aboutsummaryrefslogtreecommitdiff
path: root/src/cryptech_novena_i2c_coretest.c
blob: bb543adc81a3b3eb0db7dc45844a72c640a332c1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/* 
 * cryptech_novena_i2c_coretest.c
 * ------------------------------
 *
 * This is an early prototype Hardware Adaption Layer (HAL) for using
 * Cryptlib with the Cryptech project's FGPA cores over an I2C bus on
 * the Novena PVT1 development board using the "coretest" byte stream
 * protocol.  This is compatible with the core/novena FPGA build.
 *
 * The communication channel used here is not suitable for production
 * use, this is just a prototype.
 * 
 * Authors: Joachim Strömbergson, Paul Selkirk, Rob Austein
 * Copyright (c) 2014, SUNET
 * 
 * Redistribution and use in source and binary forms, with or 
 * without modification, are permitted provided that the following 
 * conditions are met: 
 * 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in 
 *    the documentation and/or other materials provided with the 
 *    distribution. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The HAL framework is taken from the Cryptlib hw_dummy.c template,
 * and is Copyright 1998-2009 by Peter Gutmann.
 */

#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>

#if defined( INC_ALL )
  #include "crypt.h"
  #include "context.h"
  #include "hardware.h"
#else
  #include "crypt.h"
  #include "context/context.h"
  #include "device/hardware.h"
#endif /* Compiler-specific includes */

/*
 * I2C_SLAVE comes from /usr/include/linux/i2c-dev.h, but if we
 * include that we won't be able to compile this except on Linux.  It
 * won't *run* anywhere but on Linux, but it's useful to be able to do
 * compilation tests on other platforms, eg, with Clang, so for now we
 * take the small risk that this one magic constant might change.
 */

#define I2C_SLAVE       0x0703


#ifdef USE_HARDWARE

/*
 * I2C-related parameters, copied from hash_tester.c
 */

/* I2C configuration */
#define I2C_DEV   "/dev/i2c-2"
#define I2C_ADDR  0x0f

/* command codes */
#define SOC       0x55
#define EOC       0xaa
#define READ_CMD  0x10
#define WRITE_CMD 0x11
#define RESET_CMD 0x01

/* response codes */
#define SOR       0xaa
#define EOR       0x55
#define READ_OK   0x7f
#define WRITE_OK  0x7e
#define RESET_OK  0x7d
#define UNKNOWN   0xfe
#define ERROR     0xfd

/* addresses and codes common to all hash cores */
#define ADDR_NAME0              0x00
#define ADDR_NAME1              0x01
#define ADDR_VERSION            0x02
#define ADDR_CTRL               0x08
#define CTRL_INIT_CMD           1
#define CTRL_NEXT_CMD           2
#define ADDR_STATUS             0x09
#define STATUS_READY_BIT        1
#define STATUS_VALID_BIT        2

/*
 * Addresses and codes for the specific hash cores.
 * Lengths here are in bytes (not bits, not 32-bit words).
 */

#define SHA1_ADDR_PREFIX        0x10
#define SHA1_ADDR_BLOCK         0x10
#define SHA1_BLOCK_LEN          bitsToBytes(512)
#define	SHA1_LENGTH_LEN		bitsToBytes(64)
#define SHA1_ADDR_DIGEST        0x20
#define SHA1_DIGEST_LEN         bitsToBytes(160)

#define SHA256_ADDR_PREFIX      0x20
#define SHA256_ADDR_BLOCK       0x10
#define SHA256_BLOCK_LEN        bitsToBytes(512)
#define	SHA256_LENGTH_LEN	bitsToBytes(64)
#define SHA256_ADDR_DIGEST      0x20
#define SHA256_DIGEST_LEN       bitsToBytes(256)

#define SHA512_ADDR_PREFIX      0x30
#define SHA512_CTRL_MODE_LOW    2
#define SHA512_CTRL_MODE_HIGH   3
#define SHA512_ADDR_BLOCK       0x10
#define SHA512_BLOCK_LEN        bitsToBytes(1024)
#define	SHA512_LENGTH_LEN	bitsToBytes(128)
#define SHA512_ADDR_DIGEST      0x40
#define SHA384_DIGEST_LEN       bitsToBytes(384)
#define SHA512_DIGEST_LEN       bitsToBytes(512)
#define MODE_SHA_512_224        (0 << SHA512_CTRL_MODE_LOW)
#define MODE_SHA_512_256        (1 << SHA512_CTRL_MODE_LOW)
#define MODE_SHA_384            (2 << SHA512_CTRL_MODE_LOW)
#define MODE_SHA_512            (3 << SHA512_CTRL_MODE_LOW)

