/*
* ecdsa.c
* -------
* Basic ECDSA functions.
*
* At some point we may want to refactor this to separate
* functionality that appiles to all elliptic curve cryptography from
* functions specific to ECDSA over the NIST Suite B prime curves, but
* it's simplest to keep this all in one place initially.
*
* Much of the code in this module is based, at least loosely, on Tom
* St Denis's libtomcrypt code.
*
* Authors: Rob Austein
* Copyright (c) 2015, SUNET
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* We use "Tom's Fast Math" library for our bignum implementation.
* This particular implementation has a couple of nice features:
*
* - The code is relatively readable, thus reviewable.
*
* - The bignum representation doesn't use dynamic memory, which
* simplifies things for us.
*
* The price tag for not using dynamic memory is that libtfm has to be
* configured to know about the largest bignum one wants it to be able
* to support at compile time. This should not be a serious problem.
*
* We use a lot of one-element arrays (fp_int[1] instead of plain
* fp_int) to avoid having to prefix every use of an fp_int with "&".
*
* Unfortunately, libtfm is bad about const-ification, but we want to
* hide that from our users, so our public API uses const as
* appropriate and we use inline functions to remove const constraints
* in a relatively type-safe manner before calling libtom.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include "hal.h"
#include <tfm.h>
#include "asn1_internal.h"
/*
* Whether we want debug output.
*/
static int debug = 0;
void hal_ecdsa_set_debug(const int onoff)
{
debug = onoff;
}
/*
* ECDSA curve descriptor. We only deal with named curves; at the
* moment, we only deal with NIST prime curves where the elliptic
* curve's "a" parameter is always -3 and its "h" value (order of
* elliptic curve group divided by order of base point) is always 1.
*
* Since the Montgomery parameters we need for the point arithmetic
* depend only on the underlying field prime, we precompute them when
* we load the curve and store them in the field descriptor, even
* though they aren't really curve parameters per se.
*
* For similar reasons, we also include the ASN.1 OBJECT IDENTIFIERs
* used to name these curves.
*/
typedef struct {
fp_int q[1]; /* Modulus of underlying prime field */
fp_int b[1]; /* Curve's "b" parameter */
fp_int Gx[1]; /* x component of base point G */
fp_int Gy[1]; /* y component of base point G */
fp_int n[1]; /* Order of base point G */
fp_int mu[1]; /* Montgomery normalization factor */
fp_digit rho; /* Montgomery reduction value */
const uint8_t *oid; /* OBJECT IDENTIFIER */
size_t oid_len; /* Length of OBJECT IDENTIFIER */
} ecdsa_curve_t;
/*
* ECDSA key implementation. This structure type is private to this
* module, anything else that needs to touch one of these just gets a
* typed opaque pointer. We do, however, export the size, so that we
* can make memory allocation the caller's problem.
*
* EC points are stored in Jacobian format such that (x, y, z) =>
* (x/z**2, y/z**3, 1) when interpretted as affine coordinates.
*/
typedef struct {
fp_int x[1], y[1], z[1];
} ec_point_t;
struct hal_ecdsa_key {
hal_ecdsa_key_type_t type; /* Public or private is */
hal_ecdsa_curve_t curve; /* Curve descriptor */
ec_point_t Q[1]; /* Public key */
fp_int d[1]; /* Private key */
};
const size_t hal_ecdsa_key_t_size = sizeof(struct hal_ecdsa_key);
/*
* Error handling.
*/
#define lose(_code_) do { err = _code_; goto fail; } while (0)
/*
* Functions to strip const qualifiers from arguments to libtfm calls
* in a relatively type-safe manner.
*/
static inline fp_int *unconst_fp_int(const fp_int * const arg)
{
return (fp_int *) arg;
}
static inline uint8_t *unconst_uint8_t(const uint8_t * const arg)
{
return (uint8_t *) arg;
}
/*
* We can't (usefully) initialize fp_int variables at compile time, so
* instead we load all the curve parameters the first time anything
* asks for any of them.
