int(&xdrptr, xdrlim, lmots_type)); check(hal_xdr_encode_bytestring16(&xdrptr, xdrlim, &I)); check(hal_xdr_encode_bytestring32(&xdrptr, xdrlim, &T1)); if (xdr_len != NULL) *xdr_len = xdrptr - xdr; return HAL_OK; } #if RPC_CLIENT == RPC_CLIENT_LOCAL /* Reinitialize the hashsig key structures after a device restart */ hal_error_t hal_hashsig_ks_init(void) { const hal_client_handle_t client = { -1 }; const hal_session_handle_t session = { HAL_HANDLE_NONE }; hal_uuid_t prev_name = {{0}}; unsigned len; hal_pkey_slot_t slot = {{0}}; uint8_t der[HAL_KS_WRAPPED_KEYSIZE]; size_t der_len; restart_in_progress = 1; /* Find all hss private keys */ while ((hal_ks_match(hal_ks_token, client, session, HAL_KEY_TYPE_HASHSIG_PRIVATE, HAL_CURVE_NONE, 0, 0, NULL, 0, &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { hal_hashsig_key_t keybuf, *key; if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK || hal_hashsig_private_key_from_der(&key, (void *)&keybuf, sizeof(keybuf), der, der_len) != HAL_OK) { (void)hal_ks_delete(hal_ks_token, &slot); memset(der, 0, sizeof(der)); memset(&keybuf, 0, sizeof(keybuf)); key = NULL; continue; } /* Make sure we have the lms key */ hal_pkey_slot_t lms_slot = {{0}}; lms_key_t lms_key; memcpy(&lms_slot.name, &key->I, sizeof(lms_slot.name)); if (hal_ks_fetch(hal_ks_token, &lms_slot, der, &der_len, sizeof(der)) != HAL_OK || lms_private_key_from_der(&lms_key, der, der_len) != HAL_OK || /* check keys for consistency */ lms_key.lms != key->lms || lms_key.lmots != key->lmots || memcmp(&lms_key.I, &key->I, sizeof(lms_key.I)) != 0 || /* check that key isn't exhausted */ lms_key.q >= lms_key.q_end || /* optimistically allocate the full hss key structure */ hss_alloc(&key) != HAL_OK) { (void)hal_ks_delete(hal_ks_token, &slot); (void)hal_ks_delete(hal_ks_token, &lms_slot); memset(der, 0, sizeof(der)); memset(&lms_key, 0, sizeof(lms_key)); memset(&keybuf, 0, sizeof(keybuf)); key = NULL; continue; } /* initialize top-level lms key (beyond what hss_alloc did) */ memcpy(&key->lms_keys[0].I, &lms_key.I, sizeof(lms_key.I)); key->lms_keys[0].q = lms_key.q; key->lms_keys[0].q_end = key->q_end; prev_name = key->name = slot.name; memset(der, 0, sizeof(der)); memset(&lms_key, 0, sizeof(lms_key)); memset(&keybuf, 0, sizeof(keybuf)); key = NULL; hal_task_yield_maybe(); } /* Delete orphaned lms keys */ memset(&prev_name, 0, sizeof(prev_name)); while ((hal_ks_match(hal_ks_token, client, session, HAL_KEY_TYPE_HASHSIG_LMS, HAL_CURVE_NONE, 0, 0, NULL, 0, &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { if (hss_find((bytestring16 *)&slot.name) == NULL) { (void)hal_ks_delete(hal_ks_token, &slot); continue; } prev_name = slot.name; hal_task_yield_maybe(); } /* Find all lmots keys */ memset(&prev_name, 0, sizeof(prev_name)); while ((hal_ks_match(hal_ks_token, client, session, HAL_KEY_TYPE_HASHSIG_LMOTS, HAL_CURVE_NONE, 0, 0, NULL, 0, &slot.name, &len, 1, &prev_name) == HAL_OK) && (len > 0)) { if (hss_keys == NULL) { /* if no hss keys were recovered, all lmots keys are orphaned */ (void)hal_ks_delete(hal_ks_token, &slot); continue; } lmots_key_t lmots_key = {0}; if (hal_ks_fetch(hal_ks_token, &slot, der, &der_len, sizeof(der)) != HAL_OK || lmots_private_key_from_der(&lmots_key, der, der_len) != HAL_OK) { (void)hal_ks_delete(hal_ks_token, &slot); memset(&lmots_key, 0, sizeof(lmots_key)); continue; } hss_key_t *hss_key = hss_find(&lmots_key.I); if (hss_key == NULL) { /* delete orphaned key */ (void)hal_ks_delete(hal_ks_token, &slot); memset(&lmots_key, 0, sizeof(lmots_key)); continue; } /* record this lmots key in the top-level lms key */ memcpy(&hss_key->lms_keys[0].lmots_keys[lmots_key.q], &slot.name, sizeof(slot.name)); /* compute T[r] = H(I || u32str(r) || u16str(D_LEAF) || K) */ if (lms_compute_T_leaf(&hss_key->lms_keys[0], &lmots_key) != HAL_OK) { (void)hal_ks_delete(hal_ks_token, &slot); memset(&lmots_key, 0, sizeof(lmots_key)); continue; } prev_name = slot.name; memset(&lmots_key, 0, sizeof(lmots_key)); hal_task_yield_maybe(); } /* After all keys have been read, scan for completeness. */ hal_uuid_t uuid_0 = {{0}}; hss_key_t *hss_key, *hss_next = NULL; for (hss_key = hss_keys; hss_key != NULL; hss_key = hss_next) { hss_next = hss_key->next; int fail = 0; lms_key_t *lms_key = hss_key->lms_keys; for (size_t q = 0; q < (1U << hss_key->lms->h); ++q) { if (hal_uuid_cmp(&lms_key->lmots_keys[q], &uuid_0) == 0) { bytestring32 seed_0 = {{0}}; if (memcmp(&hss_key->seed, &seed_0, sizeof(seed_0)) == 0) { /* lms key is incomplete, give up on it */ fail = 1; break; } else { /* This key was generated with the pseudo-random method, * and can be regenerated. */ check(lms_generate_lmots(lms_key, q, &hss_key->seed)); hal_task_yield_maybe(); } } } if (fail) { fail: /* delete hss key */ hss_delete(hss_key); slot.name = hss_key->name; (void)hal_ks_delete(hal_ks_token, &slot); hal_task_yield_maybe(); continue; } /* generate the rest of T[] */ lms_compute_T_intr(lms_key); if (memcmp(&lms_key->T[1], &hss_key->T1, sizeof(lms_key->T[1])) != 0) goto fail; /* generate the lower-level lms keys */ for (size_t i = 1; i < hss_key->L; ++i) { lms_key = &hss_key->lms_keys[i]; if (lms_generate(lms_key, NULL) != HAL_OK) goto fail; /* store the lms key */ slot.type = HAL_KEY_TYPE_HASHSIG_LMS; slot.flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE; memcpy(&slot.name, &lms_key->I, sizeof(slot.name)); if (lms_private_key_to_der(lms_key, der, &der_len, sizeof(der)) != HAL_OK || hal_ks_store(hal_ks_volatile, &slot, der, der_len) != HAL_OK || /* sign this lms key with the previous */ lms_sign(&hss_key->lms_keys[i-1], (const uint8_t * const)lms_key->pubkey, lms_key->pubkey_len, lms_key->signature, NULL, lms_key->signature_len) != HAL_OK) goto fail; hal_task_yield_maybe(); } } restart_in_progress = 0; return HAL_OK; } hal_error_t hal_hashsig_export(const hal_uuid_t * const name, uint8_t *der, size_t *der_len, const size_t der_max) { hal_error_t err; hal_hashsig_key_t keybuf, *tmp_key = &keybuf, *hss_key; if ((err = hal_hashsig_private_key_from_der(&hss_key, &keybuf, sizeof(keybuf), der, *der_len)) != HAL_OK) goto err_out; if (hss_key == tmp_key) { err = HAL_ERROR_KEY_NOT_FOUND; /* or IMPOSSIBLE? */ goto err_out; } /* adjust hss_key->end and tmp_key->start */ size_t new_end = (hss_key->lms_keys[0].q + hss_key->lms_keys[0].q_end) / 2; if (new_end == hss_key->lms_keys[0].q) { err = HAL_ERROR_HASHSIG_KEY_EXHAUSTED; goto err_out; } hss_key->q_end = hss_key->lms_keys[0].q_end = tmp_key->q_start = new_end; /* store updated hss_key */ hal_pkey_slot_t slot = { .type = HAL_KEY_TYPE_HASHSIG_PRIVATE, .name = *name, .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | HAL_KEY_FLAG_TOKEN | HAL_KEY_FLAG_EXPORTABLE }; if ((err = hal_hashsig_private_key_to_der(hss_key, der, der_len, der_max)) != HAL_OK || (err = hal_ks_rewrite_der(hal_ks_token, &slot, der, *der_len)) != HAL_OK) goto err_out; /* store updated lms_key */ lms_key_t *lms_key = &hss_key->lms_keys[0]; uint8_t lms_der[HAL_KS_WRAPPED_KEYSIZE]; size_t lms_der_len; if ((err = lms_private_key_to_der(lms_key, lms_der, &lms_der_len, sizeof(lms_der))) != HAL_OK) goto err_out; hal_pkey_slot_t lms_slot = { .type = HAL_KEY_TYPE_HASHSIG_LMS, .flags = HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE | HAL_KEY_FLAG_TOKEN }; memcpy(&lms_slot.name, &lms_key->I, sizeof(lms_slot.name)); if ((err = hal_ks_rewrite_der(hal_ks_token, &lms_slot, lms_der, lms_der_len)) != HAL_OK) goto err_out; /* re-encode tmp_key to der */ if ((err = hal_hashsig_private_key_to_der(tmp_key, der, der_len, der_max)) != HAL_OK) goto err_out; /* delete unused lmots keys? */ err_out: memset(&keybuf, 0, sizeof(keybuf)); hss_key = NULL; return err; } hal_error_t hal_hashsig_import(const uint8_t *der, const size_t der_len, const hal_key_flags_t flags) { if (restart_in_progress) return HAL_ERROR_NOT_READY; hss_key_t keybuf, *key; hal_error_t err; if ((err = hal_hashsig_private_key_from_der(&key, &keybuf, sizeof(keybuf), der, der_len)) != HAL_OK) goto err_out; /* If the key already exists, it could be that the user is attempting to * return an exported key to its origin, and we could consolidate them, * but then we have to deal with the possibility of disjoint partitions of * the keyspace (or worse, overlapping or duplicate partitions, which is * always an error). In any case, it's easier just to disallow it. */ if (hss_find(&key->I) != NULL) { err = HAL_ERROR_KEY_NAME_IN_USE; goto err_out; } err = hss_generate(&key, flags); err_out: memset(&keybuf, 0, sizeof(keybuf)); key = NULL; return err; } #endif 0:23 -0400 committer Rob Austein <sra@hactrn.net> 2015-09-02 22:50:23 -0400 Still more const-ification.' href='/sw/libhal/commit/hal.h?h=auto_zeroise&id=89cf9108af7ec93471f76510663ca1218133c6a2'>89cf910
86b35d7
9cca190
89cf910
f23b4c6