/* Longest digest block we support at the moment */
#define MAX_BLOCK_LEN           SHA512_BLOCK_LEN

/* Hash state */
typedef struct {
  unsigned long long msg_length_high;   /* Total data hashed in this message */
  unsigned long long msg_length_low;    /* (128 bits in SHA-512 cases) */
  size_t block_length;                  /* Block length for this algorithm */
  unsigned char block[MAX_BLOCK_LEN];   /* Block we're accumulating */
  size_t block_used;                    /* How much of the block we've used */
  unsigned block_count;                 /* Blocks sent */
} hash_state_t;

static int i2cfd = -1;
static int debug = 0;

/*
 * I2C low-level code
 */

static int i2c_open(void)
{
  if (i2cfd >= 0)
    return 1;

  i2cfd = open(I2C_DEV, O_RDWR);

  if (i2cfd < 0) {
    perror("Unable to open " I2C_DEV);
    i2cfd = -1;
    return 0;
  }

  if (ioctl(i2cfd, I2C_SLAVE, I2C_ADDR) < 0) {
    perror("Unable to set i2c slave device");
    return 0;
  }

  if (debug)
    fprintf(stderr, "[ Opened %s, fd %d ]\n", I2C_DEV, i2cfd);

  return 1;
}

static int i2c_write_bytes(const unsigned char *buf, const size_t len)
{
  if (debug) {
    int i;
    fprintf(stderr, "write [");
    for (i = 0; i < len; ++i)
      fprintf(stderr, " %02x", buf[i]);
    fprintf(stderr, " ]\n");
  }

  if (!i2c_open())
    return 0;

  if (write(i2cfd, buf, len) != len) {
    perror("i2c write failed");
    return 0;
  }

  return 1;
}

static int i2c_read_byte(unsigned char *b)
{
  /*
   * read() on the i2c device only returns one byte at a time,
   * and we need to parse the response one byte at a time anyway.
   */

  if (!i2c_open())
    return 0;

  if (read(i2cfd, b, 1) != 1) {
    perror("i2c read failed");
    return 0;
  }

  return 1;
}

static int i2c_send_write_cmd(const unsigned char addr0, const unsigned char addr1, const unsigned char data[])
{
  unsigned char buf[9];

  buf[0] = SOC;
  buf[1] = WRITE_CMD;
  buf[2] = addr0;
  buf[3] = addr1;
  buf[4] = data[0];
  buf[5] = data[1];
  buf[6] = data[2];
  buf[7] = data[3];
  buf[8] = EOC;

  return i2c_write_bytes(buf, sizeof(buf));
}

static int i2c_send_read_cmd(const unsigned char addr0, const unsigned char addr1)
{
  unsigned char buf[5];

  buf[0] = SOC;
  buf[1] = READ_CMD;
  buf[2] = addr0;
  buf[3] = addr1;
  buf[4] = EOC;

  return i2c_write_bytes(buf, sizeof(buf));
}

static int i2c_get_resp(unsigned char *buf, const size_t length)
{
  int i, len = length;

  for (i = 0; i < len; ++i) {
    assert(len <= length);      /* Paranoia */

    if (!i2c_read_byte(&buf[i]))
      return 0;

    switch (i) {                /* Special handling for certain positions in response */

    case 0:
      if (buf[i] == SOR)        /* Start of record (we hope) */
        continue;
      fprintf(stderr, "Lost sync: expected 0x%02x (SOR), got 0x%02x\n", SOR, buf[0]);
      return 0;

    case 1:                     /* Response code */
      switch (buf[i]) {
      case READ_OK:
        len = 9;
        continue;
      case WRITE_OK:
        len = 5;
        continue;
      case RESET_OK:
        len = 3;
        continue;
      case ERROR:
      case UNKNOWN:
        len = 4;
        continue;
      default:
        fprintf(stderr, "Lost sync: unknown response code 0x%02x\n", buf[i]);
        return 0;
      }
    }
  }