*/
static const ecdsa_curve_t * const get_curve(const hal_ecdsa_curve_t curve)
{
static ecdsa_curve_t curve_p256, curve_p384, curve_p521;
static int initialized = 0;
if (!initialized) {
#include "ecdsa_curves.h"
fp_read_unsigned_bin(curve_p256.q, unconst_uint8_t(p256_q), sizeof(p256_q));
fp_read_unsigned_bin(curve_p256.b, unconst_uint8_t(p256_b), sizeof(p256_b));
fp_read_unsigned_bin(curve_p256.Gx, unconst_uint8_t(p256_Gx), sizeof(p256_Gx));
fp_read_unsigned_bin(curve_p256.Gy, unconst_uint8_t(p256_Gy), sizeof(p256_Gy));
fp_read_unsigned_bin(curve_p256.n, unconst_uint8_t(p256_n), sizeof(p256_n));
if (fp_montgomery_setup(curve_p256.q, &curve_p256.rho) != FP_OKAY)
return NULL;
fp_zero(curve_p256.mu);
fp_montgomery_calc_normalization(curve_p256.mu, curve_p256.q);
curve_p256.oid = p256_oid;
curve_p256.oid_len = sizeof(p256_oid);
fp_read_unsigned_bin(curve_p384.q, unconst_uint8_t(p384_q), sizeof(p384_q));
fp_read_unsigned_bin(curve_p384.b, unconst_uint8_t(p384_b), sizeof(p384_b));
fp_read_unsigned_bin(curve_p384.Gx, unconst_uint8_t(p384_Gx), sizeof(p384_Gx));
fp_read_unsigned_bin(curve_p384.Gy, unconst_uint8_t(p384_Gy), sizeof(p384_Gy));
fp_read_unsigned_bin(curve_p384.n, unconst_uint8_t(p384_n), sizeof(p384_n));
if (fp_montgomery_setup(curve_p384.q, &curve_p384.rho) != FP_OKAY)
return NULL;
fp_zero(curve_p384.mu);
fp_montgomery_calc_normalization(curve_p384.mu, curve_p384.q);
curve_p384.oid = p384_oid;
curve_p384.oid_len = sizeof(p384_oid);
fp_read_unsigned_bin(curve_p521.q, unconst_uint8_t(p521_q), sizeof(p521_q));
fp_read_unsigned_bin(curve_p521.b, unconst_uint8_t(p521_b), sizeof(p521_b));
fp_read_unsigned_bin(curve_p521.Gx, unconst_uint8_t(p521_Gx), sizeof(p521_Gx));
fp_read_unsigned_bin(curve_p521.Gy, unconst_uint8_t(p521_Gy), sizeof(p521_Gy));
fp_read_unsigned_bin(curve_p521.n, unconst_uint8_t(p521_n), sizeof(p521_n));
if (fp_montgomery_setup(curve_p521.q, &curve_p521.rho) != FP_OKAY)
return NULL;
fp_zero(curve_p521.mu);
fp_montgomery_calc_normalization(curve_p521.mu, curve_p521.q);
curve_p521.oid = p521_oid;
curve_p521.oid_len = sizeof(p521_oid);
initialized = 1;
}
switch (curve) {
case HAL_ECDSA_CURVE_P256: return &curve_p256;
case HAL_ECDSA_CURVE_P384: return &curve_p384;
case HAL_ECDSA_CURVE_P521: return &curve_p521;
default: return NULL;
}
}
/*
* Finite field operations (hence "ff_"). These are basically just
* the usual bignum operations, constrained by the field modulus.
*
* All of these are operations in the field underlying the specified
* curve, and assume that operands are already in Montgomery form.
*
* The ff_add() and ff_sub() are written a bit oddly, in an attempt to
* make them run in constant time. An optimizing compiler may be
* clever enough to defeat this. In the long run, we probably want to
* perform these field operations in Verilog anyway.
*
* We might be able to squeeze a bit more speed out of the point
* arithmetic by making using fp_mul_2d() when multiplying by a power
* of two. Skipping for now as a premature optimization, but if we do
* need this, it'd probably be simplest to add a ff_dbl() function
* which handles overflow in the same way that ff_add() does.
*/
static inline void ff_add(const ecdsa_curve_t * const curve,
const fp_int * const a,
const fp_int * const b,
fp_int *c)
{
fp_int t[2][1];
memset(t, 0, sizeof(t));
fp_add(unconst_fp_int(a), unconst_fp_int(b), t[0]);
fp_sub(t[0], unconst_fp_int(curve->q), t[1]);
fp_copy(t[fp_cmp_d(t[1], 0) != FP_LT], c);
memset(t, 0, sizeof(t));
}
static inline void ff_sub(const ecdsa_curve_t * const curve,
const fp_int * const a,
const fp_int * const b,
fp_int *c)
{
fp_int t[2][1];
memset(t, 0, sizeof(t));
fp_sub(unconst_fp_int(a), unconst_fp_int(b), t[0]);
fp_add(t[0], unconst_fp_int(curve->q), t[1]);
fp_copy(t[fp_cmp_d(t[0], 0) == FP_LT], c);
memset(t, 0, sizeof(t));
}
static inline void ff_mul(const ecdsa_curve_t * const curve,
const fp_int * const a,
const fp_int * const b,
fp_int *c)
{
fp_mul(unconst_fp_int(a), unconst_fp_int(b), c);
fp_montgomery_reduce(c, unconst_fp_int(curve->q), curve->rho);
}
static inline void ff_sqr(const ecdsa_curve_t * const curve,
const fp_int * const a,
fp_int *b)
{
fp_sqr(unconst_fp_int(a), b);
fp_montgomery_reduce(b, unconst_fp_int(curve->q), curve->rho);
}
/*
* Test whether a point is the point at infinity.