89cf910
f23b4c6



12ed3ab
7a89eaa
f67796b
68019ff
5e4fc53


410e0cf

68019ff
5e4fc53

9cca190
f67796b
b3bbd3d
ab5a876

a615b13
e6e4a9a
36f9b66

ab5a876
8ff9d41

bca97e1
36f9b66


ab5a876
17da006








8ff9d41

5522df4











c8a5dd6



c8a5dd6





fb4933f



c8a5dd6

86b35d7
c8a5dd6





86b35d7
c8a5dd6



86b35d7
c8a5dd6

86b35d7
c8a5dd6






f67796b
b3bbd3d
c8a5dd6
86b35d7
c8a5dd6
36f9b66

c8a5dd6
17da006
c8a5dd6
36f9b66


c8a5dd6
17da006








12fd927







86b35d7
12fd927
f67796b
b3bbd3d
9e4c5ed
e3f62b0
9e4c5ed
f67796b
b3bbd3d

e3f62b0
9e4c5ed
86b35d7
f4b6098



















86b35d7
























e95df39

a1e4e4f

86b35d7
a1e4e4f
86b35d7
083d017


7dfad9f

86b35d7

a1e4e4f

86b35d7

a1e4e4f
86b35d7
1a7b3c3




86b35d7
79559c5





86b35d7








7dfad9f
86b35d7
7dfad9f
86b35d7





7dfad9f
86b35d7





a1e4e4f

7dfad9f
86b35d7


7dfad9f
86b35d7

7dfad9f
86b35d7





7dfad9f
86b35d7






















7dfad9f
86b35d7





c2b116a
41bc63d
fb4933f
86b35d7
15efcdb














a1e4e4f

7dfad9f
c2b116a
86b35d7


d6e9917
a1e4e4f
7dfad9f
cc46a69
86b35d7
a1e4e4f

7dfad9f
c2b116a
86b35d7



a1e4e4f

7dfad9f
c2b116a
86b35d7


7537c3a















a478fe1





7537c3a

a478fe1

7dfad9f
86b35d7
7dfad9f
86b35d7
7dfad9f
86b35d7

d844d76


7dfad9f
86b35d7

7dfad9f
86b35d7
7dfad9f
17da006
86b35d7
45061e2
7dfad9f
86b35d7


45061e2
7dfad9f
86b35d7


015eefa

45061e2
db32574
cc46a69
db32574
15efcdb
db32574
cc46a69
db32574


dcf3c67
db32574
09a065b
15efcdb
09a065b


15efcdb
09a065b



fb4933f













36bd46a
c2b116a
36bd46a
c2b116a
36bd46a
c2b116a
36bd46a
c2b116a



a3b7050
cf865e9





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
  
        
             
                                                            
  
                                                           
                                                             


























                                                                           
 

               
 


                      
                   
 
  
                               
   
                   
                                         

      
  
                                                    


                                                           
   

                                          

                                      
                                          

                                      
                                          

                                      
                                          
                                      
 
                                          

                                        
                                          

                                      
                                          

                                      

                                          
 
                                          
                                      
 

                                          
 
                                          

                                      
                                          

                                      







                                          
 


                                          


                                          

                                          
 
  

                                                                     

   
                        











                                                                                                         
                                                                                                         
                                                                                                         

                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         



                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         

                                                                                                         
                                                                                                         


                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         

                                                                                                         
                                                                                                         
