/* * cryptech_novena_i2c_simple.c * ---------------------------- * * This is an early prototype Hardware Adaption Layer (HAL) for using * Cryptlib with the Cryptech project's FGPA cores over an I2C bus on * the Novena PVT1 development board using a simple stream-based * protocol in which each core is represented as a separate I2C device. * This is compatible with the core/novena_i2c_simple FPGA build. * * The communication channel used here is not suitable for production * use, this is just a prototype. * * Authors: Joachim Strömbergson, Paul Selkirk, Rob Austein * Copyright (c) 2014, SUNET * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The HAL framework is taken from the Cryptlib hw_dummy.c template, * and is Copyright 1998-2009 by Peter Gutmann. */ #include #include #include #include #include #include #include #include #if defined( INC_ALL ) #include "crypt.h" #include "context.h" #include "hardware.h" #else #include "crypt.h" #include "context/context.h" #include "device/hardware.h" #endif /* Compiler-specific includes */ /* * I2C_SLAVE comes from /usr/include/linux/i2c-dev.h, but if we * include that we won't be able to compile this except on Linux. It * won't *run* anywhere but on Linux, but it's useful to be able to do * compilation tests on other platforms, eg, with Clang, so for now we * take the small risk that this one magic constant might change. */ #define I2C_SLAVE 0x0703 #ifdef USE_HARDWARE /* * I2C configuration. Note that, unlike the i2c_coretest HAL, each * hash core has its own I2C address. The SHA-512 core still has mode * bits to select which of its four hash algorithms we want, but since * they're stuffed into the low bits of the I2C address, they look * like separate devices to us, so we treat them that way. */ #define I2C_DEV "/dev/i2c-2" #define I2C_SHA1_ADDR 0x1e #define I2C_SHA256_ADDR 0x1f #define I2C_SHA384_ADDR 0x22 #define I2C_SHA512_ADDR 0x23 /* * Length parameters for the various hashes. */ #define SHA1_BLOCK_LEN bitsToBytes(512) #define SHA1_LENGTH_LEN bitsToBytes(64) #define SHA1_DIGEST_LEN bitsToBytes(160) #define SHA256_BLOCK_LEN bitsToBytes(512) #define SHA256_LENGTH_LEN bitsToBytes(64) #define SHA256_DIGEST_LEN bitsToBytes(256) #define SHA384_BLOCK_LEN SHA512_BLOCK_LEN #define SHA384_LENGTH_LEN SHA512_LENGTH_LEN #define SHA384_DIGEST_LEN bitsToBytes(384) #define SHA512_BLOCK_LEN bitsToBytes(1024) #define SHA512_LENGTH_LEN bitsToBytes(128) #define SHA512_DIGEST_LEN bitsToBytes(512) #define MAX_BLOCK_LEN SHA512_BLOCK_LEN /* Hash state */ typedef struct { unsigned long long msg_length_high; /* Total data hashed in this message */ unsigned long long msg_length_low; /* (128 bits in SHA-512 cases) */ } hash_state_t; static int i2cfd = -1; static int debug = 0; /* * I2C low-level code */ static int i2c_open(void) { if (i2cfd >= 0) return 1; i2cfd = open(I2C_DEV, O_RDWR); if (i2cfd < 0) { perror("Unable to open " I2C_DEV); i2cfd = -1; return 0; } if (debug) fprintf(stderr, "[ Opened %s, fd %d ]\n", I2C_DEV, i2cfd); return 1; } static int i2c_addr(const int addr) { if (!addr) return 1; if (ioctl(i2cfd, I2C_SLAVE, addr) < 0) { perror("Unable to set slave address on I2C " I2C_DEV); return 0; } if (debug) fprintf(stderr, "[ Selected I2C slave 0x%x ]\n", (unsigned) addr); return 1; } static int i2c_write(const int addr, const unsigned char *buf, const size_t len) { if (debug) { int i; fprintf(stderr, "write ["); for (i = 0; i < len; ++i) fprintf(stderr, " %02x", buf[i]); fprintf(stderr, " ]\n"); } if (!i2c_open() || !i2c_addr(addr)) return 0; if (write(i2cfd, buf, len) != len) { perror("i2c write failed"); return 0; } return 1; } /* * read() on i2c device returns one byte at a time. */ static int i2c_read(unsigned char *buf, const size_t len) { size_t i; assert(i2cfd >= 0); for (i = 0; i < len; i++) { if (read(i2cfd, buf + i, 1) != 1) { perror("i2c read failed"); return 0; } } return 1; } /**************************************************************************** * * * Random Numbers * * * ****************************************************************************/ /* * We have a TRNG core, but I don't think it's hooked up to I2C yet, so * for the moment we use the toy generator from hw_dummy.c. */ static void dummyGenRandom(void *buffer, const int length) { HASHFUNCTION_ATOMIC hashFunctionAtomic; BYTE hashBuffer[CRYPT_MAX_HASHSIZE], *bufPtr = buffer; static int counter = 0; int hashSize, i; assert(isWritePtr(buffer, length)); REQUIRES_V(length >= 1 && length < MAX_INTLENGTH); /* * Fill the buffer with random-ish data. This gets a bit tricky * because we need to fool the entropy tests so we can't just fill * it with a fixed (or even semi-random) pattern but have to set up * a somewhat kludgy PRNG. */ getHashAtomicParameters(CRYPT_ALGO_SHA1, 0, &hashFunctionAtomic, &hashSize); memset(hashBuffer, counter, hashSize); counter++; for (i = 0; i < length; i++) { if (i % hashSize == 0) hashFunctionAtomic(hashBuffer, CRYPT_MAX_HASHSIZE, hashBuffer, hashSize); bufPtr[i] = hashBuffer[i % hashSize]; } } /**************************************************************************** * * * Hash/MAC Capability Interface Routines * * * ****************************************************************************/ /* * Return context subtype-specific information. All supported hash * algorithms currently use the same state object, so they can all use * this method. */ static int hashGetInfo(const CAPABILITY_INFO_TYPE type, CONTEXT_INFO *contextInfoPtr, void *data, const int length) { switch (type) { case CAPABILITY_INFO_STATESIZE: /* * Tell cryptlib how much hash-state storage we want allocated. */ *(int *) data = sizeof(hash_state_t); return CRYPT_OK; default: return getDefaultInfo(type, contextInfoPtr, data, length); } } /* * Hash data. All supported hash algorithms use similar block * manipulations and padding algorithms, so all can use this method * with a few parameters which we handle via closures below. */ static int doHash(CONTEXT_INFO *contextInfoPtr, const unsigned char *buffer, int length, const int addr, const size_t block_length, const size_t digest_length, const size_t length_length) { hash_state_t *state = NULL; assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO))); assert(length == 0 || isWritePtr(buffer, length)); state = (hash_state_t *) contextInfoPtr->ctxHash->hashInfo; /* * If the hash state was reset to allow another round of hashing, * reinitialise things. */ if (!(contextInfoPtr->flags & CONTEXT_FLAG_HASH_INITED)) memset(state, 0, sizeof(*state)); if (length > 0) { /* More data to hash */ if (!i2c_write(addr, buffer, length)) return CRYPT_ERROR_FAILED; if ((state->msg_length_low += length) < length) state->msg_length_high++; } else { /* Done: add padding, then pull result from chip */ unsigned long long bit_length_low = (state->msg_length_low << 3); unsigned long long bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61); unsigned char block[MAX_BLOCK_LEN]; unsigned char *p; size_t n; int i; /* Prepare padding buffer */ memset(block, 0, sizeof(block)); block[0] = 0x80; /* How much room is left in the current block */ n = block_length - ((state->msg_length_low) & (block_length - 1)); /* If there's not enough room for length count and initial padding byte, push an extra block */ if (n < length_length + 1) { if (debug) fprintf(stderr, "[ Overflow block, n %lu, msg_length %llu ]\n", n, state->msg_length_low); if (!i2c_write(addr, block, n)) return CRYPT_ERROR_FAILED; block[0] = 0; n = block_length; } /* Finish padding with length count and push final block */ assert(n >= length_length + 1); if (debug) fprintf(stderr, "[ Final block, n %lu, msg_length %llu ]\n", (unsigned long) n, state->msg_length_low); p = block + n; for (i = 0; (bit_length_low || bit_length_high) && i < length_length; i++) { *--p = (unsigned char) (bit_length_low & 0xFF); bit_length_low >>= 8; if (bit_length_high) { bit_length_low |= ((bit_length_high & 0xFF) << 56); bit_length_high >>= 8; } } if (!i2c_write(addr, block, n)) return CRYPT_ERROR_FAILED; /* All data pushed to core, now we just need to read back the result */ assert(digest_length <= sizeof(contextInfoPtr->ctxHash->hash)); if (!i2c_read(contextInfoPtr->ctxHash->hash, digest_length)) return CRYPT_ERROR_FAILED; } return CRYPT_OK; } /* Perform a self-test */ static int sha1SelfTest(void) { /* * If we think of a self-test, insert it here. */ return CRYPT_OK; } /* Hash data */ static int sha1Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length) { return doHash(contextInfoPtr, buffer, length, I2C_SHA1_ADDR, SHA1_BLOCK_LEN, SHA1_DIGEST_LEN, SHA1_LENGTH_LEN); } /* Perform a self-test */ static int sha2SelfTest(void) { /* * If we think of a self-test, insert it here. */ return CRYPT_OK; } /* Hash data */ static int sha2Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length) { assert(contextInfoPtr != NULL && contextInfoPtr->capabilityInfo != NULL); switch (contextInfoPtr->capabilityInfo->blockSize) { case bitsToBytes(256): return doHash(contextInfoPtr, buffer, length, I2C_SHA256_ADDR, SHA256_BLOCK_LEN, SHA256_DIGEST_LEN, SHA256_LENGTH_LEN); case bitsToBytes(384): return doHash(contextInfoPtr, buffer, length, I2C_SHA384_ADDR, SHA384_BLOCK_LEN, SHA384_DIGEST_LEN, SHA384_LENGTH_LEN); case bitsToBytes(512): return doHash(contextInfoPtr, buffer, length, I2C_SHA512_ADDR, SHA512_BLOCK_LEN, SHA512_DIGEST_LEN, SHA512_LENGTH_LEN); default: return CRYPT_ERROR_FAILED; } } /* Parameter initialization, to handle SHA-2 algorithms other than SHA-256 */ static int sha2InitParams(INOUT CONTEXT_INFO *contextInfoPtr, IN_ENUM(KEYPARAM) const KEYPARAM_TYPE paramType, IN_OPT const void *data, IN_INT const int dataLength) { static const CAPABILITY_INFO capabilityInfoSHA384 = { CRYPT_ALGO_SHA2, bitsToBytes( 384 ), "SHA-384", 7, bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash }; static const CAPABILITY_INFO capabilityInfoSHA512 = { CRYPT_ALGO_SHA2, bitsToBytes( 512 ), "SHA-512", 7, bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash }; assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO))); REQUIRES(contextInfoPtr->type == CONTEXT_HASH); REQUIRES(paramType > KEYPARAM_NONE && paramType < KEYPARAM_LAST); if (paramType == KEYPARAM_BLOCKSIZE) { switch (dataLength) { case bitsToBytes(256): return CRYPT_OK; case bitsToBytes(384): contextInfoPtr->capabilityInfo = &capabilityInfoSHA384; return CRYPT_OK; case bitsToBytes(512): contextInfoPtr->capabilityInfo = &capabilityInfoSHA512; return CRYPT_OK; default: return CRYPT_ARGERROR_NUM1; } } return initGenericParams(contextInfoPtr, paramType, data, dataLength); } /**************************************************************************** * * * Hardware External Interface * * * ****************************************************************************/ /* The capability information for this device */ static const CAPABILITY_INFO capabilities[] = { { CRYPT_ALGO_SHA1, bitsToBytes( 160 ), "SHA-1", 5, bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), sha1SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha1Hash, sha1Hash }, { CRYPT_ALGO_SHA2, bitsToBytes( 256 ), "SHA-2", 5, bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), sha2SelfTest, hashGetInfo, NULL, sha2InitParams, NULL, NULL, sha2Hash, sha2Hash }, { CRYPT_ALGO_NONE }, { CRYPT_ALGO_NONE } }; /* Return the hardware capabilities list */ int hwGetCapabilities(const CAPABILITY_INFO **capabilityInfo, int *noCapabilities) { assert(isReadPtr(capabilityInfo, sizeof(CAPABILITY_INFO *))); assert(isWritePtr(noCapabilities, sizeof(int))); *capabilityInfo = capabilities; *noCapabilities = FAILSAFE_ARRAYSIZE(capabilities, CAPABILITY_INFO); return CRYPT_OK; } /* * Get random data from the hardware. We have a TRNG core, but I * don't think we hae I2C code for it yet, so leave this as a dummy * for the moment. */ int hwGetRandom(void *buffer, const int length) { assert(isWritePtr(buffer, length)); REQUIRES(length >= 1 && length < MAX_INTLENGTH); /* Fill the buffer with random-ish data */ dummyGenRandom(buffer, length); return CRYPT_OK; } /* * These "personality" methods are trivial stubs, as we do not yet * have any cores which do encyrption or signature. When we do, these * methods will need to be rewritten, and whoever does that rewriting * will definitely want to look at the detailed comments and template * code in device/hw_dummy.c. */ /* Look up an item held in the hardware */ int hwLookupItem(const void *keyID, const int keyIDlength, int *keyHandle) { assert(keyHandle != NULL); *keyHandle = CRYPT_ERROR; return CRYPT_ERROR_NOTFOUND; } /* Delete an item held in the hardware */ int hwDeleteItem(const int keyHandle) { return CRYPT_OK; } /* Initialise/zeroise the hardware */ int hwInitialise(void) { return CRYPT_OK; } #endif /* USE_HARDWARE */ /* * "Any programmer who fails to comply with the standard naming, formatting, * or commenting conventions should be shot. If it so happens that it is * inconvenient to shoot him, then he is to be politely requested to recode * his program in adherence to the above standard." * -- Michael Spier, Digital Equipment Corporation * * Local variables: * indent-tabs-mode: nil * End: */