  if (debug) {
    fprintf(stderr, "read  [");
    for (i = 0; i < len; ++i)
      fprintf(stderr, " %02x", buf[i]);
    fprintf(stderr, " ]\n");
  }

  return 1;
}

static int i2c_check_expected(const unsigned char buf[], const int i, const unsigned char expected)
{
  if (buf[i] == expected)
    return 1;
  fprintf(stderr, "Response byte %d: expected 0x%02x, got 0x%02x\n", i, expected, buf[i]);
  return 0;
}

static int i2c_write(const unsigned char addr0, const unsigned char addr1, const unsigned char data[])
{
  unsigned char buf[5];

  if (!i2c_send_write_cmd(addr0, addr1, data) ||
      !i2c_get_resp(buf, sizeof(buf))         ||
      !i2c_check_expected(buf, 0, SOR)        ||
      !i2c_check_expected(buf, 1, WRITE_OK)   ||
      !i2c_check_expected(buf, 2, addr0)      ||
      !i2c_check_expected(buf, 3, addr1)      ||
      !i2c_check_expected(buf, 4, EOR))
    return 0;

  return 1;
}

static int i2c_read(const unsigned char addr0, const unsigned char addr1, unsigned char data[])
{
  unsigned char buf[9];

  if (!i2c_send_read_cmd(addr0, addr1)     ||
      !i2c_get_resp(buf, sizeof(buf))      ||
      !i2c_check_expected(buf, 0, SOR)     ||
      !i2c_check_expected(buf, 1, READ_OK) ||
      !i2c_check_expected(buf, 2, addr0)   ||
      !i2c_check_expected(buf, 3, addr1)   ||
      !i2c_check_expected(buf, 8, EOR))
    return 0;

  data[0] = buf[4];
  data[1] = buf[5];
  data[2] = buf[6];
  data[3] = buf[7];
  return 1;
}

static int i2c_ctrl(const unsigned char addr0, const unsigned char ctrl_cmd)
{
  unsigned char data[4];
  memset(data, 0, sizeof(data));
  data[3] = ctrl_cmd;
  return i2c_write(addr0, ADDR_CTRL, data);
}

static int i2c_wait(const unsigned char addr0, const unsigned char status)
{
  unsigned char buf[9];

  do {
    if (!i2c_send_read_cmd(addr0, ADDR_STATUS))
      return 0;
    if (!i2c_get_resp(buf, sizeof(buf)))
      return 0;
    if (buf[1] != READ_OK)
      return 0;
  } while ((buf[7] & status) != status);

  if (debug)
    fprintf(stderr, "[ Done waiting ]\n");

  return 1;
}

static int i2c_wait_ready(const unsigned char addr0)
{
  if (debug)
    fprintf(stderr, "[ Waiting for ready ]\n");
  return i2c_wait(addr0, STATUS_READY_BIT);
}

static int i2c_wait_valid(const unsigned char addr0)
{
  if (debug)
    fprintf(stderr, "[ Waiting for valid ]\n");
  return i2c_wait(addr0, STATUS_VALID_BIT);
}

/*
 * Send one block to a core.
 */

static int hash_write_block(const unsigned char addr_prefix,
                            const unsigned char addr_block,
                            const unsigned char ctrl_mode,
                            const hash_state_t *state)
{
  unsigned char ctrl_cmd;
  int i;

  assert(state != NULL && state->block_length % 4 == 0);

  for (i = 0; i + 3 < state->block_length; i += 4)
    if (!i2c_write(addr_prefix, addr_block + i/4, state->block + i))
      return 0;

  ctrl_cmd = state->block_count == 0 ? CTRL_INIT_CMD : CTRL_NEXT_CMD;

  if (debug)
    fprintf(stderr, "[ %s ]\n", state->block_count == 0 ? "init" : "next");

  return i2c_ctrl(addr_prefix, ctrl_cmd|ctrl_mode) && i2c_wait_ready(addr_prefix);
}

/*
 * Read hash result from core.
 */

static int hash_read_digest(const unsigned char addr_prefix, const unsigned char addr_digest,
                            unsigned char *digest, const size_t digest_length)
{
  int i;

  assert(digest_length % 4 == 0);

  if (!i2c_wait_valid(addr_prefix))
    return 0;

  for (i = 0; i + 3 < digest_length; i += 4)
    if (!i2c_read(addr_prefix, addr_digest + i/4, digest + i))
      return 0;

  return 1;
}

/****************************************************************************
 *                                                                          *
 *                               Random Numbers                             *
 *                                                                          *
 ****************************************************************************/