                                                                                                         





                                                                                
                                                

                                                         

  
                     

   
                                                           
 
  
                                                                    

   
  

                                                                    

   
                         
 
  





                                        


                        
                                        

                                                                                                           

                                                                                                                    








                                                                      





                                                                      







                  

                                









                                                                          
                                                                     
                                                      
                                       


                                                                                                   
                                            

  
                                                                       

   



                                    
                                                                                       
 




                     





                                                 







                                                                   
              







                                  

                         
                
                                          



                           

                                            
                                  
                    
                                 


                        
                                        

   

                                               

  

                                                                     

   
                                                    
                                                      










                                                          
 
                                                        
                                                                                      
                                                                
                                                                                      
 
                                                           
                                                                              
 
                                                             
                                                                           
 
                                                        
                                                                                      
                                                                

                                                                                           
 
                                                           
                                                                              
 
                                                             
                                                                         
                                                       
 
                                                       
 



                                                                                                  


                          
 
                                                    
                                                                               

                                                                                           
 
                                                      
                                                                                 
                                                                                               
                                                                                   
 
                                                                               
 




                                                                     
                                               
                                                                             




                                                                                              
  



                                                                     

   








                                                                               
 


                                                                                                    
 



                              






                                                                                                    
 
 
  
                                                

   
              
                        


                           




                               











                   
 
                                         
 

                                       
                                               
 
                                                  
 
                                                                









                                                                                           
                                                               



                                                                                         
                                                                        
                                                                  
 
                                                                           



                                                                     
                                                                                   



                                                                                     
                                                  
 
                                                    
                                                      


                                                                                        

                                                     
                                                      

                                                                                        
 
                                                    
                                                       

                                                                         
                                                                                                            
 

                                                                                                   
 

                                                                                                         
 


                                                                                                 
 








                                                                                                  

                                                                     











                                                                                          



         





                                                 



                                                                    

                                                                                    
                                                                           





                                                                                           
                                                                          



                                                                                          
                                                                    

                                                                             
                                                                    






                                                                                           
                                                      
                                                           
                                                                           
                                                                   
 

                                                                                                     
 
                                                                                  
 


                                                                                                   
 








                                                                                                    







                                                                                                 
                                                                            
 
                                                   
                                                                    
                                                                                    
                                                                                                         
 
                                                     

                                                                                      
                                                                                                 
 
  



















                                                                                      
























                                                                      

                           

                                                         
 
                                                                                        
 


                                           

                                                                    

                                                                                       

                                                                  

                                                                               
                                                                    
 




                                                                         
  





                                                          








                                                                         
                                                      
 
                                                    





                                                                                                        
                                                                                                         





                                                                           

                                                                              
                                                                   


                                                                                               
                                                                    

                                                                                  
                                                                      





                                                                               
                                                                        






















                                                                      
                                                      





                                                        
                                                        
                                                        
                                                        
 














                                                                     

                                                                        
                                                             
                                                      


                                                                                     
                                                                      
                                                                        
                                                             
                                                                    
 

                                                                                
                                                                     
                                                              



                                                                                                                     

                                                                               
                                                                    
                                                             


                                                                         















                                   





                                                                                    

                                                                                        

                                                                              
                                                                    
 
                                                                     
 
                                                                          

                                                                   


                                                                           
                                                                           

                                                                      
                                                                            
 
                                                                            
                                                                                                    
 
                                                                  
                                                                  


                                                                                                             
                                                                    
                                                                    


                                                                                                    

                                                                         
                                                                
                                                                   
                                                                 
                                                                  
                                                                             
                                                                    
                                                      


                                                                
                                                                              
 
                                                                            
                                                                                            


                                                                              
                                                                                



                                                                                   













                                                                                                 
                                             
 
                                              
 
                                             
 
                                              



                                                                                         
                    





                        
/*
 * hal.h
 * ----------
 * Memory map, access functions, and HAL for Cryptech cores.
 *
 * Authors: Joachim Strombergson, Paul Selkirk, Rob Austein
 * Copyright (c) 2015-2017, NORDUnet A/S All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * - Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 *
 * - Neither the name of the NORDUnet nor the names of its contributors may
 *   be used to endorse or promote products derived from this software
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef _HAL_H_
#define _HAL_H_

#include <stdint.h>
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>

/*
 * A handy macro from cryptlib.
 */
#ifndef bitsToBytes
#define bitsToBytes(x)          ((x) / 8)
#endif

/*
 * Current name and version values for crypto cores.
 *
 * Should these even be here?  Dunno.
 * Should the versions be here even if the names should be?
 */

#define NOVENA_BOARD_NAME	"PVT1    "
#define NOVENA_BOARD_VERSION    "0.10"

#define EIM_INTERFACE_NAME      "eim     "
#define EIM_INTERFACE_VERSION   "0.10"

#define I2C_INTERFACE_NAME      "i2c     "
#define I2C_INTERFACE_VERSION   "0.10"

#define TRNG_NAME               "trng    "
#define TRNG_VERSION            "0.51"

#define AVALANCHE_ENTROPY_NAME	"extnoise"
#define AVALANCHE_ENTROPY_VERSION "0.10"

#define ROSC_ENTROPY_NAME       "rosc ent"
#define ROSC_ENTROPY_VERSION    "0.10"

#define CSPRNG_NAME             "csprng  "
#define CSPRNG_VERSION          "0.50"

#define SHA1_NAME               "sha1    "
#define SHA1_VERSION            "0.50"

#define SHA256_NAME             "sha2-256"
#define SHA256_VERSION          "1.80"

#define SHA512_NAME             "sha2-512"
#define SHA512_VERSION          "0.80"

#define AES_CORE_NAME           "aes     "
#define AES_CORE_VERSION        "0.80"

#define CHACHA_NAME             "chacha  "
#define CHACHA_VERSION          "0.80"

#define MODEXP_NAME             "modexp"
#define MODEXP_VERSION          "0.10"

#define MODEXPS6_NAME           "modexps6"
#define MODEXPS6_VERSION        "0.10"

#define MODEXPA7_NAME           "modexpa7"
#define MODEXPA7_VERSION        "0.10"

#define MKMIF_NAME              "mkmif   "
#define MKMIF_VERSION           "0.10"

#define ECDSA256_NAME           "ecdsa256"
#define ECDSA256_VERSION        "0.11"

#define ECDSA384_NAME           "ecdsa384"
#define ECDSA384_VERSION        "0.11"

/*
 * C API error codes.  Defined in this form so we can keep the tokens
 * and error strings together.  See errorstrings.c.
 */