*
* In Jacobian projective coordinate, any point of the form
*
* (j ** 2, j **3, 0) for j in [1..q-1]
*
* is on the line at infinity, but for practical purposes simply
* checking the z coordinate is probably sufficient.
*/
static inline int point_is_infinite(const ec_point_t * const P)
{
assert(P != NULL);
return fp_iszero(P->z);
}
/*
* Set a point to be the point at infinity. For Jacobian projective
* coordinates, it's customary to use (1 : 1 : 0) as the
* representitive value.
*/
static inline void point_set_infinite(ec_point_t *P)
{
assert(P != NULL);
fp_set(P->x, 1);
fp_set(P->y, 1);
fp_set(P->z, 0);
}
/*
* Copy a point.
*/
static inline void point_copy(const ec_point_t * const P, ec_point_t *R)
{
if (P != NULL && R != NULL && P != R)
*R = *P;
}
/**
* Double an EC point.
* @param P The point to double
* @param R [out] The destination of the double
* @param curve The curve parameters structure
*
* Algorithm is dbl-2001-b from
* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
*/
static inline void point_double(const ec_point_t * const P,
ec_point_t *R,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && R != NULL && curve != NULL);
assert(!point_is_infinite(P));
fp_int alpha[1], beta[1], gamma[1], delta[1], t1[1], t2[1];
fp_init(alpha); fp_init(beta); fp_init(gamma); fp_init(delta); fp_init(t1); fp_init(t2);
ff_sqr (curve, P->z, delta); /* delta = Pz ** 2 */
ff_sqr (curve, P->y, gamma); /* gamma = Py ** 2 */
ff_mul (curve, P->x, gamma, beta); /* beta = Px * gamma */
ff_sub (curve, P->x, delta, t1); /* alpha = 3 * (Px - delta) * (Px + delta) */
ff_add (curve, P->x, delta, t2);
ff_mul (curve, t1, t2, t1);
ff_add (curve, t1, t1, t2);
ff_add (curve, t1, t2, alpha);
ff_sqr (curve, alpha, t1); /* Rx = (alpha ** 2) - (8 * beta) */
ff_add (curve, beta, beta, t2);
ff_add (curve, t2, t2, t2);
ff_add (curve, t2, t2, t2);
ff_sub (curve, t1, t2, R->x);
ff_add (curve, P->y, P->z, t1); /* Rz = ((Py + Pz) ** 2) - gamma - delta */
ff_sqr (curve, t1, t1);
ff_sub (curve, t1, gamma, t1);
ff_sub (curve, t1, delta, R->z);
ff_add (curve, beta, beta, t1); /* Ry = (((4 * beta) - Rx) * alpha) - (8 * (gamma ** 2)) */
ff_add (curve, t1, t1, t1);
ff_sub (curve, t1, R->x, t1);
ff_mul (curve, t1, alpha, t1);
ff_sqr (curve, gamma, t2);
ff_add (curve, t2, t2, t2);
ff_add (curve, t2, t2, t2);
ff_add (curve, t2, t2, t2);
ff_sub (curve, t1, t2, R->y);
fp_zero(alpha); fp_zero(beta); fp_zero(gamma); fp_zero(delta); fp_zero(t1); fp_zero(t2);
}
/**
* Add two EC points
* @param P The point to add
* @param Q The point to add
* @param R [out] The destination of the double
* @param curve The curve parameters structure
*
* Algorithm is add-2007-bl from
* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
*
* The special cases for P == Q and P == -Q are unfortunate, but are
* probably unavoidable for this type of curve.
*/
static inline void point_add(const ec_point_t * const P,
const ec_point_t * const Q,
ec_point_t *R,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && Q != NULL && R != NULL && curve != NULL);
if (fp_cmp(unconst_fp_int(P->x), unconst_fp_int(Q->x)) == FP_EQ &&
fp_cmp(unconst_fp_int(P->z), unconst_fp_int(Q->z)) == FP_EQ) {
/*
* If P == Q, we have to use the doubling algorithm instead.
*/
if (fp_cmp(unconst_fp_int(P->y), unconst_fp_int(Q->y)) == FP_EQ)
return point_double(P, R, curve);
fp_int Qy_neg[1];
fp_sub(unconst_fp_int(curve->q), unconst_fp_int(Q->y), Qy_neg);
const int zero_sum = fp_cmp(unconst_fp_int(P->y), Qy_neg) == FP_EQ;
fp_zero(Qy_neg);
/*
* If P == -Q, P + Q is the point at infinity. Which can't be
* expressed in affine coordinates, but that's not this function's
* problem.