/*
 * We have a TRNG core, but I don't think it's hooked up to I2C yet, so
 * for the moment we use the toy generator from hw_dummy.c.
 */

static void dummyGenRandom(void *buffer, const int length)
{
  HASHFUNCTION_ATOMIC hashFunctionAtomic;
  BYTE hashBuffer[CRYPT_MAX_HASHSIZE], *bufPtr = buffer;
  static int counter = 0;
  int hashSize, i;

  assert(isWritePtr(buffer, length));

  REQUIRES_V(length >= 1 && length < MAX_INTLENGTH);

  /*
   * Fill the buffer with random-ish data.  This gets a bit tricky
   * because we need to fool the entropy tests so we can't just fill
   * it with a fixed (or even semi-random) pattern but have to set up
   * a somewhat kludgy PRNG.
   */
  getHashAtomicParameters(CRYPT_ALGO_SHA1, 0, &hashFunctionAtomic, &hashSize);
  memset(hashBuffer, counter, hashSize);
  counter++;
  for (i = 0; i < length; i++) {
    if (i % hashSize == 0)
      hashFunctionAtomic(hashBuffer, CRYPT_MAX_HASHSIZE, hashBuffer, hashSize);
    bufPtr[i] = hashBuffer[i % hashSize];
  }
}

/****************************************************************************
 *                                                                           *
 *                   Hash/MAC Capability Interface Routines                  *
 *                                                                           *
 ****************************************************************************/

/*
 * Return context subtype-specific information.  All supported hash
 * algorithms currently use the same state object, so they can all use
 * this method.
 */

static int hashGetInfo(const CAPABILITY_INFO_TYPE type,
                      CONTEXT_INFO *contextInfoPtr, 
                      void *data, const int length)
{
  switch (type) {
  case CAPABILITY_INFO_STATESIZE:
    /*
     * Tell cryptlib how much hash-state storage we want allocated.
     */
    *(int *) data = sizeof(hash_state_t);
    return CRYPT_OK;

  default:
    return getDefaultInfo(type, contextInfoPtr, data, length);
  }
}

/*
 * Hash data.  All supported hash algorithms use similar block
 * manipulations and padding algorithms, so all can use this method
 * with a few parameters which we handle via closures below.
 */

static int doHash(CONTEXT_INFO *contextInfoPtr, const unsigned char *buffer, int length,
                  const size_t block_length, const unsigned char addr_prefix, const unsigned char addr_block,
                  const size_t digest_length, const unsigned char addr_digest, const unsigned char ctrl_mode,
                  const size_t length_length)
{
  hash_state_t *state = NULL;
  size_t n;
  int i;

  assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO)));
  assert(length == 0 || isWritePtr(buffer, length));

  state = (hash_state_t *) contextInfoPtr->ctxHash->hashInfo;

  /*
   * If the hash state was reset to allow another round of hashing,
   * reinitialise things.
   */

  if (!(contextInfoPtr->flags & CONTEXT_FLAG_HASH_INITED)) {
    memset(state, 0, sizeof(*state));
    state->block_length = block_length;
  }

  /* May want an assertion here that state->block_length is correct */

  if (length > 0) {             /* More data to hash */

    const unsigned char *p = buffer;

    while ((n = state->block_length - state->block_used) <= length) {
      /*
       * We have enough data for another complete block.
       */
      if (debug)
        fprintf(stderr, "[ Full block, length %lu, used %lu, n %lu, msg_length %llu ]\n",
                (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
      memcpy(state->block + state->block_used, p, n);
      if ((state->msg_length_low += n) < n)
        state->msg_length_high++;
      state->block_used = 0;
      length -= n;
      p += n;
      if (!hash_write_block(addr_prefix, addr_block, ctrl_mode, state))
        return CRYPT_ERROR_FAILED;
      state->block_count++;
    }

    if (length > 0) {
      /*
       * Data left over, but not enough for a full block, stash it.
       */
      if (debug)
        fprintf(stderr, "[ Partial block, length %lu, used %lu, n %lu, msg_length %llu ]\n",
                (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
      assert(length < n);
      memcpy(state->block + state->block_used, p, length);
      if ((state->msg_length_low += length) < length)
        state->msg_length_high++;
      state->block_used += length;
    }
  }

  else {           /* Done: add padding, then pull result from chip */

    unsigned long long bit_length_low  = (state->msg_length_low  << 3);
    unsigned long long bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61);
    unsigned char *p;

    /* Initial pad byte */
    assert(state->block_used < state->block_length);
    state->block[state->block_used++] = 0x80;

    /* If not enough room for bit count, zero and push current block */
    if ((n = state->block_length - state->block_used) < length_length) {
      if (debug)
        fprintf(stderr, "[ Overflow block, length %lu, used %lu, n %lu, msg_length %llu ]\n",
                (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
      if (n > 0)
        memset(state->block + state->block_used, 0, n);
      if (!hash_write_block(addr_prefix, addr_block, ctrl_mode, state))
        return CRYPT_ERROR_FAILED;
      state->block_count++;
      state->block_used = 0;
    }

    /* Pad final block */
    n = state->block_length - state->block_used;
    assert(n >= length_length);
    if (n > 0)
      memset(state->block + state->block_used, 0, n);
    if (debug)
      fprintf(stderr, "[ Final block, length %lu, used %lu, n %lu, msg_length %llu ]\n",
              (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low);
    p = state->block + state->block_length;
    for (i = 0; (bit_length_low || bit_length_high) && i < length_length; i++) {
      *--p = (unsigned char) (bit_length_low & 0xFF);
      bit_length_low >>= 8;
      if (bit_length_high) {
        bit_length_low |= ((bit_length_high & 0xFF) << 56);
        bit_length_high >>= 8;
      }
    }

    /* Push final block */
    if (!hash_write_block(addr_prefix, addr_block, ctrl_mode, state))
      return CRYPT_ERROR_FAILED;
    state->block_count++;

    /* All data pushed to core, now we just need to read back the result */

    assert(digest_length <= sizeof(contextInfoPtr->ctxHash->hash));
    if (!hash_read_digest(addr_prefix, addr_digest, contextInfoPtr->ctxHash->hash, digest_length))
      return CRYPT_ERROR_FAILED;
  }

  return CRYPT_OK;
}

/* Perform a self-test */

static int sha1SelfTest(void)
{
  /*
   * If we think of a self-test, insert it here.
   */

  return CRYPT_OK;
}

/* Hash data */

static int sha1Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length)
{
  return doHash(contextInfoPtr, buffer, length,
                SHA1_BLOCK_LEN, SHA1_ADDR_PREFIX, SHA1_ADDR_BLOCK,
                SHA1_DIGEST_LEN, SHA1_ADDR_DIGEST, 0, SHA1_LENGTH_LEN);
}

/* Perform a self-test */

static int sha2SelfTest(void)
{
  /*
   * If we think of a self-test, insert it here.
   */

  return CRYPT_OK;
}

/* Hash data */

static int sha2Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length)
{
  assert(contextInfoPtr != NULL && contextInfoPtr->capabilityInfo != NULL);

  switch (contextInfoPtr->capabilityInfo->blockSize) {

  case bitsToBytes(256):
    return doHash(contextInfoPtr, buffer, length,
                  SHA256_BLOCK_LEN, SHA256_ADDR_PREFIX, SHA256_ADDR_BLOCK,
                  SHA256_DIGEST_LEN, SHA256_ADDR_DIGEST, 0, SHA256_LENGTH_LEN);

  case bitsToBytes(384):
    return doHash(contextInfoPtr, buffer, length,
                  SHA512_BLOCK_LEN, SHA512_ADDR_PREFIX, SHA512_ADDR_BLOCK,
                  SHA384_DIGEST_LEN, SHA512_ADDR_DIGEST, MODE_SHA_384,
                  SHA512_LENGTH_LEN);

  case bitsToBytes(512):
    return doHash(contextInfoPtr, buffer, length,
                  SHA512_BLOCK_LEN, SHA512_ADDR_PREFIX, SHA512_ADDR_BLOCK,
                  SHA512_DIGEST_LEN, SHA512_ADDR_DIGEST, MODE_SHA_512,
                  SHA512_LENGTH_LEN);

  default:
    return CRYPT_ERROR_FAILED;
  }
}

/* Parameter initialization, to handle SHA-2 algorithms other than SHA-256 */

static int sha2InitParams(INOUT CONTEXT_INFO *contextInfoPtr, 
                          IN_ENUM(KEYPARAM) const KEYPARAM_TYPE paramType,
                          IN_OPT const void *data, 
                          IN_INT const int dataLength)
{
  static const CAPABILITY_INFO capabilityInfoSHA384 = {
    CRYPT_ALGO_SHA2, bitsToBytes( 384 ), "SHA-384", 7,
    bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ),
    sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash
  };

  static const CAPABILITY_INFO capabilityInfoSHA512 = {
    CRYPT_ALGO_SHA2, bitsToBytes( 512 ), "SHA-512", 7,
    bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ),
    sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash
  };

  assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO)));
  REQUIRES(contextInfoPtr->type == CONTEXT_HASH);
  REQUIRES(paramType > KEYPARAM_NONE && paramType < KEYPARAM_LAST);

  if (paramType == KEYPARAM_BLOCKSIZE) {
    switch (dataLength) {
    case bitsToBytes(256):
      return CRYPT_OK;
    case bitsToBytes(384):
      contextInfoPtr->capabilityInfo = &capabilityInfoSHA384;
      return CRYPT_OK;
    case bitsToBytes(512):
      contextInfoPtr->capabilityInfo = &capabilityInfoSHA512;
      return CRYPT_OK;
    default:
      return CRYPT_ARGERROR_NUM1;
    }
  }

  return initGenericParams(contextInfoPtr, paramType, data, dataLength);
}

/****************************************************************************
 *                                                                          *
 *                           Hardware External Interface                    *
 *                                                                          *
 ****************************************************************************/

/* The capability information for this device */

static const CAPABILITY_INFO capabilities[] = {

  { CRYPT_ALGO_SHA1, bitsToBytes( 160 ), "SHA-1", 5,
    bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ),
    sha1SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha1Hash, sha1Hash },

  { CRYPT_ALGO_SHA2, bitsToBytes( 256 ), "SHA-2", 5,
    bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ),
    sha2SelfTest, hashGetInfo, NULL, sha2InitParams, NULL, NULL, sha2Hash, sha2Hash },

  { CRYPT_ALGO_NONE }, { CRYPT_ALGO_NONE }
};

/* Return the hardware capabilities list */

int hwGetCapabilities(const CAPABILITY_INFO **capabilityInfo, int *noCapabilities)
{
  assert(isReadPtr(capabilityInfo, sizeof(CAPABILITY_INFO *)));
  assert(isWritePtr(noCapabilities, sizeof(int)));

  *capabilityInfo = capabilities;
  *noCapabilities = FAILSAFE_ARRAYSIZE(capabilities, CAPABILITY_INFO);

  return CRYPT_OK;
}

/*
 * Get random data from the hardware.  We have a TRNG core, but I
 * don't think we hae I2C code for it yet, so leave this as a dummy
 * for the moment.
 */

int hwGetRandom(void *buffer, const int length)
{
  assert(isWritePtr(buffer, length));

  REQUIRES(length >= 1 && length < MAX_INTLENGTH);

  /* Fill the buffer with random-ish data */
  dummyGenRandom(buffer, length);

  return CRYPT_OK;
}

/*
 * These "personality" methods are trivial stubs, as we do not yet
 * have any cores which do encyrption or signature.  When we do, these
 * methods will need to be rewritten, and whoever does that rewriting
 * will definitely want to look at the detailed comments and template
 * code in device/hw_dummy.c.
 */

/* Look up an item held in the hardware */

int hwLookupItem(const void *keyID, const int keyIDlength, int *keyHandle)
{
  assert(keyHandle != NULL);
  *keyHandle = CRYPT_ERROR;
  return CRYPT_ERROR_NOTFOUND;
}

/* Delete an item held in the hardware */

int hwDeleteItem(const int keyHandle)
{
  return CRYPT_OK;
}

/* Initialise/zeroise the hardware */

int hwInitialise(void)
{
  return CRYPT_OK;
}

#endif /* USE_HARDWARE */

/*
 * "Any programmer who fails to comply with the standard naming, formatting,
 *  or commenting conventions should be shot.  If it so happens that it is
 *  inconvenient to shoot him, then he is to be politely requested to recode
 *  his program in adherence to the above standard."
 *                      -- Michael Spier, Digital Equipment Corporation
 *
 * Local variables:
 * indent-tabs-mode: nil
 * End:
 */