#define HAL_ERROR_LIST \
  DEFINE_HAL_ERROR(HAL_OK,                              "No error")                                     \
  DEFINE_HAL_ERROR(HAL_ERROR_BAD_ARGUMENTS,             "Bad arguments given")                          \
  DEFINE_HAL_ERROR(HAL_ERROR_UNSUPPORTED_KEY,           "Unsupported key type or key length")           \
  DEFINE_HAL_ERROR(HAL_ERROR_IO_SETUP_FAILED,           "Could not set up I/O with FPGA")               \
  DEFINE_HAL_ERROR(HAL_ERROR_IO_TIMEOUT,                "I/O with FPGA timed out")                      \
  DEFINE_HAL_ERROR(HAL_ERROR_IO_UNEXPECTED,             "Unexpected response from FPGA")                \
  DEFINE_HAL_ERROR(HAL_ERROR_IO_OS_ERROR,               "Operating system error talking to FPGA")       \
  DEFINE_HAL_ERROR(HAL_ERROR_IO_BAD_COUNT,              "Bad byte count")                               \
  DEFINE_HAL_ERROR(HAL_ERROR_CSPRNG_BROKEN,             "CSPRNG is returning nonsense")                 \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYWRAP_BAD_MAGIC,         "Bad magic number while unwrapping key")        \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYWRAP_BAD_LENGTH,        "Length out of range while unwrapping key")     \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYWRAP_BAD_PADDING,       "Non-zero padding detected unwrapping key")     \
  DEFINE_HAL_ERROR(HAL_ERROR_IMPOSSIBLE,                "\"Impossible\" error")                         \
  DEFINE_HAL_ERROR(HAL_ERROR_ALLOCATION_FAILURE,        "Memory allocation failed")                     \
  DEFINE_HAL_ERROR(HAL_ERROR_RESULT_TOO_LONG,           "Result too long for buffer")                   \
  DEFINE_HAL_ERROR(HAL_ERROR_ASN1_PARSE_FAILED,         "ASN.1 parse failed")                           \
  DEFINE_HAL_ERROR(HAL_ERROR_KEY_NOT_ON_CURVE,          "EC key is not on its purported curve")         \
  DEFINE_HAL_ERROR(HAL_ERROR_INVALID_SIGNATURE,         "Invalid signature")                            \
  DEFINE_HAL_ERROR(HAL_ERROR_CORE_NOT_FOUND,            "Requested core not found")                     \
  DEFINE_HAL_ERROR(HAL_ERROR_CORE_BUSY,                 "Requested core busy")                          \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYSTORE_ACCESS,           "Could not access keystore")                    \
  DEFINE_HAL_ERROR(HAL_ERROR_KEY_NOT_FOUND,             "Key not found")                                \
  DEFINE_HAL_ERROR(HAL_ERROR_KEY_NAME_IN_USE,           "Key name in use")                              \
  DEFINE_HAL_ERROR(HAL_ERROR_NO_KEY_SLOTS_AVAILABLE,    "No key slots available")                       \
  DEFINE_HAL_ERROR(HAL_ERROR_PIN_INCORRECT,             "PIN incorrect")                                \
  DEFINE_HAL_ERROR(HAL_ERROR_NO_CLIENT_SLOTS_AVAILABLE, "No client slots available")                    \
  DEFINE_HAL_ERROR(HAL_ERROR_FORBIDDEN,                 "Forbidden")                                    \
  DEFINE_HAL_ERROR(HAL_ERROR_XDR_BUFFER_OVERFLOW,       "XDR buffer overflow")                          \
  DEFINE_HAL_ERROR(HAL_ERROR_RPC_TRANSPORT,             "RPC transport error")                          \
  DEFINE_HAL_ERROR(HAL_ERROR_RPC_PACKET_OVERFLOW,       "RPC packet overflow")                          \
  DEFINE_HAL_ERROR(HAL_ERROR_RPC_BAD_FUNCTION,          "Bad RPC function number")                      \
  DEFINE_HAL_ERROR(HAL_ERROR_KEY_NAME_TOO_LONG,         "Key name too long")                            \
  DEFINE_HAL_ERROR(HAL_ERROR_MASTERKEY_NOT_SET,         "Master key (Key Encryption Key) not set")      \
  DEFINE_HAL_ERROR(HAL_ERROR_MASTERKEY_FAIL,            "Master key generic failure")                   \
  DEFINE_HAL_ERROR(HAL_ERROR_MASTERKEY_BAD_LENGTH,      "Master key of unacceptable length")            \
  DEFINE_HAL_ERROR(HAL_ERROR_KS_DRIVER_NOT_FOUND,       "Keystore driver not found")                    \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYSTORE_BAD_CRC,          "Bad CRC in keystore")                          \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE,   "Unsupported keystore block type")              \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYSTORE_LOST_DATA,        "Keystore appears to have lost data")           \
  DEFINE_HAL_ERROR(HAL_ERROR_BAD_ATTRIBUTE_LENGTH,      "Bad attribute length")                         \
  DEFINE_HAL_ERROR(HAL_ERROR_ATTRIBUTE_NOT_FOUND,       "Attribute not found")                          \
  DEFINE_HAL_ERROR(HAL_ERROR_NO_KEY_INDEX_SLOTS,        "No key index slots available")                 \
  DEFINE_HAL_ERROR(HAL_ERROR_KS_INDEX_UUID_MISORDERED,  "Key index UUID misordered")                    \
  DEFINE_HAL_ERROR(HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE, "Wrong block type in keystore")                 \
  DEFINE_HAL_ERROR(HAL_ERROR_RPC_PROTOCOL_ERROR,        "RPC protocol error")                           \
  DEFINE_HAL_ERROR(HAL_ERROR_NOT_IMPLEMENTED,           "Not implemented")                              \
  DEFINE_HAL_ERROR(HAL_ERROR_CORE_REASSIGNED,           "Core has been reassigned since last use")      \
  DEFINE_HAL_ERROR(HAL_ERROR_ASSERTION_FAILED,          "Assertion failed")                             \
  DEFINE_HAL_ERROR(HAL_ERROR_HASHSIG_KEY_EXHAUSTED,     "Key exhausted")                                \
  DEFINE_HAL_ERROR(HAL_ERROR_NOT_READY,                 "Not ready for this operation")                 \
  END_OF_HAL_ERROR_LIST

/* Marker to forestall silly line continuation errors */
#define END_OF_HAL_ERROR_LIST

/* Define the error code enum here.  See errorstrings.c for the text strings. */
#define DEFINE_HAL_ERROR(_code_,_text_)  _code_,
typedef enum { HAL_ERROR_LIST N_HAL_ERRORS } hal_error_t;
#undef  DEFINE_HAL_ERROR

/*
 * Error translation.
 */

extern const char *hal_error_string(const hal_error_t err);

/*
 * Very low level public API for working directly with crypto cores.
 */

/*
 * Typedef to isolate code from our current choice of representation
 * for a Cryptech bus address.
 */

typedef off_t hal_addr_t;

/*
 * Opaque structure representing a core.
 */

typedef struct hal_core hal_core_t;

/*
 * Public I/O functions.
 */

extern void hal_io_set_debug(int onoff);
extern hal_error_t hal_io_write(const hal_core_t *core, hal_addr_t offset, const uint8_t *buf, size_t len);
extern hal_error_t hal_io_read(const hal_core_t *core, hal_addr_t offset, uint8_t *buf, size_t len);
extern hal_error_t hal_io_wait(const hal_core_t *core, const uint8_t status, int *count);
extern hal_error_t hal_io_wait2(const hal_core_t *core1, const hal_core_t *core2, const uint8_t status, int *count);

