/*
* asn1.c
* ------
* Minimal ASN.1 implementation in support of Cryptech libhal.
*
* The functions in this module are not intended to be part of the
* public API. Rather, these are utility functions used by more than
* one module within the library, which would otherwise have to be
* duplicated. The main reason for keeping these private is to avoid
* having the public API depend on any details of the underlying
* bignum implementation (currently libtfm, but that might change).
*
* As of this writing, the ASN.1 support we need is quite minimal, so,
* rather than attempting to clean all the unecessary cruft out of a
* general purpose ASN.1 implementation, we hand code the very small
* number of data types we need. At some point this will probably
* become impractical, at which point we might want to look into using
* something like the asn1c compiler.
*
* Authors: Rob Austein
* Copyright (c) 2015, NORDUnet A/S
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <assert.h>
#include "hal.h"
#include "hal_internal.h"
#include "asn1_internal.h"
#define INIT_FP_INT {{{0}}}
/*
* Algorithm OIDs used in SPKI and PKCS #8.
*/
/*
* From RFC 5480 New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)
*
* rsaEncryption OBJECT IDENTIFIER ::= {
* iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1)
* pkcs-1(1) 1 }
*/
const uint8_t hal_asn1_oid_rsaEncryption[] = { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 };
const size_t hal_asn1_oid_rsaEncryption_len = sizeof(hal_asn1_oid_rsaEncryption);
/*
* From RFC 5480 Elliptic Curve Cryptography Subject Public Key Information
*
* id-ecPublicKey OBJECT IDENTIFIER ::= {
* iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
*/
const uint8_t hal_asn1_oid_ecPublicKey[] = { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 };
const size_t hal_asn1_oid_ecPublicKey_len = sizeof(hal_asn1_oid_ecPublicKey);
/*
* From RFC 5649 Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm
*
* aes OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
* us(840) organization(1) gov(101) csor(3)
* nistAlgorithm(4) 1 }
*
* id-aes128-wrap-pad OBJECT IDENTIFIER ::= { aes 8 }
*
* id-aes256-wrap-pad OBJECT IDENTIFIER ::= { aes 48 }
*/
#if KEK_LENGTH == (bitsToBytes(128))
const uint8_t hal_asn1_oid_aesKeyWrap[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x08 };
const size_t hal_asn1_oid_aesKeyWrap_len = sizeof(hal_asn1_oid_aesKeyWrap);
#endif
#if KEK_LENGTH == (bitsToBytes(256))
const uint8_t hal_asn1_oid_aesKeyWrap[] = { 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x30 };
const size_t hal_asn1_oid_aesKeyWrap_len = sizeof(hal_asn1_oid_aesKeyWrap);
#endif
/*
* From draft-housley-cms-mts-hash-sig Use of the Hash-based Merkle Tree Signature (MTS) Algorithm in the Cryptographic Message Syntax (CMS)
*
* id-alg-mts-hashsig OBJECT IDENTIFIER ::= { iso(1) member-body(2)
* us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) alg(3) 17 }
*/
const uint8_t hal_asn1_oid_mts_hashsig[] = { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x09, 0x10, 0x03, 0x11 };
const size_t hal_asn1_oid_mts_hashsig_len = sizeof(hal_asn1_oid_mts_hashsig);
/*
* Encode tag and length fields of an ASN.1 object.
*
* Sets *der_len to the size of of the ASN.1 header (tag and length
* fields); caller supplied length of value field, so presumably
* already knows it.
*
* If der is NULL, just return the size of the header that would be
* encoded and returns HAL_OK.
*
* If der isn't NULL, returns HAL_ERROR_RESULT_TOO_LONG unless full
* header plus value will fit; this is a bit weird, but is useful when
* using this to construct encoders for complte ASN.1 objects.
*/
hal_error_t hal_asn1_encode_header(const uint8_t tag,
const size_t value_len,
uint8_t *der, size_t *der_len, const size_t der_max)
{
size_t header_len = 2; /* Shortest encoding is one octet each for tag and length */
if (value_len >= 128) /* Add octets for longer length encoding as needed */
for (size_t n = value_len; n > 0; n >>= 8)
++header_len;
if (der_len != NULL)
*der_len = header_len;
if (der == NULL) /* If caller just wanted the length, we're done */
return HAL_OK;
/*
* Make sure there's enough room for header + value, then encode.