*/
if (zero_sum)
return point_set_infinite(R);
}
fp_int Z1Z1[1], Z2Z2[1], U1[1], U2[1], S1[1], S2[1], H[1], I[1], J[1], r[1], V[1], t[1];
fp_init(Z1Z1), fp_init(Z2Z2), fp_init(U1), fp_init(U2), fp_init(S1), fp_init(S2);
fp_init(H), fp_init(I), fp_init(J), fp_init(r), fp_init(V), fp_init(t);
ff_sqr (curve, P->z, Z1Z1); /* Z1Z1 = Pz ** 2 */
ff_sqr (curve, Q->z, Z2Z2); /* Z2Z1 = Qz ** 2 */
ff_mul (curve, P->x, Z2Z2, U1); /* U1 = Px * Z2Z2 */
ff_mul (curve, Q->x, Z1Z1, U2); /* U2 = Qx * Z1Z1 */
ff_mul (curve, Q->z, Z2Z2, S1); /* S1 = Py * (Qz ** 3) */
ff_mul (curve, P->y, S1, S1);
ff_mul (curve, P->z, Z1Z1, S2); /* S2 = Qy * (Pz ** 3) */
ff_mul (curve, Q->y, S2, S2);
ff_sub (curve, U2, U1, H); /* H = U2 - U1 */
ff_add (curve, H, H, I); /* I = (2 * H) ** 2 */
ff_sqr (curve, I, I);
ff_mul (curve, H, I, J); /* J = H * I */
ff_sub (curve, S2, S1, r); /* r = 2 * (S2 - S1) */
ff_add (curve, r, r, r);
ff_mul (curve, U1, I, V); /* V = U1 * I */
ff_sqr (curve, r, R->x); /* Rx = (r ** 2) - J - (2 * V) */
ff_sub (curve, R->x, J, R->x);
ff_sub (curve, R->x, V, R->x);
ff_sub (curve, R->x, V, R->x);
ff_sub (curve, V, R->x, R->y); /* Ry = (r * (V - Rx)) - (2 * S1 * J) */
ff_mul (curve, r, R->y, R->y);
ff_mul (curve, S1, J, t);
ff_sub (curve, R->y, t, R->y);
ff_sub (curve, R->y, t, R->y);
ff_add (curve, P->z, Q->z, R->z); /* Rz = (((Pz + Qz) ** 2) - Z1Z1 - Z2Z2) * H */
ff_sqr (curve, R->z, R->z);
ff_sub (curve, R->z, Z1Z1, R->z);
ff_sub (curve, R->z, Z2Z2, R->z);
ff_mul (curve, R->z, H, R->z);
fp_zero(Z1Z1), fp_zero(Z2Z2), fp_zero(U1), fp_zero(U2), fp_zero(S1), fp_zero(S2);
fp_zero(H), fp_zero(I), fp_zero(J), fp_zero(r), fp_zero(V), fp_zero(t);
}
/**
* Map a point in projective Jacbobian coordinates back to affine space
* @param P [in/out] The point to map
* @param curve The curve parameters structure
*
* It's not possible to represent the point at infinity in affine
* coordinates, and the calling function will have to handle this
* specially in any case, so we declare this to be the calling
* function's problem.
*/
static inline hal_error_t point_to_affine(ec_point_t *P,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && curve != NULL);
if (point_is_infinite(P))
return HAL_ERROR_IMPOSSIBLE;
hal_error_t err = HAL_ERROR_IMPOSSIBLE;
fp_int t1[1]; fp_init(t1);
fp_int t2[1]; fp_init(t2);
fp_int * const q = unconst_fp_int(curve->q);
fp_montgomery_reduce(P->z, q, curve->rho);
if (fp_invmod (P->z, q, t1) != FP_OKAY || /* t1 = 1 / z */
fp_sqrmod (t1, q, t2) != FP_OKAY || /* t2 = 1 / z**2 */
fp_mulmod (t1, t2, q, t1) != FP_OKAY) /* t1 = 1 / z**3 */
goto fail;
fp_mul (P->x, t2, P->x); /* x = x / z**2 */
fp_mul (P->y, t1, P->y); /* y = y / z**3 */
fp_set (P->z, 1); /* z = 1 */
fp_montgomery_reduce(P->x, q, curve->rho);
fp_montgomery_reduce(P->y, q, curve->rho);
err = HAL_OK;
fail:
fp_zero(t1);
fp_zero(t2);
return err;
}
/**
* Perform a point multiplication.
* @param k The scalar to multiply by
* @param P The base point
* @param R [out] Destination for kP
* @param curve Curve parameters
* @param map Boolean whether to map back to affine (1: map, 0: leave projective)
* @return HAL_OK on success
*
* This implementation uses the "Montgomery Ladder" approach, which is
* relatively robust against timing channel attacks if nothing else
* goes wrong, but many other things can indeed go wrong.
*/
static hal_error_t point_scalar_multiply(const fp_int * const k,
const ec_point_t * const P,
ec_point_t *R,
const ecdsa_curve_t * const curve,
const int map)
{
assert(k != NULL && P != NULL && R != NULL && curve != NULL);
if (fp_iszero(k))
return HAL_ERROR_BAD_ARGUMENTS;
/*
* Convert to Montgomery form and initialize table. Initial values:
*
* M[0] = 1P
* M[1] = 2P
* M[2] = don't care, only used for timing-attack resistance
*/
ec_point_t M[3][1];
memset(M, 0, sizeof(M));
if (fp_mulmod(unconst_fp_int(P->x), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), M[0]->x) != FP_OKAY ||
fp_mulmod(unconst_fp_int(P->y), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), M[0]->y) != FP_OKAY ||
fp_mulmod(unconst_fp_int(P->z), unconst_fp_int(curve->mu), unconst_fp_int(curve->q), M[0]->z) != FP_OKAY) {
memset(M, 0, sizeof(M));
return HAL_ERROR_IMPOSSIBLE;
}
point_double(M[0], M[1], curve);
/*
* Walk down bits of the scalar, performing dummy operations to mask
* timing while hunting for the most significant bit.
*/
int dummy_mode = 1;
for (int digit_index = k->used - 1; digit_index >= 0; digit_index--) {
fp_digit digit = k->dp[digit_index];
for (int bits_left = DIGIT_BIT; bits_left > 0; bits_left--) {
const int bit = (digit >> (DIGIT_BIT - 1)) & 1;
digit <<= 1;
if (dummy_mode) {
point_add (M[0], M[1], M[2], curve);
point_double (M[1], M[2], curve);
dummy_mode = !bit; /* Dummy until we find MSB */
}
else {
point_add (M[0], M[1], M[bit^1], curve);
point_double (M[bit], M[bit], curve);
}
}
}
/*
* Copy result out, map back to affine if requested, then done.
*/
*R = *M[0];
hal_error_t err = map ? point_to_affine(R, curve) : HAL_OK;
memset(M, 0, sizeof(M));
return err;
}
/*
* Pick a random point on the curve, return random scalar and
* resulting point.
*/
static hal_error_t point_pick_random(const ecdsa_curve_t * const curve,
fp_int *k,
ec_point_t *P)
{
hal_error_t err;
assert(curve != NULL && k != NULL && P != NULL);
/*
* Pick a random scalar corresponding to a point on the curve. Per
* the NSA (gulp) Suite B guidelines, we ask the CSPRNG for 64 more
* bits than we need, which should be enough to mask any bias
* induced by the modular reduction.
*
* We're picking a point out of the subgroup generated by the base
* point on the elliptic curve, so the modulus for this calculation
* is the order of the base point.
*
* Zero is an excluded value, but the chance of a non-broken CSPRNG
* returning zero is so low that it would almost certainly indicate
* an undiagnosed bug in the CSPRNG.
*/
uint8_t k_buf[fp_unsigned_bin_size(unconst_fp_int(curve->n)) + 8];
do {
if ((err = hal_get_random(k_buf, sizeof(k_buf))) != HAL_OK)
return err;
fp_read_unsigned_bin(k, k_buf, sizeof(k_buf));
if (fp_iszero(k) || fp_mod(k, unconst_fp_int(curve->n), k) != FP_OKAY)
return HAL_ERROR_IMPOSSIBLE;
} while (fp_iszero(k));
memset(k_buf, 0, sizeof(k_buf));
/*
* Calculate P = kG and return.
*/
fp_copy(curve->Gx, P->x);
fp_copy(curve->Gy, P->y);
fp_set(P->z, 1);
return point_scalar_multiply(k, P, P, curve, 1);
}
/*
* Test whether a point really is on a particular curve (sometimes
* called "validation when applied to a public key").
*/
static int point_is_on_curve(const ec_point_t * const P,
const ecdsa_curve_t * const curve)
{
assert(P != NULL && curve != NULL);
fp_int t1[1]; fp_init(t1);
fp_int t2[1]; fp_init(t2);
/*
* Compute y**2 - x**3 + 3*x.
*/
fp_sqr(unconst_fp_int(P->y), t1); /* t1 = y**2 */
fp_sqr(unconst_fp_int(P->x), t2); /* t2 = x**2 */
if (fp_mod(t2, unconst_fp_int(curve->q), t2) != FP_OKAY)
return 0;
fp_mul(unconst_fp_int(P->x), t2, t2); /* t2 = x**3 */
fp_sub(t1, t2, t1); /* t1 = y**2 - x**3 */
fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 1*x */
fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 2*x */
fp_add(t1, unconst_fp_int(P->x), t1); /* t1 = y**2 - x**3 + 3*x */
/*
* Normalize and test whether computed value matches b.
*/
if (fp_mod(t1, unconst_fp_int(curve->q), t1) != FP_OKAY)
return 0;
while (fp_cmp_d(t1, 0) == FP_LT)
fp_add(t1, unconst_fp_int(curve->q), t1);
while (fp_cmp(t1, unconst_fp_int(curve->q)) != FP_LT)
fp_sub(t1, unconst_fp_int(curve->q), t1);
return fp_cmp(t1, unconst_fp_int(curve->b)) == FP_EQ;
}
/*
* Generate a new ECDSA key.
*/
hal_error_t hal_ecdsa_key_gen(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const hal_ecdsa_curve_t curve_)
{
const ecdsa_curve_t * const curve = get_curve(curve_);
hal_ecdsa_key_t *key = keybuf;
hal_error_t err;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_ECDSA_PRIVATE;
key->curve = curve_;
if ((err = point_pick_random(curve, key->d, key->Q)) != HAL_OK)
return err;
assert(point_is_on_curve(key->Q, curve));
*key_ = key;
return HAL_OK;
}
/*
* Extract key type (public or private).
*/
hal_error_t hal_ecdsa_key_get_type(const hal_ecdsa_key_t * const key,
hal_ecdsa_key_type_t *key_type)
{
if (key == NULL || key_type == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*key_type = key->type;
return HAL_OK;
}
/*
* Extract name of curve underlying a key.
*/
hal_error_t hal_ecdsa_key_get_curve(const hal_ecdsa_key_t * const key,
hal_ecdsa_curve_t *curve)
{
if (key == NULL || curve == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
*curve = key->curve;
return HAL_OK;
}
/*
* Extract public key components.
*/
hal_error_t hal_ecdsa_key_get_public(const hal_ecdsa_key_t * const key,
uint8_t *x, size_t *x_len, const size_t x_max,
uint8_t *y, size_t *y_len, const size_t y_max)
{
if (key == NULL || (x_len == NULL && x != NULL) || (y_len == NULL && y != NULL))
return HAL_ERROR_BAD_ARGUMENTS;
if (x_len != NULL)
*x_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
if (y_len != NULL)
*y_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
if ((x != NULL && *x_len > x_max) ||
(y != NULL && *y_len > y_max))
return HAL_ERROR_RESULT_TOO_LONG;
if (x != NULL)
fp_to_unsigned_bin(unconst_fp_int(key->Q->x), x);
if (y != NULL)
fp_to_unsigned_bin(unconst_fp_int(key->Q->y), y);
return HAL_OK;
}
/*
* Clear a key.
*/
void hal_ecdsa_key_clear(hal_ecdsa_key_t *key)
{
if (key != NULL)
memset(key, 0, sizeof(*key));
}
/*
* Load a public key from components, and validate that the public key
* really is on the named curve.
*/
hal_error_t hal_ecdsa_key_load_public(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const hal_ecdsa_curve_t curve_,
const uint8_t * const x, const size_t x_len,
const uint8_t * const y, const size_t y_len)
{
const ecdsa_curve_t * const curve = get_curve(curve_);
hal_ecdsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key) || curve == NULL || x == NULL || y == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_ECDSA_PUBLIC;
key->curve = curve_;
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(x), x_len);
fp_read_unsigned_bin(key->Q->y, unconst_uint8_t(y), y_len);
fp_set(key->Q->z, 1);
if (!point_is_on_curve(key->Q, curve))
return HAL_ERROR_KEY_NOT_ON_CURVE;
*key_ = key;
return HAL_OK;
}
/*
* Load a private key from components.
*
* For extra paranoia, we could check Q == dG.
*/
hal_error_t hal_ecdsa_key_load_private(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const hal_ecdsa_curve_t curve_,
const uint8_t * const x, const size_t x_len,
const uint8_t * const y, const size_t y_len,
const uint8_t * const d, const size_t d_len)
{
hal_ecdsa_key_t *key = keybuf;
hal_error_t err;
if (d == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
if ((err = hal_ecdsa_key_load_public(key_, keybuf, keybuf_len, curve_, x, x_len, y, y_len)) != HAL_OK)
return err;
key->type = HAL_ECDSA_PRIVATE;
fp_read_unsigned_bin(key->d, unconst_uint8_t(d), d_len);
return HAL_OK;
}
/*
* Write private key in RFC 5915 ASN.1 DER format.
*/
hal_error_t hal_ecdsa_key_to_der(const hal_ecdsa_key_t * const key,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (key == NULL || key->type != HAL_ECDSA_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
const size_t q_len = fp_unsigned_bin_size(unconst_fp_int(curve->q));
const size_t d_len = fp_unsigned_bin_size(unconst_fp_int(key->d));
const size_t Qx_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->x));
const size_t Qy_len = fp_unsigned_bin_size(unconst_fp_int(key->Q->y));
assert(q_len >= d_len && q_len >= Qx_len && q_len >= Qy_len);
fp_int version[1];
fp_set(version, 1);
hal_error_t err;
size_t version_len, hlen, hlen2, hlen3, hlen4;
if ((err = hal_asn1_encode_integer(version, NULL, &version_len, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, NULL, &hlen2, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_EXPLICIT_0, curve->oid_len, NULL, &hlen3, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_EXPLICIT_1, (q_len + 1) * 2, NULL, &hlen4, 0)) != HAL_OK)
return err;
const size_t vlen = (version_len +
hlen2 + q_len +
hlen3 + curve->oid_len +
hlen4 + (q_len + 1) * 2);
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max)) != HAL_OK)
return err;
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL)
return HAL_OK;
uint8_t *d = der + hlen;
memset(d, 0, vlen);
if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK)
return err;
d += version_len;
if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, q_len, d, NULL, der + der_max - d)) != HAL_OK)
return err;
d += hlen2;
fp_to_unsigned_bin(unconst_fp_int(key->d), d + q_len - d_len);
d += q_len;
if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_0, curve->oid_len, d, NULL, der + der_max - d)) != HAL_OK)
return err;
d += hlen3;
memcpy(d, curve->oid, curve->oid_len);
d += curve->oid_len;
if ((err = hal_asn1_encode_header(ASN1_EXPLICIT_1, (q_len + 1) * 2, d, NULL, der + der_max - d)) != HAL_OK)
return err;
d += hlen4;
*d++ = 0x00;
*d++ = 0x04;
fp_to_unsigned_bin(unconst_fp_int(key->d), d + q_len - Qx_len);
d += q_len;
fp_to_unsigned_bin(unconst_fp_int(key->d), d + q_len - Qy_len);
d += q_len;
assert(d == der + der_max);
return HAL_OK;
}
size_t hal_ecdsa_key_to_der_len(const hal_ecdsa_key_t * const key)
{
size_t len;
return hal_ecdsa_key_to_der(key, NULL, &len, 0) == HAL_OK ? len : 0;
}
/*
* Read private key in RFC 5915 ASN.1 DER format.
*/
hal_error_t hal_ecdsa_key_from_der(hal_ecdsa_key_t **key_,
void *keybuf, const size_t keybuf_len,
const uint8_t * const der, const size_t der_len)
{
hal_ecdsa_key_t *key = keybuf;
if (key_ == NULL || key == NULL || keybuf_len < sizeof(*key))
return HAL_ERROR_BAD_ARGUMENTS;
memset(keybuf, 0, keybuf_len);
key->type = HAL_ECDSA_PRIVATE;
size_t hlen, vlen;
hal_error_t err;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, der, der_len, &hlen, &vlen)) != HAL_OK)
return err;
const uint8_t * const der_end = der + hlen + vlen;
const uint8_t *d = der + hlen;
const ecdsa_curve_t *curve = NULL;
fp_int version[1];
if ((err = hal_asn1_decode_integer(version, d, &hlen, vlen)) != HAL_OK)
goto fail;
if (fp_cmp_d(version, 1) != FP_EQ)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
d += hlen;
if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
fp_read_unsigned_bin(key->d, unconst_uint8_t(d), vlen);
d += vlen;
if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_0, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
for (key->curve = (hal_ecdsa_curve_t) 0; (curve = get_curve(key->curve)) != NULL; key->curve++)
if (vlen == curve->oid_len && memcmp(d, curve->oid, vlen) == 0)
break;
if (curve == NULL)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
d += vlen;
if ((err = hal_asn1_decode_header(ASN1_EXPLICIT_1, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen < 4 || (vlen & 1) != 0 || *d++ != 0x00 || *d++ != 0x04)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
vlen = vlen/2 - 1;
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
d += vlen;
fp_read_unsigned_bin(key->Q->x, unconst_uint8_t(d), vlen);
d += vlen;
if (d != der_end)
lose(HAL_ERROR_ASN1_PARSE_FAILED);
return HAL_OK;
fail:
memset(keybuf, 0, keybuf_len);
return err;
}
/*
* Sign a caller-supplied hash.
*/
hal_error_t hal_ecdsa_sign(const hal_ecdsa_key_t * const key,
const uint8_t * const hash, const size_t hash_len,
uint8_t *signature, size_t *signature_len, const size_t signature_max)
{
if (key == NULL || hash == NULL || signature == NULL || signature_len == NULL || key->type != HAL_ECDSA_PRIVATE)
return HAL_ERROR_BAD_ARGUMENTS;
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
fp_int k[1]; fp_init(k);
fp_int r[1]; fp_init(r);
fp_int s[1]; fp_init(s);
fp_int e[1]; fp_init(e);
fp_int * const n = unconst_fp_int(curve->n);
fp_int * const d = unconst_fp_int(key->d);
ec_point_t R[1];
memset(R, 0, sizeof(R));
hal_error_t err;
fp_read_unsigned_bin(e, unconst_uint8_t(hash), sizeof(hash_len));
do {
/*
* Pick random curve point R, then calculate r = R.x % n.
* If r == 0, we can't use this point, so go try again.
*/
if ((err = point_pick_random(curve, k, R)) != HAL_OK)
goto fail;
assert(point_is_on_curve(R, curve));
if (fp_mod(R->x, n, r) != FP_OKAY)
lose(HAL_ERROR_IMPOSSIBLE);
if (fp_iszero(r))
continue;
/*
* Calculate s = ((e + dr)/k) % n.
* If s == 0, we can't use this point, so go try again.
*/
if (fp_mulmod (d, r, n, s) != FP_OKAY)
lose(HAL_ERROR_IMPOSSIBLE);
fp_add (e, s, s);
if (fp_mod (s, n, s) != FP_OKAY ||
fp_invmod (k, n, k) != FP_OKAY ||
fp_mulmod (s, k, n, s) != FP_OKAY)
lose(HAL_ERROR_IMPOSSIBLE);
} while (fp_iszero(s));
/*
* Final signature is ASN.1 DER encoding of SEQUENCE { INTEGER r, INTEGER s }.
*/
size_t r_len, s_len;
if ((err = hal_asn1_encode_integer(r, NULL, &r_len, 0)) != HAL_OK ||
(err = hal_asn1_encode_integer(s, NULL, &s_len, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_SEQUENCE, r_len + s_len,
signature, signature_len, signature_max)) != HAL_OK)
goto fail;
uint8_t * const r_out = signature + *signature_len;
uint8_t * const s_out = r_out + r_len;
signature_len += r_len + s_len;
assert(*signature_len <= signature_max);
if ((err = hal_asn1_encode_integer(r, r_out, NULL, signature_max - (r_out - signature))) != HAL_OK ||
(err = hal_asn1_encode_integer(s, s_out, NULL, signature_max - (s_out - signature))) != HAL_OK)
goto fail;
err = HAL_OK;
fail:
fp_zero(k); fp_zero(r); fp_zero(s); fp_zero(e);
memset(R, 0, sizeof(R));
return err;
}
hal_error_t hal_ecdsa_verify(const hal_ecdsa_key_t * const key,
const uint8_t * const hash, const size_t hash_len,
const uint8_t * const signature, const size_t signature_len)
{
assert(key != NULL && hash != NULL && signature != NULL);
const ecdsa_curve_t * const curve = get_curve(key->curve);
if (curve == NULL)
return HAL_ERROR_IMPOSSIBLE;
fp_int * const n = unconst_fp_int(curve->n);
size_t len1, len2;
hal_error_t err;
fp_int r[1], s[1], e[1], w[1], u1[1], u2[1], v[1];
ec_point_t u1G[1], u2Q[1], R[1];
fp_init(w); fp_init(u1); fp_init(u2); fp_init(v);
memset(u1G, 0, sizeof(u1G));
memset(u2Q, 0, sizeof(u2Q));
memset(R, 0, sizeof(R));
/*
* First, we have to parse the ASN.1 SEQUENCE { INTEGER r, INTEGER s }.
*/
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, signature, signature_len, &len1, &len2)) != HAL_OK)
return err;
const uint8_t * der = signature + len1;
const uint8_t * const der_end = der + len2;
if ((err = hal_asn1_decode_integer(r, der, &len1, der_end - der)) != HAL_OK)
return err;
der += len1;
if ((err = hal_asn1_decode_integer(s, der, &len1, der_end - der)) != HAL_OK)
return err;
der += len1;
if (der != der_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
/*
* Check that r and s are in the allowed range, read the hash, then
* compute:
*
* w = 1 / s
* u1 = e * w
* u2 = r * w
* R = u1 * G + u2 * Q.
*/
if (fp_cmp_d(r, 1) == FP_LT || fp_cmp(r, n) != FP_LT ||
fp_cmp_d(s, 1) == FP_LT || fp_cmp(s, n) != FP_LT)
return HAL_ERROR_INVALID_SIGNATURE;
fp_read_unsigned_bin(e, unconst_uint8_t(hash), sizeof(hash_len));
if (fp_invmod(s, n, w) != FP_OKAY ||
fp_mulmod(e, w, n, u1) != FP_OKAY ||
fp_mulmod(r, w, n, u2) != FP_OKAY)
return HAL_ERROR_IMPOSSIBLE;
fp_copy(unconst_fp_int(curve->Gx), u1G->x);
fp_copy(unconst_fp_int(curve->Gy), u1G->y);
fp_set(u1G->z, 1);
if ((err = point_scalar_multiply(u1, u1G, u1G, curve, 0)) != HAL_OK ||
(err = point_scalar_multiply(u2, key->Q, u2Q, curve, 0)) != HAL_OK)
return err;
if (point_is_infinite(u1G))
point_copy(u2Q, R);
else if (point_is_infinite(u2Q))
point_copy(u1G, R);
else
point_add(u1G, u2Q, R, curve);
/*
* Signature is OK if
* R is not the point at infinity, and
* Rx is congruent to r mod n.
*/
if (point_is_infinite(R))
return HAL_ERROR_INVALID_SIGNATURE;
if ((err = point_to_affine(R, curve)) != HAL_OK)
return err;
if (fp_mod(R->x, n, v) != FP_OKAY)
return HAL_ERROR_IMPOSSIBLE;
return fp_cmp(v, r) == FP_EQ ? HAL_OK : HAL_ERROR_INVALID_SIGNATURE;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/