/*
 * Core management functions.
 *
 * Given our druthers, we'd handle public information about a core
 * using the opaque type and individual access methods, but C's
 * insistence on discarding array bounds information makes
 * non-delimited character arrays problematic unless we wrap them in a
 * structure.
 *
 * For performance reasons, we promise that the hal_core_info_t will
 * be the first element of hal_core_t, so that we can convert between
 * them using inline functions without completely exposing hal_core_t.
 * This is icky, but hal_core_base() gets called a lot during I/O, so
 * it's worth a bit of ick to eliminate some function call overhead.
 */

typedef struct {
  char name[8];
  char version[4];
  hal_addr_t base;
} hal_core_info_t;

typedef uint32_t hal_core_lru_t;

static inline const hal_core_info_t *hal_core_info(const hal_core_t *core)
{
  return (const hal_core_info_t *) core;
}

static inline hal_addr_t hal_core_base(const hal_core_t *core)
{
  return core == NULL ? 0 : hal_core_info(core)->base;
}

extern hal_core_t *hal_core_find(const char *name, hal_core_t *core);
extern hal_core_t *hal_core_iterate(hal_core_t *core);
extern void hal_core_reset_table(void);
extern hal_error_t hal_core_alloc(const char *name, hal_core_t **core, hal_core_lru_t *pomace);
extern hal_error_t hal_core_alloc2(const char *name1, hal_core_t **core1, hal_core_lru_t *pomace1,
                                   const char *name2, hal_core_t **core2, hal_core_lru_t *pomace2);
extern void hal_core_free(hal_core_t *core);

/*
 * Slightly higher level public API, still working directly with cores.
 */

/*
 * Get random bytes from the CSPRNG.
 */

extern hal_error_t hal_get_random(hal_core_t *core, void *buffer, const size_t length);

/*
 * Hash and HMAC API.
 */

/*
 * Opaque driver structure for digest algorithms.
 */

typedef struct hal_hash_driver hal_hash_driver_t;

/*
 * Public information about a digest algorithm.
 *
 * The _state_length values in the descriptor and the typed opaque
 * pointers in the API are all intended to hide internal details of
 * the implementation while making memory allocation the caller's
 * problem.
 */

typedef enum {
  HAL_DIGEST_ALGORITHM_NONE,
  HAL_DIGEST_ALGORITHM_SHA1,
  HAL_DIGEST_ALGORITHM_SHA224,
  HAL_DIGEST_ALGORITHM_SHA256,
  HAL_DIGEST_ALGORITHM_SHA512_224,
  HAL_DIGEST_ALGORITHM_SHA512_256,
  HAL_DIGEST_ALGORITHM_SHA384,
  HAL_DIGEST_ALGORITHM_SHA512
} hal_digest_algorithm_t;

typedef struct {
  hal_digest_algorithm_t digest_algorithm;
  size_t block_length;
  size_t digest_length;
  size_t hash_state_length;
  size_t hmac_state_length;
  const uint8_t * const digest_algorithm_id;
  size_t digest_algorithm_id_length;
  const hal_hash_driver_t *driver;
  char core_name[8];
  unsigned can_restore_state : 1;
} hal_hash_descriptor_t;

/*
 * Opaque structures for internal state.
 */

typedef struct hal_hash_state hal_hash_state_t;
typedef struct hal_hmac_state hal_hmac_state_t;

/*
 * Supported digest algorithms.  These are one-element arrays so that
 * they can be used as constant pointers.
 */

extern const hal_hash_descriptor_t hal_hash_sha1[1];
extern const hal_hash_descriptor_t hal_hash_sha224[1];
extern const hal_hash_descriptor_t hal_hash_sha256[1];
extern const hal_hash_descriptor_t hal_hash_sha512_224[1];
extern const hal_hash_descriptor_t hal_hash_sha512_256[1];
extern const hal_hash_descriptor_t hal_hash_sha384[1];
extern const hal_hash_descriptor_t hal_hash_sha512[1];

/*
 * Hash and HMAC functions.
 */

extern void hal_hash_set_debug(int onoff);

extern hal_error_t hal_hash_initialize(hal_core_t *core,
                                       const hal_hash_descriptor_t * const descriptor,
                                       hal_hash_state_t **state,
                                       void *state_buffer, const size_t state_length);

extern hal_error_t hal_hash_update(hal_hash_state_t *state,
                                   const uint8_t * data, const size_t length);

extern hal_error_t hal_hash_finalize(hal_hash_state_t *state,
                                     uint8_t *digest, const size_t length);

extern hal_error_t hal_hmac_initialize(hal_core_t *core,
                                       const hal_hash_descriptor_t * const descriptor,
                                       hal_hmac_state_t **state,
                                       void *state_buffer, const size_t state_length,
                                       const uint8_t * const key, const size_t key_length);

extern hal_error_t hal_hmac_update(hal_hmac_state_t *state,
                                   const uint8_t * data, const size_t length);

extern hal_error_t hal_hmac_finalize(hal_hmac_state_t *state,
                                     uint8_t *hmac, const size_t length);
extern void hal_hash_cleanup(hal_hash_state_t **state);

extern void hal_hmac_cleanup(hal_hmac_state_t **state);

extern const hal_hash_descriptor_t *hal_hash_get_descriptor(const hal_hash_state_t * const state);

extern const hal_hash_descriptor_t *hal_hmac_get_descriptor(const hal_hmac_state_t * const state);

/*
 * AES key wrap functions.
 */

extern hal_error_t hal_aes_keywrap(hal_core_t *core,
                                   const uint8_t *kek, const size_t kek_length,
                                   const uint8_t *plaintext, const size_t plaintext_length,
                                   uint8_t *cyphertext, size_t *ciphertext_length);

extern hal_error_t hal_aes_keyunwrap(hal_core_t *core,
                                     const uint8_t *kek, const size_t kek_length,
                                     const uint8_t *ciphertext, const size_t ciphertext_length,
                                     uint8_t *plaintext, size_t *plaintext_length);

extern size_t hal_aes_keywrap_ciphertext_length(const size_t plaintext_length);

/*
 * PBKDF2 function.  Uses HMAC with the specified digest algorithm as
 * the pseudo-random function (PRF).
 */

extern hal_error_t hal_pbkdf2(hal_core_t *core,
                              const hal_hash_descriptor_t * const descriptor,
			      const uint8_t * const password, const size_t password_length,
			      const uint8_t * const salt,     const size_t salt_length,
			      uint8_t       * derived_key,    const size_t derived_key_length,
			      unsigned iterations_desired);

/*
 * Modular exponentiation.  This takes a ridiculous number of
 * arguments of very similar types, making it easy to confuse them,
 * particularly when performing two modexp operations in parallel, so
 * we encapsulate the arguments in a structure.
 */

typedef struct {
  hal_core_t *core;
  const uint8_t *msg;    size_t msg_len;        /* Message */
  const uint8_t *exp;    size_t exp_len;        /* Exponent */
  const uint8_t *mod;    size_t mod_len;        /* Modulus */
  uint8_t       *result; size_t result_len;     /* Result of exponentiation */
  uint8_t       *coeff;  size_t coeff_len;      /* Modulus coefficient (r/w) */
  uint8_t       *mont;   size_t mont_len;       /* Montgomery factor (r/w)*/
} hal_modexp_arg_t;

extern void hal_modexp_set_debug(const int onoff);
extern hal_error_t hal_modexp( const int precalc, hal_modexp_arg_t *args);
extern hal_error_t hal_modexp2(const int precalc, hal_modexp_arg_t *args1, hal_modexp_arg_t *args2);

