# Copyright (c) 2016, NORDUnet A/S
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
# be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
A Python interface to the Cryptech libhal RPC API.
"""
# A lot of this is hand-generated XDR data structure encoding. If and
# when we ever convert the C library to use data structures processed
# by rpcgen, we may want to rewrite this code to use the output of
# something like https://github.com/floodlight/xdr.git -- in either
# case the generated code would just be for the data structures, we're
# not likely to want to use the full ONC RPC mechanism.
import os
import uuid
import xdrlib
import socket
import logging
logger = logging.getLogger(__name__)
SLIP_END = chr(0300) # indicates end of packet
SLIP_ESC = chr(0333) # indicates byte stuffing
SLIP_ESC_END = chr(0334) # ESC ESC_END means END data byte
SLIP_ESC_ESC = chr(0335) # ESC ESC_ESC means ESC data byte
def slip_encode(buffer):
return SLIP_END + buffer.replace(SLIP_ESC, SLIP_ESC + SLIP_ESC_ESC).replace(SLIP_END, SLIP_ESC + SLIP_ESC_END) + SLIP_END
def slip_decode(buffer):
return buffer.strip(SLIP_END).replace(SLIP_ESC + SLIP_ESC_END, SLIP_END).replace(SLIP_ESC + SLIP_ESC_ESC, SLIP_ESC)
HAL_OK = 0
class HALError(Exception):
"LibHAL error"
table = [None]
@classmethod
def define(cls, **kw):
assert len(kw) == 1
name, text = kw.items()[0]
e = type(name, (cls,), dict(__doc__ = text))
cls.table.append(e)
globals()[name] = e
HALError.define(HAL_ERROR_BAD_ARGUMENTS = "Bad arguments given")
HALError.define(HAL_ERROR_UNSUPPORTED_KEY = "Unsupported key type or key length")
HALError.define(HAL_ERROR_IO_SETUP_FAILED = "Could not set up I/O with FPGA")
HALError.define(HAL_ERROR_IO_TIMEOUT = "I/O with FPGA timed out")
HALError.define(HAL_ERROR_IO_UNEXPECTED = "Unexpected response from FPGA")
HALError.define(HAL_ERROR_IO_OS_ERROR = "Operating system error talking to FPGA")
HALError.define(HAL_ERROR_IO_BAD_COUNT = "Bad byte count")
HALError.define(HAL_ERROR_CSPRNG_BROKEN = "CSPRNG is returning nonsense")
HALError.define(HAL_ERROR_KEYWRAP_BAD_MAGIC = "Bad magic number while unwrapping key")
HALError.define(HAL_ERROR_KEYWRAP_BAD_LENGTH = "Length out of range while unwrapping key")
HALError.define(HAL_ERROR_KEYWRAP_BAD_PADDING = "Non-zero padding detected unwrapping key")
HALError.define(HAL_ERROR_IMPOSSIBLE = "\"Impossible\" error")
HALError.define(HAL_ERROR_ALLOCATION_FAILURE = "Memory allocation failed")
HALError.define(HAL_ERROR_RESULT_TOO_LONG = "Result too long for buffer")