*/
if (value_len + header_len > der_max)
return HAL_ERROR_RESULT_TOO_LONG;
*der++ = tag;
if (value_len < 128) {
*der = (uint8_t) value_len;
}
else {
*der = 0x80 | (uint8_t) (header_len -= 2);
for (size_t n = value_len; n > 0 && header_len > 0; n >>= 8)
der[header_len--] = (uint8_t) (n & 0xFF);
}
return HAL_OK;
}
/*
* Encode an unsigned ASN.1 INTEGER from a libtfm bignum. If der is
* NULL, just return the length of what we would have encoded.
*/
hal_error_t hal_asn1_encode_integer(const fp_int * const bn,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (bn == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
/*
* We only handle unsigned INTEGERs, so we need to pad data with a
* leading zero if the most significant bit is set, to avoid
* flipping the ASN.1 sign bit. Conveniently, this also handles the
* difference between libtfm's and ASN.1's encoding of zero.
*/
if (fp_cmp_d(unconst_fp_int(bn), 0) == FP_LT)
return HAL_ERROR_BAD_ARGUMENTS;
const int leading_zero = fp_iszero(bn) || (fp_count_bits(unconst_fp_int(bn)) & 7) == 0;
const size_t vlen = fp_unsigned_bin_size(unconst_fp_int(bn)) + leading_zero;
hal_error_t err;
size_t hlen;
err = hal_asn1_encode_header(ASN1_INTEGER, vlen, der, &hlen, der_max);
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL || err != HAL_OK)
return err;
assert(hlen + vlen <= der_max);
der += hlen;
if (leading_zero)
*der++ = 0x00;
fp_to_unsigned_bin(unconst_fp_int(bn), der);
return HAL_OK;
}
/*
* Encode an unsigned ASN.1 INTEGER from a uint32_t. If der is
* NULL, just return the length of what we would have encoded.
*/
hal_error_t hal_asn1_encode_uint32(const uint32_t n,
uint8_t *der, size_t *der_len, const size_t der_max)
{
/*
* We only handle unsigned INTEGERs, so we need to pad data with a
* leading zero if the most significant bit is set, to avoid
* flipping the ASN.1 sign bit.
*/
size_t vlen;
hal_error_t err;
size_t hlen;
/* DER says to use the minimum number of octets */
if (n < 0x80) vlen = 1;
else if (n < 0x8000) vlen = 2;
else if (n < 0x800000) vlen = 3;
else if (n < 0x80000000) vlen = 4;
else vlen = 5;
err = hal_asn1_encode_header(ASN1_INTEGER, vlen, der, &hlen, der_max);
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL || err != HAL_OK)
return err;
assert(hlen + vlen <= der_max);
der += hlen;
uint32_t m = n;
for (size_t i = vlen; i > 0; --i) {
der[i - 1] = m & 0xff;
m >>= 8;
}
return HAL_OK;
}
/*
* Encode an ASN.1 OCTET STRING. If der is NULL, just return the length
* of what we would have encoded.
*/
hal_error_t hal_asn1_encode_octet_string(const uint8_t * const data, const size_t data_len,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (data_len == 0 || (der != NULL && data == NULL))
return HAL_ERROR_BAD_ARGUMENTS;
size_t hlen;
hal_error_t err;
if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, NULL, &hlen, 0)) != HAL_OK)
return err;
if (der_len != NULL)
*der_len = hlen + data_len;
if (der == NULL)
return HAL_OK;
assert(hlen + data_len <= der_max);
/*
* Handle data early, in case it was staged into our output buffer.
*/
memmove(der + hlen, data, data_len);
if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, der, &hlen, der_max)) != HAL_OK)
return err;
return HAL_OK;
}
/*
* Encode a public key into a X.509 SubjectPublicKeyInfo (RFC 5280).
*/
hal_error_t hal_asn1_encode_spki(const uint8_t * const alg_oid, const size_t alg_oid_len,
const uint8_t * const curve_oid, const size_t curve_oid_len,
const uint8_t * const pubkey, const size_t pubkey_len,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (alg_oid == NULL || alg_oid_len == 0 || pubkey_len == 0 ||
(der != NULL && pubkey == NULL) || (curve_oid == NULL && curve_oid_len != 0))
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t curve_oid_tag = curve_oid == NULL ? ASN1_NULL : ASN1_OBJECT_IDENTIFIER;
hal_error_t err;
size_t hlen, hlen_spki, hlen_algid, hlen_alg, hlen_curve, hlen_bit;
if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, NULL, &hlen_curve, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_BIT_STRING, 1 + pubkey_len, NULL, &hlen_bit, 0)) != HAL_OK)
return err;
const size_t algid_len =
hlen_alg + alg_oid_len + hlen_curve + curve_oid_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK)
return err;
const size_t vlen =
hlen_algid + hlen_alg + alg_oid_len + hlen_curve + curve_oid_len + hlen_bit + 1 + pubkey_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen_spki, 0)) != HAL_OK)
return err;
/*
* Handle pubkey early, in case it was staged into our output buffer.
*/
if (der != NULL && hlen_spki + vlen <= der_max)
memmove(der + hlen_spki + vlen - pubkey_len, pubkey, pubkey_len);
err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max);
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL || err != HAL_OK)
return err;
uint8_t *d = der + hlen;
memset(d, 0, vlen - pubkey_len);
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
memcpy(d, alg_oid, alg_oid_len);
d += alg_oid_len;
if ((err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if (curve_oid != NULL)
memcpy(d, curve_oid, curve_oid_len);
d += curve_oid_len;
if ((err = hal_asn1_encode_header(ASN1_BIT_STRING, 1 + pubkey_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
*d++ = 0x00;
d += pubkey_len; /* pubkey handled early, above. */
assert(d == der + hlen_spki + vlen);
assert(d <= der + der_max);
return HAL_OK;
}
/*
* Encode a PKCS #8 PrivateKeyInfo (RFC 5208).
*/
hal_error_t hal_asn1_encode_pkcs8_privatekeyinfo(const uint8_t * const alg_oid, const size_t alg_oid_len,
const uint8_t * const curve_oid, const size_t curve_oid_len,
const uint8_t * const privkey, const size_t privkey_len,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (alg_oid == NULL || alg_oid_len == 0 || privkey_len == 0 ||
(der != NULL && privkey == NULL) || (curve_oid == NULL && curve_oid_len != 0))
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t curve_oid_tag = curve_oid == NULL ? ASN1_NULL : ASN1_OBJECT_IDENTIFIER;
fp_int version[1] = INIT_FP_INT;
hal_error_t err;
size_t version_len, hlen, hlen_algid, hlen_alg, hlen_curve, hlen_oct;
if ((err = hal_asn1_encode_integer(version, NULL, &version_len, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, NULL, &hlen_curve, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_OCTET_STRING, privkey_len, NULL, &hlen_oct, 0)) != HAL_OK)
return err;
const size_t algid_len =
hlen_alg + alg_oid_len + hlen_curve + curve_oid_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK)
return err;
const size_t vlen =
version_len + hlen_algid + hlen_alg + alg_oid_len + hlen_curve + curve_oid_len + hlen_oct + privkey_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen, 0)) != HAL_OK)
return err;
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL)
return HAL_OK;
uint8_t * const der_end = der + hlen + vlen;
/*
* Handle privkey early, in case it was staged into our output buffer.
*/
if (der_end <= der + der_max)
memmove(der_end - privkey_len, privkey, privkey_len);
uint8_t *d = der;
memset(d, 0, hlen + vlen - privkey_len);
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if ((err = hal_asn1_encode_integer(version, d, NULL, der + der_max - d)) != HAL_OK)
return err;
d += version_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
memcpy(d, alg_oid, alg_oid_len);
d += alg_oid_len;
if ((err = hal_asn1_encode_header(curve_oid_tag, curve_oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if (curve_oid != NULL)
memcpy(d, curve_oid, curve_oid_len);
d += curve_oid_len;
if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, privkey_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
d += privkey_len; /* privkey handled early, above. */
assert(d == der_end);
assert(d <= der + der_max);
return HAL_OK;
}
/*
* Encode a PKCS #8 EncryptedPrivateKeyInfo (RFC 5208).
*/
hal_error_t hal_asn1_encode_pkcs8_encryptedprivatekeyinfo(const uint8_t * const alg_oid, const size_t alg_oid_len,
const uint8_t * const data, const size_t data_len,
uint8_t *der, size_t *der_len, const size_t der_max)
{
if (alg_oid == NULL || alg_oid_len == 0 || data_len == 0 || (der != NULL && data == NULL))
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err;
size_t hlen, hlen_pkcs8, hlen_algid, hlen_alg, hlen_oct;
if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, NULL, &hlen_alg, 0)) != HAL_OK ||
(err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, NULL, &hlen_oct, 0)) != HAL_OK)
return err;
const size_t algid_len = hlen_alg + alg_oid_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, NULL, &hlen_algid, 0)) != HAL_OK)
return err;
const size_t vlen = hlen_algid + hlen_alg + alg_oid_len + hlen_oct + data_len;
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, NULL, &hlen_pkcs8, 0)) != HAL_OK)
return err;
/*
* Handle data early, in case it was staged into our output buffer.
*/
if (der != NULL && hlen_pkcs8 + vlen <= der_max)
memmove(der + hlen_pkcs8 + vlen - data_len, data, data_len);
err = hal_asn1_encode_header(ASN1_SEQUENCE, vlen, der, &hlen, der_max);
if (der_len != NULL)
*der_len = hlen + vlen;
if (der == NULL || err != HAL_OK)
return err;
uint8_t *d = der + hlen;
memset(d, 0, vlen - data_len);
if ((err = hal_asn1_encode_header(ASN1_SEQUENCE, algid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
if ((err = hal_asn1_encode_header(ASN1_OBJECT_IDENTIFIER, alg_oid_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
memcpy(d, alg_oid, alg_oid_len);
d += alg_oid_len;
if ((err = hal_asn1_encode_header(ASN1_OCTET_STRING, data_len, d, &hlen, der + der_max - d)) != HAL_OK)
return err;
d += hlen;
d += data_len; /* data handled early, above. */
assert(d == der + hlen_pkcs8 + vlen);
assert(d <= der + der_max);
return HAL_OK;
}
/*
* Parse tag and length of an ASN.1 object. Tag must match value
* specified by the caller. On success, sets hlen and vlen to lengths
* of header and value, respectively.
*/
hal_error_t hal_asn1_decode_header(const uint8_t tag,
const uint8_t * const der, size_t der_max,
size_t *hlen, size_t *vlen)
{
assert(der != NULL && hlen != NULL && vlen != NULL);
if (der_max < 2 || der[0] != tag)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((der[1] & 0x80) == 0) {
*hlen = 2;
*vlen = der[1];
}
else {
*hlen = 2 + (der[1] & 0x7F);
*vlen = 0;
if (*hlen > der_max)
return HAL_ERROR_ASN1_PARSE_FAILED;
for (size_t i = 2; i < *hlen; i++)
*vlen = (*vlen << 8) + der[i];
}
if (*hlen + *vlen > der_max)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
/*
* Decode an ASN.1 INTEGER into a libtfm bignum. Since we only
* support (or need to support, or expect to see) unsigned integers,
* we return failure if the sign bit is set in the ASN.1 INTEGER.
*/
hal_error_t hal_asn1_decode_integer(fp_int *bn,
const uint8_t * const der, size_t *der_len, const size_t der_max)
{
if (bn == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err;
size_t hlen, vlen;
if ((err = hal_asn1_decode_header(ASN1_INTEGER, der, der_max, &hlen, &vlen)) != HAL_OK)
return err;
if (der_len != NULL)
*der_len = hlen + vlen;
if (vlen < 1 || (der[hlen] & 0x80) != 0x00)
return HAL_ERROR_ASN1_PARSE_FAILED;
fp_init(bn);
fp_read_unsigned_bin(bn, (uint8_t *) der + hlen, vlen);
return HAL_OK;
}
/*
* Decode an ASN.1 INTEGER into a uint32_t. Since we only
* support (or need to support, or expect to see) unsigned integers,
* we return failure if the sign bit is set in the ASN.1 INTEGER.
*/
hal_error_t hal_asn1_decode_uint32(uint32_t *np,
const uint8_t * const der, size_t *der_len, const size_t der_max)
{
if (np == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
hal_error_t err;
size_t hlen, vlen;
if ((err = hal_asn1_decode_header(ASN1_INTEGER, der, der_max, &hlen, &vlen)) != HAL_OK)
return err;
if (der_len != NULL)
*der_len = hlen + vlen;
if (vlen < 1 || vlen > 5 || (der[hlen] & 0x80) != 0x00 || (vlen == 5 && der[hlen] != 0))
return HAL_ERROR_ASN1_PARSE_FAILED;
uint32_t n = 0;
for (size_t i = 0; i < vlen; ++i) {
n <<= 8; // slightly inefficient for the first octet
n += der[hlen + i];
}
*np = n;
return HAL_OK;
}
/*
* Decode an ASN.1 OCTET STRING.
*/
hal_error_t hal_asn1_decode_octet_string(uint8_t *data, const size_t data_len,
const uint8_t * const der, size_t *der_len, const size_t der_max)
{
if (der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
size_t hlen, vlen;
hal_error_t err;
if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, der, der_max, &hlen, &vlen)) != HAL_OK)
return err;
if (der_len != NULL)
*der_len = hlen + vlen;
if (data != NULL) {
if (data_len != vlen)
return HAL_ERROR_ASN1_PARSE_FAILED;
memmove(data, der + hlen, vlen);
}
return HAL_OK;
}
/*
* Decode a public key from a X.509 SubjectPublicKeyInfo (RFC 5280).
*/
hal_error_t hal_asn1_decode_spki(const uint8_t **alg_oid, size_t *alg_oid_len,
const uint8_t **curve_oid, size_t *curve_oid_len,
const uint8_t **pubkey, size_t *pubkey_len,
const uint8_t *const der, const size_t der_len)
{
if (der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t * const der_end = der + der_len;
const uint8_t *d = der;
size_t hlen, vlen;
hal_error_t err;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (hlen + vlen != der_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
const uint8_t * const algid_end = d + vlen;
if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen > (size_t)(algid_end - d))
return HAL_ERROR_ASN1_PARSE_FAILED;
if (alg_oid != NULL)
*alg_oid = d;
if (alg_oid_len != NULL)
*alg_oid_len = vlen;
d += vlen;
if (curve_oid != NULL)
*curve_oid = NULL;
if (curve_oid_len != NULL)
*curve_oid_len = 0;
if (d < algid_end) {
switch (*d) {
case ASN1_OBJECT_IDENTIFIER:
if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen > (size_t)(algid_end - d))
return HAL_ERROR_ASN1_PARSE_FAILED;
if (curve_oid != NULL)
*curve_oid = d;
if (curve_oid_len != NULL)
*curve_oid_len = vlen;
d += vlen;
break;
case ASN1_NULL:
if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen == 0)
break;
default:
return HAL_ERROR_ASN1_PARSE_FAILED;
}
}
if (d != algid_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_BIT_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen >= (size_t)(algid_end - d) || vlen == 0 || *d != 0x00)
return HAL_ERROR_ASN1_PARSE_FAILED;
++d; --vlen;
if (pubkey != NULL)
*pubkey = d;
if (pubkey_len != NULL)
*pubkey_len = vlen;
d += vlen;
if (d != der_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
/*
* Decode a private key from a PKCS #8 PrivateKeyInfo (RFC 5208).
*/
hal_error_t hal_asn1_decode_pkcs8_privatekeyinfo(const uint8_t **alg_oid, size_t *alg_oid_len,
const uint8_t **curve_oid, size_t *curve_oid_len,
const uint8_t **privkey, size_t *privkey_len,
const uint8_t *const der, const size_t der_len)
{
if (der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t * const der_end = der + der_len;
const uint8_t *d = der;
fp_int version[1] = INIT_FP_INT;
size_t hlen, vlen;
hal_error_t err;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (hlen + vlen != der_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_integer(version, d, &hlen, der_end - d)) != HAL_OK)
return err;
if (!fp_iszero(version))
return HAL_ERROR_ASN1_PARSE_FAILED;
d += hlen;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
const uint8_t * const algid_end = d + vlen;
if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen > (size_t)(algid_end - d))
return HAL_ERROR_ASN1_PARSE_FAILED;
if (alg_oid != NULL)
*alg_oid = d;
if (alg_oid_len != NULL)
*alg_oid_len = vlen;
d += vlen;
if (curve_oid != NULL)
*curve_oid = NULL;
if (curve_oid_len != NULL)
*curve_oid_len = 0;
if (d < algid_end) {
switch (*d) {
case ASN1_OBJECT_IDENTIFIER:
if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen > (size_t)(algid_end - d))
return HAL_ERROR_ASN1_PARSE_FAILED;
if (curve_oid != NULL)
*curve_oid = d;
if (curve_oid_len != NULL)
*curve_oid_len = vlen;
d += vlen;
break;
case ASN1_NULL:
if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen == 0)
break;
default:
return HAL_ERROR_ASN1_PARSE_FAILED;
}
}
if (d != algid_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen >= (size_t)(algid_end - d))
return HAL_ERROR_ASN1_PARSE_FAILED;
if (privkey != NULL)
*privkey = d;
if (privkey_len != NULL)
*privkey_len = vlen;
d += vlen;
if (d != der_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
/*
* Decode a private key from a PKCS #8 EncryptedPrivateKeyInfo (RFC 5208).
*/
hal_error_t hal_asn1_decode_pkcs8_encryptedprivatekeyinfo(const uint8_t **alg_oid, size_t *alg_oid_len,
const uint8_t **data, size_t *data_len,
const uint8_t *const der, const size_t der_len)
{
if (alg_oid == NULL || alg_oid_len == NULL || data == NULL || data_len == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t * const der_end = der + der_len;
const uint8_t *d = der;
size_t hlen, vlen;
hal_error_t err;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (hlen + vlen != der_len)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_SEQUENCE, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
const uint8_t * const algid_end = d + vlen;
if ((err = hal_asn1_decode_header(ASN1_OBJECT_IDENTIFIER, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen > (size_t)(algid_end - d))
return HAL_ERROR_ASN1_PARSE_FAILED;
if (alg_oid != NULL)
*alg_oid = d;
if (alg_oid_len != NULL)
*alg_oid_len = vlen;
d += vlen;
if (d < algid_end) {
if ((err = hal_asn1_decode_header(ASN1_NULL, d, algid_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen != 0)
return HAL_ERROR_ASN1_PARSE_FAILED;
}
if (d != algid_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
if ((err = hal_asn1_decode_header(ASN1_OCTET_STRING, d, der_end - d, &hlen, &vlen)) != HAL_OK)
return err;
d += hlen;
if (vlen >= (size_t)(algid_end - d))
return HAL_ERROR_ASN1_PARSE_FAILED;
if (data != NULL)
*data = d;
if (data_len != NULL)
*data_len = vlen;
d += vlen;
if (d != der_end)
return HAL_ERROR_ASN1_PARSE_FAILED;
return HAL_OK;
}
/*
* Attempt to guess what kind of key we're looking at.
*/
hal_error_t hal_asn1_guess_key_type(hal_key_type_t *type,
hal_curve_name_t *curve,
const uint8_t *const der, const size_t der_len)
{
if (type == NULL || curve == NULL || der == NULL)
return HAL_ERROR_BAD_ARGUMENTS;
const uint8_t *alg_oid, *curve_oid;
size_t alg_oid_len, curve_oid_len;
hal_error_t err;
int public = 0;
err = hal_asn1_decode_pkcs8_privatekeyinfo(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, NULL, 0, der, der_len);
if (err == HAL_ERROR_ASN1_PARSE_FAILED &&
(err = hal_asn1_decode_spki(&alg_oid, &alg_oid_len, &curve_oid, &curve_oid_len, NULL, 0, der, der_len)) == HAL_OK)
public = 1;
if (err != HAL_OK)
return err;
if (alg_oid_len == hal_asn1_oid_rsaEncryption_len && memcmp(alg_oid, hal_asn1_oid_rsaEncryption, alg_oid_len) == 0) {
*type = public ? HAL_KEY_TYPE_RSA_PUBLIC : HAL_KEY_TYPE_RSA_PRIVATE;
*curve = HAL_CURVE_NONE;
return HAL_OK;
}
if (alg_oid_len == hal_asn1_oid_ecPublicKey_len && memcmp(alg_oid, hal_asn1_oid_ecPublicKey, alg_oid_len) == 0) {
*type = public ? HAL_KEY_TYPE_EC_PUBLIC : HAL_KEY_TYPE_EC_PRIVATE;
if ((err = hal_ecdsa_oid_to_curve(curve, curve_oid, curve_oid_len)) != HAL_OK)
*curve = HAL_CURVE_NONE;
return err;
}
if (alg_oid_len == hal_asn1_oid_mts_hashsig_len && memcmp(alg_oid, hal_asn1_oid_mts_hashsig, alg_oid_len) == 0) {
*type = public ? HAL_KEY_TYPE_HASHSIG_PUBLIC : HAL_KEY_TYPE_HASHSIG_PRIVATE;
*curve = HAL_CURVE_NONE;
return HAL_OK;
}
*type = HAL_KEY_TYPE_NONE;
*curve = HAL_CURVE_NONE;
return HAL_ERROR_UNSUPPORTED_KEY;
}
/*
* Local variables:
* indent-tabs-mode: nil
* End:
*/