/*
 * Master Key Memory Interface
 */

extern hal_error_t hal_mkmif_init(hal_core_t *core);
extern hal_error_t hal_mkmif_set_clockspeed(hal_core_t *core, const uint32_t divisor);
extern hal_error_t hal_mkmif_get_clockspeed(hal_core_t *core, uint32_t *divisor);
extern hal_error_t hal_mkmif_write(hal_core_t *core, uint32_t addr, const uint8_t *buf, size_t len);
extern hal_error_t hal_mkmif_write_word(hal_core_t *core, uint32_t addr, const uint32_t data);
extern hal_error_t hal_mkmif_read(hal_core_t *core, uint32_t addr, uint8_t *buf, size_t len);
extern hal_error_t hal_mkmif_read_word(hal_core_t *core, uint32_t addr, uint32_t *data);


/*
 * Key types and curves, used in various places.
 */

typedef enum {
  HAL_KEY_TYPE_NONE = 0,
  HAL_KEY_TYPE_RSA_PRIVATE,
  HAL_KEY_TYPE_RSA_PUBLIC,
  HAL_KEY_TYPE_EC_PRIVATE,
  HAL_KEY_TYPE_EC_PUBLIC,
  HAL_KEY_TYPE_HASHSIG_PRIVATE,
  HAL_KEY_TYPE_HASHSIG_PUBLIC,
  HAL_KEY_TYPE_HASHSIG_LMS,
  HAL_KEY_TYPE_HASHSIG_LMOTS,
} hal_key_type_t;

typedef enum {
  HAL_CURVE_NONE,
  HAL_CURVE_P256,
  HAL_CURVE_P384,
  HAL_CURVE_P521
} hal_curve_name_t;

/*
 * RSA.
 */

typedef struct hal_rsa_key hal_rsa_key_t;

extern const size_t hal_rsa_key_t_size;

extern void hal_rsa_set_debug(const int onoff);

extern void hal_rsa_set_blinding(const int onoff);

extern hal_error_t hal_rsa_key_load_private(hal_rsa_key_t **key,
                                            void *keybuf, const size_t keybuf_len,
                                            const uint8_t * const n,  const size_t n_len,
                                            const uint8_t * const e,  const size_t e_len,
                                            const uint8_t * const d,  const size_t d_len,
                                            const uint8_t * const p,  const size_t p_len,
                                            const uint8_t * const q,  const size_t q_len,
                                            const uint8_t * const u,  const size_t u_len,
                                            const uint8_t * const dP, const size_t dP_len,
                                            const uint8_t * const dQ, const size_t dQ_len);

extern hal_error_t hal_rsa_key_load_public(hal_rsa_key_t **key,
                                           void *keybuf, const size_t keybuf_len,
                                           const uint8_t * const n,  const size_t n_len,
                                           const uint8_t * const e,  const size_t e_len);

extern hal_error_t hal_rsa_key_get_type(const hal_rsa_key_t * const key,
                                        hal_key_type_t *key_type);

extern hal_error_t hal_rsa_key_get_modulus(const hal_rsa_key_t * const key,
                                           uint8_t *modulus,
                                           size_t *modulus_len,
                                           const size_t modulus_max);

extern hal_error_t hal_rsa_key_get_public_exponent(const hal_rsa_key_t * const key,
                                                   uint8_t *public_exponent,
                                                   size_t *public_exponent_len,
                                                   const size_t public_exponent_max);

extern void hal_rsa_key_clear(hal_rsa_key_t *key);

extern hal_error_t hal_rsa_encrypt(hal_core_t *core,
                                   hal_rsa_key_t *key,
                                   const uint8_t * const input,  const size_t input_len,
                                   uint8_t * output, const size_t output_len);

extern hal_error_t hal_rsa_decrypt(hal_core_t *core1,
                                   hal_core_t *core2,
                                   hal_rsa_key_t *key,
                                   const uint8_t * const input,  const size_t input_len,
                                   uint8_t * output, const size_t output_len);

extern hal_error_t hal_rsa_key_gen(hal_core_t *core,
                                   hal_rsa_key_t **key,
                                   void *keybuf, const size_t keybuf_len,
                                   const unsigned key_length,
                                   const uint8_t * const public_exponent, const size_t public_exponent_len);

extern hal_error_t hal_rsa_private_key_to_der(const hal_rsa_key_t * const key,
                                              uint8_t *der, size_t *der_len, const size_t der_max);

extern hal_error_t hal_rsa_private_key_to_der_extra(const hal_rsa_key_t * const key,
                                                    uint8_t *der, size_t *der_len, const size_t der_max);

extern hal_error_t hal_rsa_private_key_from_der(hal_rsa_key_t **key,
                                                void *keybuf, const size_t keybuf_len,
                                                const uint8_t * const der, const size_t der_len);

extern hal_error_t hal_rsa_public_key_to_der(const hal_rsa_key_t * const key,
                                             uint8_t *der, size_t *der_len, const size_t der_max);

extern size_t hal_rsa_public_key_to_der_len(const hal_rsa_key_t * const key);

extern hal_error_t hal_rsa_public_key_from_der(hal_rsa_key_t **key,
                                               void *keybuf, const size_t keybuf_len,
                                               const uint8_t * const der, const size_t der_len);

extern int hal_rsa_key_needs_saving(const hal_rsa_key_t * const key);

static inline size_t hal_rsa_private_key_to_der_len(const hal_rsa_key_t * const key)
{
  size_t len = 0;
  return hal_rsa_private_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

static inline size_t hal_rsa_private_key_to_der_extra_len(const hal_rsa_key_t * const key)
{
  size_t len = 0;
  return hal_rsa_private_key_to_der_extra(key, NULL, &len, 0) == HAL_OK ? len : 0;
}

/*
 * ECDSA.
 */

typedef struct hal_ecdsa_key hal_ecdsa_key_t;

extern const size_t hal_ecdsa_key_t_size;

extern void hal_ecdsa_set_debug(const int onoff);

extern hal_error_t hal_ecdsa_oid_to_curve(hal_curve_name_t *curve,
                                          const uint8_t * const oid,
                                          const size_t oid_len);

extern hal_error_t hal_ecdsa_key_load_private(hal_ecdsa_key_t **key,
                                              void *keybuf, const size_t keybuf_len,
                                              const hal_curve_name_t curve,
                                              const uint8_t * const x, const size_t x_len,
                                              const uint8_t * const y, const size_t y_len,
                                              const uint8_t * const d, const size_t d_len);

extern hal_error_t hal_ecdsa_key_load_public(hal_ecdsa_key_t **key,
                                             void *keybuf, const size_t keybuf_len,
                                             const hal_curve_name_t curve,
                                             const uint8_t * const x, const size_t x_len,
                                             const uint8_t * const y, const size_t y_len);

extern hal_error_t hal_ecdsa_key_get_type(const hal_ecdsa_key_t * const key,
                                          hal_key_type_t *key_type);

extern hal_error_t hal_ecdsa_key_get_curve(const hal_ecdsa_key_t * const key,
                                           hal_curve_name_t *curve);

extern hal_error_t hal_ecdsa_key_get_public(const hal_ecdsa_key_t * const key,
                                            uint8_t *x, size_t *x_len, const size_t x_max,
                                            uint8_t *y, size_t *y_len, const size_t y_max);

extern void hal_ecdsa_key_clear(hal_ecdsa_key_t *key);

extern hal_error_t hal_ecdsa_key_gen(hal_core_t *core,
                                     hal_ecdsa_key_t **key,
                                     void *keybuf, const size_t keybuf_len,
                                     const hal_curve_name_t curve);