HALError.define(HAL_ERROR_ASN1_PARSE_FAILED = "ASN.1 parse failed")
HALError.define(HAL_ERROR_KEY_NOT_ON_CURVE = "EC key is not on its purported curve")
HALError.define(HAL_ERROR_INVALID_SIGNATURE = "Invalid signature")
HALError.define(HAL_ERROR_CORE_NOT_FOUND = "Requested core not found")
HALError.define(HAL_ERROR_CORE_BUSY = "Requested core busy")
HALError.define(HAL_ERROR_KEYSTORE_ACCESS = "Could not access keystore")
HALError.define(HAL_ERROR_KEY_NOT_FOUND = "Key not found")
HALError.define(HAL_ERROR_KEY_NAME_IN_USE = "Key name in use")
HALError.define(HAL_ERROR_NO_KEY_SLOTS_AVAILABLE = "No key slots available")
HALError.define(HAL_ERROR_PIN_INCORRECT = "PIN incorrect")
HALError.define(HAL_ERROR_NO_CLIENT_SLOTS_AVAILABLE = "No client slots available")
HALError.define(HAL_ERROR_FORBIDDEN = "Forbidden")
HALError.define(HAL_ERROR_XDR_BUFFER_OVERFLOW = "XDR buffer overflow")
HALError.define(HAL_ERROR_RPC_TRANSPORT = "RPC transport error")
HALError.define(HAL_ERROR_RPC_PACKET_OVERFLOW = "RPC packet overflow")
HALError.define(HAL_ERROR_RPC_BAD_FUNCTION = "Bad RPC function number")
HALError.define(HAL_ERROR_KEY_NAME_TOO_LONG = "Key name too long")
HALError.define(HAL_ERROR_MASTERKEY_NOT_SET = "Master key (Key Encryption Key) not set")
HALError.define(HAL_ERROR_MASTERKEY_FAIL = "Master key generic failure")
HALError.define(HAL_ERROR_MASTERKEY_BAD_LENGTH = "Master key of unacceptable length")
HALError.define(HAL_ERROR_KS_DRIVER_NOT_FOUND = "Keystore driver not found")
HALError.define(HAL_ERROR_KEYSTORE_BAD_CRC = "Bad CRC in keystore")
HALError.define(HAL_ERROR_KEYSTORE_BAD_BLOCK_TYPE = "Unsupported keystore block type")
HALError.define(HAL_ERROR_KEYSTORE_LOST_DATA = "Keystore appears to have lost data")
HALError.define(HAL_ERROR_BAD_ATTRIBUTE_LENGTH = "Bad attribute length")
HALError.define(HAL_ERROR_ATTRIBUTE_NOT_FOUND = "Attribute not found")
HALError.define(HAL_ERROR_NO_KEY_INDEX_SLOTS = "No key index slots available")
HALError.define(HAL_ERROR_KS_INDEX_UUID_MISORDERED = "Key index UUID misordered")
HALError.define(HAL_ERROR_KEYSTORE_WRONG_BLOCK_TYPE = "Wrong block type in keystore")
HALError.define(HAL_ERROR_RPC_PROTOCOL_ERROR = "RPC protocol error")
HALError.define(HAL_ERROR_NOT_IMPLEMENTED = "Not implemented")
class Enum(int):
def __new__(cls, name, value):
self = int.__new__(cls, value)
self._name = name
setattr(self.__class__, name, self)
return self
def __str__(self):
return self._name
def __repr__(self):
return "<Enum:{0.__class__.__name__} {0._name}:{0:d}>".format(self)
_counter = 0
@classmethod
def define(cls, names):
symbols = []
for name in names.translate(None, "{}").split(","):
if "=" in name:
name, sep, expr = name.partition("=")
cls._counter = eval(expr.strip())
if not isinstance(cls._counter, int):
raise TypeError
symbols.append(cls(name.strip(), cls._counter))
cls._counter += 1
cls.index = dict((int(symbol), symbol) for symbol in symbols)
globals().update((symbol._name, symbol) for symbol in symbols)
def xdr_packer(self, packer):
packer.pack_uint(self)
class RPCFunc(Enum): pass
RPCFunc.define('''
RPC_FUNC_GET_VERSION,
RPC_FUNC_GET_RANDOM,
RPC_FUNC_SET_PIN,
RPC_FUNC_LOGIN,
RPC_FUNC_LOGOUT,
RPC_FUNC_LOGOUT_ALL,
RPC_FUNC_IS_LOGGED_IN,
RPC_FUNC_HASH_GET_DIGEST_LEN,
RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID,
RPC_FUNC_HASH_GET_ALGORITHM,
RPC_FUNC_HASH_INITIALIZE,
RPC_FUNC_HASH_UPDATE,
RPC_FUNC_HASH_FINALIZE,
RPC_FUNC_PKEY_LOAD,
RPC_FUNC_PKEY_OPEN,
RPC_FUNC_PKEY_GENERATE_RSA,
RPC_FUNC_PKEY_GENERATE_EC,
RPC_FUNC_PKEY_CLOSE,
RPC_FUNC_PKEY_DELETE,
RPC_FUNC_PKEY_GET_KEY_TYPE,
RPC_FUNC_PKEY_GET_KEY_FLAGS,
RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN,
RPC_FUNC_PKEY_GET_PUBLIC_KEY,
RPC_FUNC_PKEY_SIGN,
RPC_FUNC_PKEY_VERIFY,
RPC_FUNC_PKEY_MATCH,
RPC_FUNC_PKEY_GET_KEY_CURVE,
RPC_FUNC_PKEY_SET_ATTRIBUTES,
RPC_FUNC_PKEY_GET_ATTRIBUTES,
RPC_FUNC_PKEY_EXPORT,
RPC_FUNC_PKEY_IMPORT,
RPC_FUNC_PKEY_GENERATE_HASHSIG,
''')
class HALDigestAlgorithm(Enum): pass
HALDigestAlgorithm.define('''
HAL_DIGEST_ALGORITHM_NONE,
HAL_DIGEST_ALGORITHM_SHA1,
HAL_DIGEST_ALGORITHM_SHA224,
HAL_DIGEST_ALGORITHM_SHA256,
HAL_DIGEST_ALGORITHM_SHA512_224,
HAL_DIGEST_ALGORITHM_SHA512_256,
HAL_DIGEST_ALGORITHM_SHA384,
HAL_DIGEST_ALGORITHM_SHA512
''')
class HALKeyType(Enum): pass
HALKeyType.define('''
HAL_KEY_TYPE_NONE,
HAL_KEY_TYPE_RSA_PRIVATE,
HAL_KEY_TYPE_RSA_PUBLIC,
HAL_KEY_TYPE_EC_PRIVATE,
HAL_KEY_TYPE_EC_PUBLIC,
HAL_KEY_TYPE_HASHSIG_PRIVATE,
HAL_KEY_TYPE_HASHSIG_PUBLIC,
HAL_KEY_TYPE_HASHSIG_LMS,
HAL_KEY_TYPE_HASHSIG_LMOTS
''')
class HALCurve(Enum): pass
HALCurve.define('''
HAL_CURVE_NONE,
HAL_CURVE_P256,
HAL_CURVE_P384,
HAL_CURVE_P521
''')
class HALUser(Enum): pass
HALUser.define('''
HAL_USER_NONE,
HAL_USER_NORMAL,
HAL_USER_SO,
HAL_USER_WHEEL
''')
class HALLmotsAlgorithm(Enum): pass
HALLmotsAlgorithm.define('''
HAL_LMOTS_RESERVED = 0,
HAL_LMOTS_SHA256_N32_W1 = 1,
HAL_LMOTS_SHA256_N32_W2 = 2,
HAL_LMOTS_SHA256_N32_W4 = 3,
HAL_LMOTS_SHA256_N32_W8 = 4
''')
class HALLmsAlgorithm(Enum): pass
HALLmsAlgorithm.define('''
HAL_LMS_RESERVED = 0,
HAL_LMS_SHA256_N32_H5 = 5,
HAL_LMS_SHA256_N32_H10 = 6,
HAL_LMS_SHA256_N32_H15 = 7,
HAL_LMS_SHA256_N32_H20 = 8,
HAL_LMS_SHA256_N32_H25 = 9
''')
HAL_KEY_FLAG_USAGE_DIGITALSIGNATURE = (1 << 0)
HAL_KEY_FLAG_USAGE_KEYENCIPHERMENT = (1 << 1)
HAL_KEY_FLAG_USAGE_DATAENCIPHERMENT = (1 << 2)
HAL_KEY_FLAG_TOKEN = (1 << 3)
HAL_KEY_FLAG_PUBLIC = (1 << 4)
HAL_KEY_FLAG_EXPORTABLE = (1 << 5)
HAL_PKEY_ATTRIBUTE_NIL = (0xFFFFFFFF)
class UUID(uuid.UUID):
def xdr_packer(self, packer):
packer.pack_bytes(self.bytes)
def cached_property(func):
attr_name = "_" + func.__name__
def wrapped(self):
try:
value = getattr(self, attr_name)
except AttributeError:
value = func(self)
setattr(self, attr_name, value)
return value
wrapped.__name__ = func.__name__
return property(wrapped)
class Handle(object):
def __int__(self):
return self.handle
def __cmp__(self, other):
return cmp(self.handle, int(other))
def xdr_packer(self, packer):
packer.pack_uint(self.handle)
class Digest(Handle):
def __init__(self, hsm, handle, algorithm):
self.hsm = hsm
self.handle = handle
self.algorithm = algorithm
def update(self, data):
self.hsm.hash_update(self, data)
def finalize(self, length = None):
return self.hsm.hash_finalize(self, length or self.digest_length)
@cached_property
def algorithm_id(self):
return self.hsm.hash_get_digest_algorithm_id(self.algorithm)
@cached_property
def digest_length(self):
return self.hsm.hash_get_digest_length(self.algorithm)
class LocalDigest(object):
"""
Implements same interface as Digest class, but using PyCrypto, to
support mixed-mode PKey operations. This only supports algorithms
that PyCrypto supports, so no SHA512/224 or SHA512/256, sorry.
"""
def __init__(self, hsm, handle, algorithm, key):
from Crypto.Hash import HMAC, SHA, SHA224, SHA256, SHA384, SHA512
self.hsm = hsm
self.handle = handle
self.algorithm = algorithm
try:
h = self._algorithms[algorithm]
except AttributeError:
self._algorithms = {
HAL_DIGEST_ALGORITHM_SHA1 : SHA.SHA1Hash,
HAL_DIGEST_ALGORITHM_SHA224 : SHA224.SHA224Hash,
HAL_DIGEST_ALGORITHM_SHA256 : SHA256.SHA256Hash,
HAL_DIGEST_ALGORITHM_SHA384 : SHA384.SHA384Hash,
HAL_DIGEST_ALGORITHM_SHA512 : SHA512.SHA512Hash
}
h = self._algorithms[algorithm]
self.digest_length = h.digest_size
self.algorithm_id = chr(0x30) + chr(2 + len(h.oid)) + h.oid
self._context = HMAC.HMAC(key = key, digestmod = h) if key else h()
def update(self, data):
self._context.update(data)
def finalize(self, length = None):
return self._context.digest()
def finalize_padded(self, pkey):
if pkey.key_type not in (HAL_KEY_TYPE_RSA_PRIVATE, HAL_KEY_TYPE_RSA_PUBLIC):
return self.finalize()
# PKCS #1.5 requires the digest to be wrapped up in an ASN.1 DigestInfo object.
from Crypto.Util.asn1 import DerSequence, DerNull, DerOctetString
return DerSequence([DerSequence([self._context.oid, DerNull().encode()]).encode(),
DerOctetString(self.finalize()).encode()]).encode()
class PKey(Handle):
def __init__(self, hsm, handle, uuid):
self.hsm = hsm
self.handle = handle
self.uuid = uuid
self.deleted = False
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if not self.deleted:
self.close()
def close(self):
self.hsm.pkey_close(self)
def delete(self):
self.hsm.pkey_delete(self)
self.deleted = True
@cached_property
def key_type(self):
return self.hsm.pkey_get_key_type(self)
@cached_property
def key_curve(self):
return self.hsm.pkey_get_key_curve(self)
@cached_property
def key_flags(self):
return self.hsm.pkey_get_key_flags(self)
@cached_property
def public_key_len(self):
return self.hsm.pkey_get_public_key_len(self)
@cached_property
def public_key(self):
return self.hsm.pkey_get_public_key(self, self.public_key_len)
def sign(self, hash = 0, data = "", length = 1024):
return self.hsm.pkey_sign(self, hash = hash, data = data, length = length)
def verify(self, hash = 0, data = "", signature = None):
self.hsm.pkey_verify(self, hash = hash, data = data, signature = signature)
def set_attributes(self, attributes = None, **kwargs):
assert attributes is None or not kwargs
self.hsm.pkey_set_attributes(self, attributes or kwargs)
def get_attributes(self, attributes):
attrs = self.hsm.pkey_get_attributes(self, attributes, 0)
attrs = dict((k, v) for k, v in attrs.iteritems() if v != HAL_PKEY_ATTRIBUTE_NIL)
result = dict((a, None) for a in attributes)
result.update(self.hsm.pkey_get_attributes(self, attrs.iterkeys(), sum(attrs.itervalues())))
return result
def export_pkey(self, pkey):
return self.hsm.pkey_export(pkey = pkey, kekek = self, pkcs8_max = 5480, kek_max = 512)
def import_pkey(self, pkcs8, kek, flags = 0):
return self.hsm.pkey_import(kekek = self, pkcs8 = pkcs8, kek = kek, flags = flags)
class ContextManagedUnpacker(xdrlib.Unpacker):
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.done()
class HSM(object):
mixed_mode = False
debug_io = False
def _raise_if_error(self, status):
if status != 0:
raise HALError.table[status]()
def __init__(self, sockname = os.getenv("CRYPTECH_RPC_CLIENT_SOCKET_NAME",
"/tmp/.cryptech_muxd.rpc")):
self.socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
self.socket.connect(sockname)
self.sockfile = self.socket.makefile("rb")
def _send(self, msg): # Expects an xdrlib.Packer
msg = slip_encode(msg.get_buffer())
if self.debug_io:
logger.debug("send: %s", ":".join("{:02x}".format(ord(c)) for c in msg))
self.socket.sendall(msg)
def _recv(self, code): # Returns a ContextManagedUnpacker
closed = False
while True:
msg = [self.sockfile.read(1)]
while msg[-1] != SLIP_END:
if msg[-1] == "":
raise HAL_ERROR_RPC_TRANSPORT()
msg.append(self.sockfile.read(1))
if self.debug_io:
logger.debug("recv: %s", ":".join("{:02x}".format(ord(c)) for c in msg))
msg = slip_decode("".join(msg))
if not msg:
continue
msg = ContextManagedUnpacker("".join(msg))
if msg.unpack_uint() != code:
continue
return msg
_pack_builtin = (((int, long), "_pack_uint"),
(str, "_pack_bytes"),
((list, tuple, set), "_pack_array"),
(dict, "_pack_items"))
def _pack_arg(self, packer, arg):
if hasattr(arg, "xdr_packer"):
return arg.xdr_packer(packer)
for cls, method in self._pack_builtin:
if isinstance(arg, cls):
return getattr(self, method)(packer, arg)
raise RuntimeError("Don't know how to pack {!r} ({!r})".format(arg, type(arg)))
def _pack_args(self, packer, args):
for arg in args:
self._pack_arg(packer, arg)
def _pack_uint(self, packer, arg):
packer.pack_uint(arg)
def _pack_bytes(self, packer, arg):
packer.pack_bytes(arg)
def _pack_array(self, packer, arg):
packer.pack_uint(len(arg))
self._pack_args(packer, arg)
def _pack_items(self, packer, arg):
packer.pack_uint(len(arg))
for name, value in arg.iteritems():
self._pack_arg(packer, name)
self._pack_arg(packer, HAL_PKEY_ATTRIBUTE_NIL if value is None else value)
def rpc(self, code, *args, **kwargs):
client = kwargs.get("client", 0)
packer = xdrlib.Packer()
packer.pack_uint(code)
packer.pack_uint(client)
self._pack_args(packer, args)
self._send(packer)
unpacker = self._recv(code)
client = unpacker.unpack_uint()
self._raise_if_error(unpacker.unpack_uint())
return unpacker
def get_version(self):
with self.rpc(RPC_FUNC_GET_VERSION) as r:
return r.unpack_uint()
def get_random(self, n):
with self.rpc(RPC_FUNC_GET_RANDOM, n) as r:
return r.unpack_bytes()
def set_pin(self, user, pin, client = 0):
with self.rpc(RPC_FUNC_SET_PIN, user, pin, client = client):
return
def login(self, user, pin, client = 0):
with self.rpc(RPC_FUNC_LOGIN, user, pin, client = client):
return
def logout(self, client = 0):
with self.rpc(RPC_FUNC_LOGOUT, client = client):
return
def logout_all(self):
with self.rpc(RPC_FUNC_LOGOUT_ALL):
return
def is_logged_in(self, user, client = 0):
with self.rpc(RPC_FUNC_IS_LOGGED_IN, user, client = client):
return
def hash_get_digest_length(self, alg):
with self.rpc(RPC_FUNC_HASH_GET_DIGEST_LEN, alg) as r:
return r.unpack_uint()
def hash_get_digest_algorithm_id(self, alg, max_len = 256):
with self.rpc(RPC_FUNC_HASH_GET_DIGEST_ALGORITHM_ID, alg, max_len) as r:
return r.unpack_bytes()
def hash_get_algorithm(self, handle):
with self.rpc(RPC_FUNC_HASH_GET_ALGORITHM, handle) as r:
return HALDigestAlgorithm.index[r.unpack_uint()]
def hash_initialize(self, alg, key = None, client = 0, session = 0, mixed_mode = None):
if key is None:
key = ""
if mixed_mode is None:
mixed_mode = self.mixed_mode
if mixed_mode:
return LocalDigest(self, 0, alg, key)
else:
with self.rpc(RPC_FUNC_HASH_INITIALIZE, session, alg, key, client = client) as r:
return Digest(self, r.unpack_uint(), alg)
def hash_update(self, handle, data):
with self.rpc(RPC_FUNC_HASH_UPDATE, handle, data):
return
def hash_finalize(self, handle, length = None):
if length is None:
length = self.hash_get_digest_length(self.hash_get_algorithm(handle))
with self.rpc(RPC_FUNC_HASH_FINALIZE, handle, length) as r:
return r.unpack_bytes()
def pkey_load(self, der, flags = 0, client = 0, session = 0):
with self.rpc(RPC_FUNC_PKEY_LOAD, session, der, flags, client = client) as r:
pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
logger.debug("Loaded pkey %s", pkey.uuid)
return pkey
def pkey_open(self, uuid, client = 0, session = 0):
with self.rpc(RPC_FUNC_PKEY_OPEN, session, uuid, client = client) as r:
pkey = PKey(self, r.unpack_uint(), uuid)
logger.debug("Opened pkey %s", pkey.uuid)
return pkey
def pkey_generate_rsa(self, keylen, flags = 0, exponent = "\x01\x00\x01", client = 0, session = 0):
with self.rpc(RPC_FUNC_PKEY_GENERATE_RSA, session, keylen, exponent, flags, client = client) as r:
pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
logger.debug("Generated RSA pkey %s", pkey.uuid)
return pkey
def pkey_generate_ec(self, curve, flags = 0, client = 0, session = 0):
with self.rpc(RPC_FUNC_PKEY_GENERATE_EC, session, curve, flags, client = client) as r:
pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
logger.debug("Generated EC pkey %s", pkey.uuid)
return pkey
def pkey_generate_hashsig(self, L, lms, lmots, flags = 0, client = 0, session = 0):
with self.rpc(RPC_FUNC_PKEY_GENERATE_HASHSIG, session, L, lms, lmots, flags, client = client) as r:
pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
logger.debug("Generated hashsig pkey %s", pkey.uuid)
return pkey
def pkey_close(self, pkey):
try:
logger.debug("Closing pkey %s", pkey.uuid)
except AttributeError:
pass
with self.rpc(RPC_FUNC_PKEY_CLOSE, pkey):
return
def pkey_delete(self, pkey):
try:
logger.debug("Deleting pkey %s", pkey.uuid)
except AttributeError:
pass
with self.rpc(RPC_FUNC_PKEY_DELETE, pkey):
return
def pkey_get_key_type(self, pkey):
with self.rpc(RPC_FUNC_PKEY_GET_KEY_TYPE, pkey) as r:
return HALKeyType.index[r.unpack_uint()]
def pkey_get_key_curve(self, pkey):
with self.rpc(RPC_FUNC_PKEY_GET_KEY_CURVE, pkey) as r:
return HALCurve.index[r.unpack_uint()]
def pkey_get_key_flags(self, pkey):
with self.rpc(RPC_FUNC_PKEY_GET_KEY_FLAGS, pkey) as r:
return r.unpack_uint()
def pkey_get_public_key_len(self, pkey):
with self.rpc(RPC_FUNC_PKEY_GET_PUBLIC_KEY_LEN, pkey) as r:
return r.unpack_uint()
def pkey_get_public_key(self, pkey, length = None):
if length is None:
length = self.pkey_get_public_key_len(pkey)
with self.rpc(RPC_FUNC_PKEY_GET_PUBLIC_KEY, pkey, length) as r:
return r.unpack_bytes()
def pkey_sign(self, pkey, hash = 0, data = "", length = 1024):
assert not hash or not data
if isinstance(hash, LocalDigest):
hash, data = 0, hash.finalize_padded(pkey)
with self.rpc(RPC_FUNC_PKEY_SIGN, pkey, hash, data, length) as r:
return r.unpack_bytes()
def pkey_verify(self, pkey, hash = 0, data = "", signature = None):
assert not hash or not data
if isinstance(hash, LocalDigest):
hash, data = 0, hash.finalize_padded(pkey)
with self.rpc(RPC_FUNC_PKEY_VERIFY, pkey, hash, data, signature):
return
def pkey_match(self, type = 0, curve = 0, mask = 0, flags = 0,
attributes = {}, length = 64, client = 0, session = 0):
u = UUID(int = 0)
n = length
s = 0
while n == length:
with self.rpc(RPC_FUNC_PKEY_MATCH, session, type, curve, mask, flags,
attributes, s, length, u, client = client) as r:
s = r.unpack_uint()
n = r.unpack_uint()
for i in xrange(n):
u = UUID(bytes = r.unpack_bytes())
yield u
def pkey_set_attributes(self, pkey, attributes):
with self.rpc(RPC_FUNC_PKEY_SET_ATTRIBUTES, pkey, attributes):
return
def pkey_get_attributes(self, pkey, attributes, attributes_buffer_len = 2048):
attributes = tuple(attributes)
with self.rpc(RPC_FUNC_PKEY_GET_ATTRIBUTES, pkey, attributes, attributes_buffer_len) as r:
n = r.unpack_uint()
if n != len(attributes):
raise HAL_ERROR_RPC_PROTOCOL_ERROR
if attributes_buffer_len > 0:
return dict((r.unpack_uint(), r.unpack_bytes()) for i in xrange(n))
else:
return dict((r.unpack_uint(), r.unpack_uint()) for i in xrange(n))
def pkey_export(self, pkey, kekek, pkcs8_max = 2560, kek_max = 512):
with self.rpc(RPC_FUNC_PKEY_EXPORT, pkey, kekek, pkcs8_max, kek_max) as r:
pkcs8, kek = r.unpack_bytes(), r.unpack_bytes()
logger.debug("Exported pkey %s", pkey.uuid)
return pkcs8, kek
def pkey_import(self, kekek, pkcs8, kek, flags = 0, client = 0, session = 0):
with self.rpc(RPC_FUNC_PKEY_IMPORT, session, kekek, pkcs8, kek, flags, client = client) as r:
pkey = PKey(self, r.unpack_uint(), UUID(bytes = r.unpack_bytes()))
logger.debug("Imported pkey %s", pkey.uuid)
return pkey