extern hal_error_t hal_ecdsa_private_key_to_der(const hal_ecdsa_key_t * const key,
                                                uint8_t *der, size_t *der_len, const size_t der_max);

extern size_t hal_ecdsa_private_key_to_der_len(const hal_ecdsa_key_t * const key);

extern hal_error_t hal_ecdsa_private_key_from_der(hal_ecdsa_key_t **key,
                                                  void *keybuf, const size_t keybuf_len,
                                                  const uint8_t * const der, const size_t der_len);

extern hal_error_t hal_ecdsa_public_key_to_der(const hal_ecdsa_key_t * const key,
                                               uint8_t *der, size_t *der_len, const size_t der_max);

extern size_t hal_ecdsa_public_key_to_der_len(const hal_ecdsa_key_t * const key);

extern hal_error_t hal_ecdsa_public_key_from_der(hal_ecdsa_key_t **key,
                                                 void *keybuf, const size_t keybuf_len,
                                                 const uint8_t * const der, const size_t der_len);

extern hal_error_t hal_ecdsa_key_to_ecpoint(const hal_ecdsa_key_t * const key,
                                            uint8_t *der, size_t *der_len, const size_t der_max);

extern size_t hal_ecdsa_key_to_ecpoint_len(const hal_ecdsa_key_t * const key);

extern hal_error_t hal_ecdsa_key_from_ecpoint(hal_ecdsa_key_t **key,
                                              void *keybuf, const size_t keybuf_len,
                                              const uint8_t * const der, const size_t der_len,
                                              const hal_curve_name_t curve);

extern hal_error_t hal_ecdsa_sign(hal_core_t *core,
                                  const hal_ecdsa_key_t * const key,
                                  const uint8_t * const hash, const size_t hash_len,
                                  uint8_t *signature, size_t *signature_len, const size_t signature_max);

extern hal_error_t hal_ecdsa_verify(hal_core_t *core,
                                    const hal_ecdsa_key_t * const key,
                                    const uint8_t * const hash, const size_t hash_len,
                                    const uint8_t * const signature, const size_t signature_len);

/*
 * UUID stuff.  All UUIDs we use (or are likely to use) are type 4 "random" UUIDs
 */

typedef struct { uint8_t uuid[16]; } hal_uuid_t;

#define HAL_UUID_TEXT_SIZE	(sizeof("00112233-4455-6677-8899-aabbccddeeff"))

static inline int hal_uuid_cmp(const hal_uuid_t * const a, const hal_uuid_t * const b)
{
  return memcmp(a, b, sizeof(hal_uuid_t));
}

extern hal_error_t hal_uuid_gen(hal_uuid_t *uuid);

extern hal_error_t hal_uuid_parse(hal_uuid_t *uuid, const char * const string);

extern hal_error_t hal_uuid_format(const hal_uuid_t * const uuid,
                                   char *buffer, const size_t buffer_len);

/*
 * Higher level RPC-based mechanism for working with HSM at arm's
 * length, using handles instead of direct access to the cores.
 *
 * Session handles are pretty much as in PKCS #11: from our viewpoint,
 * a session is a lock-step stream of operations, so while operations
 * from different sessions can interleave, operations within a single
 * session cannot.
 *
 * Client handles are a small extension to the PKCS #11 model,
 * intended to support multiple PKCS #11 using applications sharing a
 * single HSM.  Technically, sessions are per-client, but in practice
 * there's no sane reason why we'd use the same session handle
 * concurrently in multiple clients.  Mostly, the client abstraction
 * is to handle login and logout against the HSM's PIN.  Clients add
 * nothing whatsoever to the security model (the HSM has no way of
 * knowing whether the host is lumping multiple applications into a
 * single "client"), the point of the exercise is just to make the
 * C_Login()/C_Logout() semantics work as expected in the presence of
 * multiple applications.
 *
 * NB: Unlike the other handles used in this protocol, session and
 * client handles are created by the client (host) side of the RPC
 * mechanism, not the server (HSM) side.
 */

#define	HAL_HANDLE_NONE	(0)

typedef struct { uint32_t handle; } hal_client_handle_t;
typedef struct { uint32_t handle; } hal_session_handle_t;

typedef enum { HAL_USER_NONE, HAL_USER_NORMAL, HAL_USER_SO, HAL_USER_WHEEL } hal_user_t;

extern const size_t hal_rpc_min_pin_length;
extern const size_t hal_rpc_max_pin_length;

extern hal_error_t hal_rpc_set_pin(const hal_client_handle_t client,
                                   const hal_user_t user,
                                   const char * const newpin, const size_t newpin_len);

extern hal_error_t hal_rpc_login(const hal_client_handle_t client,
                                 const hal_user_t user,
                                 const char * const pin, const size_t pin_len);

extern hal_error_t hal_rpc_logout(const hal_client_handle_t client);

extern hal_error_t hal_rpc_logout_all(void);

extern hal_error_t hal_rpc_is_logged_in(const hal_client_handle_t client,
                                        const hal_user_t user);

/*
 * Get the version number of the remote RPC server.
 */

extern hal_error_t hal_rpc_get_version(uint32_t *version);

/*
 * Get random bytes.
 */

extern hal_error_t hal_rpc_get_random(void *buffer, const size_t length);

/*
 * Combined hash and HMAC functions: pass NULL key for plain hashing.
 */

typedef struct { uint32_t handle; } hal_hash_handle_t;

extern const hal_hash_handle_t hal_hash_handle_none;

extern hal_error_t hal_rpc_hash_get_digest_length(const hal_digest_algorithm_t alg, size_t *length);

extern hal_error_t hal_rpc_hash_get_digest_algorithm_id(const hal_digest_algorithm_t alg,
                                                        uint8_t *id, size_t *len, const size_t len_max);

extern hal_error_t hal_rpc_hash_get_algorithm(const hal_hash_handle_t hash, hal_digest_algorithm_t *alg);

/*
 * Once started, a hash or HMAC operation is bound to a particular
 * session, so we only need the client and session arguments to initialize.
 */

extern hal_error_t hal_rpc_hash_initialize(const hal_client_handle_t client,
                                           const hal_session_handle_t session,
                                           hal_hash_handle_t *hash,
                                           const hal_digest_algorithm_t alg,
                                           const uint8_t * const key, const size_t key_length);

extern hal_error_t hal_rpc_hash_update(const hal_hash_handle_t hash,
                                       const uint8_t * data, const size_t length);

extern hal_error_t hal_rpc_hash_finalize(const hal_hash_handle_t hash,
                                         uint8_t *digest, const size_t length);

/*
 * Public key functions.
 *
 * The _sign() and _verify() methods accept a hash OR an input string;
 * either "hash" should be hal_hash_handle_none or input should be NULL,
 * but not both.
 *
 * Use of client and session handles here needs a bit more thought.
 *
 * Client handles are straightforward: basically, anything that
 * creates a new pkey handle should take a client handle, which should
 * suffice, as object handles never cross clients.
 *
 * Session handles are more interesting, as PKCS #11's versions of
 * session and object handles do in effect allow one session to hand
 * an object handle to another session.  So any action which can do
 * significant work (ie, which is complicated enough that we can't
 * guarantee an immediate response) needs to take a session handle.
 *
 * There will probably be a few cases where a session handle isn't
 * strictly required but we ask for one anyway because the API turns
 * out to be easier to understand that way (eg, we probably want to
 * ask for a session handle anywhere we ask for a client handle,
 * whether we need the session handle or not, so that users of this
 * API don't have to remember which pkey-handle-creating calls require
 * a session handle and which ones don't...).
 */

typedef struct { uint32_t handle; } hal_pkey_handle_t;

typedef uint32_t hal_key_flags_t;

#define	HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE	(1 << 0)
#define	HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT      (1 << 1)
#define	HAL_KEY_FLAG_USAGE_DATAENCIPHERMENT	(1 << 2)
#define	HAL_KEY_FLAG_TOKEN                      (1 << 3)
#define HAL_KEY_FLAG_PUBLIC                     (1 << 4)
#define HAL_KEY_FLAG_EXPORTABLE                 (1 << 5)

/*
 * hal_pkey_attribute_t.length would be size_t, except that we also
 * need it to transport HAL_PKEY_ATTRIBUTE_NIL safely, which we can
 * only do with a known-width type.  The RPC code conveys size_t as a
 * uint32_t in any case, so we just use that here and have done.
 */

typedef struct {
  uint32_t type;
  uint32_t length;
  const void *value;
} hal_pkey_attribute_t;

#define HAL_PKEY_ATTRIBUTE_NIL                  (0xFFFFFFFF)

extern hal_error_t hal_rpc_pkey_load(const hal_client_handle_t client,
                                     const hal_session_handle_t session,
                                     hal_pkey_handle_t *pkey,
                                     hal_uuid_t *name,
                                     const uint8_t * const der, const size_t der_len,
                                     const hal_key_flags_t flags);

extern hal_error_t hal_rpc_pkey_open(const hal_client_handle_t client,
                                     const hal_session_handle_t session,
                                     hal_pkey_handle_t *pkey,
                                     const hal_uuid_t * const name);

extern hal_error_t hal_rpc_pkey_generate_rsa(const hal_client_handle_t client,
                                             const hal_session_handle_t session,
                                             hal_pkey_handle_t *pkey,
                                             hal_uuid_t *name,
                                             const unsigned key_length,
                                             const uint8_t * const public_exponent, const size_t public_exponent_len,
                                             const hal_key_flags_t flags);

extern hal_error_t hal_rpc_pkey_generate_ec(const hal_client_handle_t client,
                                            const hal_session_handle_t session,
                                            hal_pkey_handle_t *pkey,
                                            hal_uuid_t *name,
                                            const hal_curve_name_t curve,
                                            const hal_key_flags_t flags);

typedef enum lmots_algorithm_type {
    hal_lmots_reserved      = 0,
    hal_lmots_sha256_n32_w1 = 1,
    hal_lmots_sha256_n32_w2 = 2,
    hal_lmots_sha256_n32_w4 = 3,
    hal_lmots_sha256_n32_w8 = 4
} hal_lmots_algorithm_t;

typedef enum lms_algorithm_type {
    hal_lms_reserved        = 0,
    hal_lms_sha256_n32_h5   = 5,
    hal_lms_sha256_n32_h10  = 6,
    hal_lms_sha256_n32_h15  = 7,
    hal_lms_sha256_n32_h20  = 8,
    hal_lms_sha256_n32_h25  = 9
} hal_lms_algorithm_t;

extern hal_error_t hal_rpc_pkey_generate_hashsig(const hal_client_handle_t client,
                                                 const hal_session_handle_t session,
                                                 hal_pkey_handle_t *pkey,
                                                 hal_uuid_t *name,
                                                 const size_t hss_levels,
                                                 const hal_lms_algorithm_t lms_type,
                                                 const hal_lmots_algorithm_t lmots_type,
                                                 const hal_key_flags_t flags);

extern hal_error_t hal_rpc_pkey_close(const hal_pkey_handle_t pkey);

extern hal_error_t hal_rpc_pkey_delete(const hal_pkey_handle_t pkey);

extern hal_error_t hal_rpc_pkey_get_key_type(const hal_pkey_handle_t pkey,
                                             hal_key_type_t *type);

extern hal_error_t hal_rpc_pkey_get_key_curve(const hal_pkey_handle_t pkey,
                                              hal_curve_name_t *curve);

extern hal_error_t hal_rpc_pkey_get_key_flags(const hal_pkey_handle_t pkey,
                                              hal_key_flags_t *flags);

extern size_t hal_rpc_pkey_get_public_key_len(const hal_pkey_handle_t pkey);

extern hal_error_t hal_rpc_pkey_get_public_key(const hal_pkey_handle_t pkey,
                                               uint8_t *der, size_t *der_len, const size_t der_max);

extern hal_error_t hal_rpc_pkey_sign(const hal_pkey_handle_t pkey,
                                     const hal_hash_handle_t hash,
                                     const uint8_t * const input,  const size_t input_len,
                                     uint8_t * signature, size_t *signature_len, const size_t signature_max);

extern hal_error_t hal_rpc_pkey_verify(const hal_pkey_handle_t pkey,
                                       const hal_hash_handle_t hash,
                                       const uint8_t * const input, const size_t input_len,
                                       const uint8_t * const signature, const size_t signature_len);

extern hal_error_t hal_rpc_pkey_match(const hal_client_handle_t client,
                                      const hal_session_handle_t session,
                                      const hal_key_type_t type,
                                      const hal_curve_name_t curve,
                                      const hal_key_flags_t mask,
                                      const hal_key_flags_t flags,
                                      const hal_pkey_attribute_t *attributes,
                                      const unsigned attributes_len,
                                      unsigned *state,
                                      hal_uuid_t *result,
                                      unsigned *result_len,
                                      const unsigned result_max,
                                      const hal_uuid_t * const previous_uuid);

extern hal_error_t hal_rpc_pkey_set_attributes(const hal_pkey_handle_t pkey,
                                               const hal_pkey_attribute_t *const attributes,
                                               const unsigned attributes_len);

extern hal_error_t hal_rpc_pkey_get_attributes(const hal_pkey_handle_t pkey,
                                               hal_pkey_attribute_t *attributes,
                                               const unsigned attributes_len,
                                               uint8_t *attributes_buffer,
                                               const size_t attributes_buffer_len);

extern hal_error_t hal_rpc_pkey_export(const hal_pkey_handle_t pkey,
                                       const hal_pkey_handle_t kekek,
                                       uint8_t *pkcs8, size_t *pkcs8_len, const size_t pkcs8_max,
                                       uint8_t *kek,   size_t *kek_len,   const size_t kek_max);

extern hal_error_t hal_rpc_pkey_import(const hal_client_handle_t client,
                                       const hal_session_handle_t session,
                                       hal_pkey_handle_t *pkey,
                                       hal_uuid_t *name,
                                       const hal_pkey_handle_t kekek,
                                       const uint8_t * const pkcs8, const size_t pkcs8_len,
                                       const uint8_t * const kek,   const size_t kek_len,
                                       const hal_key_flags_t flags);

extern hal_error_t hal_rpc_client_init(void);

extern hal_error_t hal_rpc_client_close(void);

extern hal_error_t hal_rpc_server_init(void);

extern hal_error_t hal_rpc_server_close(void);

extern hal_error_t hal_rpc_server_dispatch(const uint8_t * const ibuf, const size_t ilen,
                                           uint8_t * const obuf, size_t * const olen);

#endif /* _HAL_H_ */

/*
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */