From 43511ee91bbfc41dbe8e05aa3ff5d5de51adeb25 Mon Sep 17 00:00:00 2001 From: Rob Austein Date: Thu, 30 Oct 2014 16:27:33 -0400 Subject: Initial working version of cryptech_novena_i2c_{coretest,simple} HALs in simplified version of Cryptlib build wrapper environment. --- src/cryptech_novena_i2c_coretest.c | 829 +++++++++++++++++++++++++++++++++++++ src/cryptech_novena_i2c_simple.c | 542 ++++++++++++++++++++++++ 2 files changed, 1371 insertions(+) create mode 100644 src/cryptech_novena_i2c_coretest.c create mode 100644 src/cryptech_novena_i2c_simple.c (limited to 'src') diff --git a/src/cryptech_novena_i2c_coretest.c b/src/cryptech_novena_i2c_coretest.c new file mode 100644 index 0000000..31b4345 --- /dev/null +++ b/src/cryptech_novena_i2c_coretest.c @@ -0,0 +1,829 @@ +/* + * cryptech_novena_i2c_coretest.c + * ------------------------------ + * + * This is an early prototype Hardware Adaption Layer (HAL) for using + * Cryptlib with the Cryptech project's FGPA cores over an I2C bus on + * the Novena PVT1 development board using the "coretest" byte stream + * protocol. This is compatible with the core/novena FPGA build. + * + * The communication channel used here is not suitable for production + * use, this is just a prototype. + * + * Authors: Joachim Strömbergson, Paul Selkirk, Rob Austein + * Copyright (c) 2014, SUNET + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The HAL framework is taken from the Cryptlib hw_dummy.c template, + * and is Copyright 1998-2009 by Peter Gutmann. + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined( INC_ALL ) + #include "crypt.h" + #include "context.h" + #include "hardware.h" +#else + #include "crypt.h" + #include "context/context.h" + #include "device/hardware.h" +#endif /* Compiler-specific includes */ + +/* + * I2C_SLAVE comes from /usr/include/linux/i2c-dev.h, but if we + * include that we won't be able to compile this except on Linux. It + * won't *run* anywhere but on Linux, but it's useful to be able to do + * compilation tests on other platforms, eg, with Clang, so for now we + * take the small risk that this one magic constant might change. + */ + +#define I2C_SLAVE 0x0703 + + +#ifdef USE_HARDWARE + +/* + * I2C-related parameters, copied from hash_tester.c + */ + +/* I2C configuration */ +#define I2C_DEV "/dev/i2c-2" +#define I2C_ADDR 0x0f + +/* command codes */ +#define SOC 0x55 +#define EOC 0xaa +#define READ_CMD 0x10 +#define WRITE_CMD 0x11 +#define RESET_CMD 0x01 + +/* response codes */ +#define SOR 0xaa +#define EOR 0x55 +#define READ_OK 0x7f +#define WRITE_OK 0x7e +#define RESET_OK 0x7d +#define UNKNOWN 0xfe +#define ERROR 0xfd + +/* addresses and codes common to all hash cores */ +#define ADDR_NAME0 0x00 +#define ADDR_NAME1 0x01 +#define ADDR_VERSION 0x02 +#define ADDR_CTRL 0x08 +#define CTRL_INIT_CMD 1 +#define CTRL_NEXT_CMD 2 +#define ADDR_STATUS 0x09 +#define STATUS_READY_BIT 0 +#define STATUS_VALID_BIT 1 + +/* + * Addresses and codes for the specific hash cores. + * Lengths here are in bytes (not bits, not 32-bit words). + */ + +#define SHA1_ADDR_PREFIX 0x10 +#define SHA1_ADDR_BLOCK 0x10 +#define SHA1_BLOCK_LEN bitsToBytes(512) +#define SHA1_LENGTH_LEN bitsToBytes(64) +#define SHA1_ADDR_DIGEST 0x20 +#define SHA1_DIGEST_LEN bitsToBytes(160) + +#define SHA256_ADDR_PREFIX 0x20 +#define SHA256_ADDR_BLOCK 0x10 +#define SHA256_BLOCK_LEN bitsToBytes(512) +#define SHA256_LENGTH_LEN bitsToBytes(64) +#define SHA256_ADDR_DIGEST 0x20 +#define SHA256_DIGEST_LEN bitsToBytes(256) + +#define SHA512_ADDR_PREFIX 0x30 +#define SHA512_CTRL_MODE_LOW 2 +#define SHA512_CTRL_MODE_HIGH 3 +#define SHA512_ADDR_BLOCK 0x10 +#define SHA512_BLOCK_LEN bitsToBytes(1024) +#define SHA512_LENGTH_LEN bitsToBytes(128) +#define SHA512_ADDR_DIGEST 0x40 +#define SHA384_DIGEST_LEN bitsToBytes(384) +#define SHA512_DIGEST_LEN bitsToBytes(512) +#define MODE_SHA_512_224 (0 << SHA512_CTRL_MODE_LOW) +#define MODE_SHA_512_256 (1 << SHA512_CTRL_MODE_LOW) +#define MODE_SHA_384 (2 << SHA512_CTRL_MODE_LOW) +#define MODE_SHA_512 (3 << SHA512_CTRL_MODE_LOW) + +/* Longest digest block we support at the moment */ +#define MAX_BLOCK_LEN SHA512_BLOCK_LEN + +/* Hash state */ +typedef struct { + unsigned long long msg_length_high; /* Total data hashed in this message */ + unsigned long long msg_length_low; /* (128 bits in SHA-512 cases) */ + size_t block_length; /* Block length for this algorithm */ + unsigned char block[MAX_BLOCK_LEN]; /* Block we're accumulating */ + size_t block_used; /* How much of the block we've used */ + unsigned block_count; /* Blocks sent */ +} hash_state_t; + +static int i2cfd = -1; +static int debug = 0; + +/* + * I2C low-level code + */ + +static int i2c_open(void) +{ + if (i2cfd >= 0) + return 1; + + i2cfd = open(I2C_DEV, O_RDWR); + + if (i2cfd < 0) { + perror("Unable to open " I2C_DEV); + i2cfd = -1; + return 0; + } + + if (ioctl(i2cfd, I2C_SLAVE, I2C_ADDR) < 0) { + perror("Unable to set i2c slave device"); + return 0; + } + + if (debug) + fprintf(stderr, "[ Opened %s, fd %d ]\n", I2C_DEV, i2cfd); + + return 1; +} + +static int i2c_write_bytes(const unsigned char *buf, const size_t len) +{ + if (debug) { + int i; + fprintf(stderr, "write ["); + for (i = 0; i < len; ++i) + fprintf(stderr, " %02x", buf[i]); + fprintf(stderr, " ]\n"); + } + + if (!i2c_open()) + return 0; + + if (write(i2cfd, buf, len) != len) { + perror("i2c write failed"); + return 0; + } + + return 1; +} + +static int i2c_read_byte(unsigned char *b) +{ + /* + * read() on the i2c device only returns one byte at a time, + * and we need to parse the response one byte at a time anyway. + */ + + if (!i2c_open()) + return 0; + + if (read(i2cfd, b, 1) != 1) { + perror("i2c read failed"); + return 0; + } + + return 1; +} + +static int i2c_send_write_cmd(const unsigned char addr0, const unsigned char addr1, const unsigned char data[]) +{ + unsigned char buf[9]; + + buf[0] = SOC; + buf[1] = WRITE_CMD; + buf[2] = addr0; + buf[3] = addr1; + buf[4] = data[0]; + buf[5] = data[1]; + buf[6] = data[2]; + buf[7] = data[3]; + buf[8] = EOC; + + return i2c_write_bytes(buf, sizeof(buf)); +} + +static int i2c_send_read_cmd(const unsigned char addr0, const unsigned char addr1) +{ + unsigned char buf[5]; + + buf[0] = SOC; + buf[1] = READ_CMD; + buf[2] = addr0; + buf[3] = addr1; + buf[4] = EOC; + + return i2c_write_bytes(buf, sizeof(buf)); +} + +static int i2c_get_resp(unsigned char *buf, const size_t length) +{ + int i, len = length; + + for (i = 0; i < len; ++i) { + assert(len <= length); /* Paranoia */ + + if (!i2c_read_byte(&buf[i])) + return 0; + + switch (i) { /* Special handling for certain positions in response */ + + case 0: + if (buf[i] == SOR) /* Start of record (we hope) */ + continue; + fprintf(stderr, "Lost sync: expected 0x%02x (SOR), got 0x%02x\n", SOR, buf[0]); + return 0; + + case 1: /* Response code */ + switch (buf[i]) { + case READ_OK: + len = 9; + continue; + case WRITE_OK: + len = 5; + continue; + case RESET_OK: + len = 3; + continue; + case ERROR: + case UNKNOWN: + len = 4; + continue; + default: + fprintf(stderr, "Lost sync: unknown response code 0x%02x\n", buf[i]); + return 0; + } + } + } + + if (debug) { + fprintf(stderr, "read ["); + for (i = 0; i < len; ++i) + fprintf(stderr, " %02x", buf[i]); + fprintf(stderr, " ]\n"); + } + + return 1; +} + +static int i2c_check_expected(const unsigned char buf[], const int i, const unsigned char expected) +{ + if (buf[i] == expected) + return 1; + fprintf(stderr, "Response byte %d: expected 0x%02x, got 0x%02x\n", i, expected, buf[i]); + return 0; +} + +static int i2c_write(const unsigned char addr0, const unsigned char addr1, const unsigned char data[]) +{ + unsigned char buf[5]; + + if (!i2c_send_write_cmd(addr0, addr1, data) || + !i2c_get_resp(buf, sizeof(buf)) || + !i2c_check_expected(buf, 0, SOR) || + !i2c_check_expected(buf, 1, WRITE_OK) || + !i2c_check_expected(buf, 2, addr0) || + !i2c_check_expected(buf, 3, addr1) || + !i2c_check_expected(buf, 4, EOR)) + return 0; + + return 1; +} + +static int i2c_read(const unsigned char addr0, const unsigned char addr1, unsigned char data[]) +{ + unsigned char buf[9]; + + if (!i2c_send_read_cmd(addr0, addr1) || + !i2c_get_resp(buf, sizeof(buf)) || + !i2c_check_expected(buf, 0, SOR) || + !i2c_check_expected(buf, 1, READ_OK) || + !i2c_check_expected(buf, 2, addr0) || + !i2c_check_expected(buf, 3, addr1) || + !i2c_check_expected(buf, 8, EOR)) + return 0; + + data[0] = buf[4]; + data[1] = buf[5]; + data[2] = buf[6]; + data[3] = buf[7]; + return 1; +} + +static int i2c_ctrl(const unsigned char addr0, const unsigned char ctrl_cmd) +{ + unsigned char data[4]; + memset(data, 0, sizeof(data)); + data[3] = ctrl_cmd; + return i2c_write(addr0, ADDR_CTRL, data); +} + +static int i2c_wait(const unsigned char addr0, const unsigned char status) +{ + unsigned char buf[9]; + + do { + if (!i2c_send_read_cmd(addr0, ADDR_STATUS)) + return 0; + if (!i2c_get_resp(buf, sizeof(buf))) + return 0; + if (buf[1] != READ_OK) + return 0; + } while ((buf[7] & status) != status); + + if (debug) + fprintf(stderr, "[ Done waiting ]\n"); + + return 1; +} + +static int i2c_wait_ready(const unsigned char addr0) +{ + if (debug) + fprintf(stderr, "[ Waiting for ready ]\n"); + return i2c_wait(addr0, STATUS_READY_BIT); +} + +static int i2c_wait_valid(const unsigned char addr0) +{ + if (debug) + fprintf(stderr, "[ Waiting for valid ]\n"); + return i2c_wait(addr0, STATUS_VALID_BIT); +} + +/* + * Send one block to a core. + */ + +static int hash_write_block(const unsigned char addr_prefix, + const unsigned char addr_block, + const unsigned char ctrl_mode, + const hash_state_t *state) +{ + unsigned char ctrl_cmd; + int i; + + assert(state != NULL && state->block_length % 4 == 0); + + for (i = 0; i + 3 < state->block_length; i += 4) + if (!i2c_write(addr_prefix, addr_block + i/4, state->block + i)) + return 0; + + ctrl_cmd = state->block_count == 0 ? CTRL_INIT_CMD : CTRL_NEXT_CMD; + + if (debug) + fprintf(stderr, "[ %s ]\n", state->block_count == 0 ? "init" : "next"); + + return i2c_ctrl(addr_prefix, ctrl_cmd|ctrl_mode) && i2c_wait_ready(addr_prefix); +} + +/* + * Read hash result from core. + */ + +static int hash_read_digest(const unsigned char addr_prefix, const unsigned char addr_digest, + unsigned char *digest, const size_t digest_length) +{ + int i; + + assert(digest_length % 4 == 0); + + if (!i2c_wait_valid(addr_prefix)) + return 0; + + for (i = 0; i + 3 < digest_length; i += 4) + if (!i2c_read(addr_prefix, addr_digest + i/4, digest + i)) + return 0; + + return 1; +} + +/**************************************************************************** + * * + * Random Numbers * + * * + ****************************************************************************/ + +/* + * We have a TRNG core, but I don't think it's hooked up to I2C yet, so + * for the moment we use the toy generator from hw_dummy.c. + */ + +static void dummyGenRandom(void *buffer, const int length) +{ + HASHFUNCTION_ATOMIC hashFunctionAtomic; + BYTE hashBuffer[CRYPT_MAX_HASHSIZE], *bufPtr = buffer; + static int counter = 0; + int hashSize, i; + + assert(isWritePtr(buffer, length)); + + REQUIRES_V(length >= 1 && length < MAX_INTLENGTH); + + /* + * Fill the buffer with random-ish data. This gets a bit tricky + * because we need to fool the entropy tests so we can't just fill + * it with a fixed (or even semi-random) pattern but have to set up + * a somewhat kludgy PRNG. + */ + getHashAtomicParameters(CRYPT_ALGO_SHA1, 0, &hashFunctionAtomic, &hashSize); + memset(hashBuffer, counter, hashSize); + counter++; + for (i = 0; i < length; i++) { + if (i % hashSize == 0) + hashFunctionAtomic(hashBuffer, CRYPT_MAX_HASHSIZE, hashBuffer, hashSize); + bufPtr[i] = hashBuffer[i % hashSize]; + } +} + +/**************************************************************************** + * * + * Hash/MAC Capability Interface Routines * + * * + ****************************************************************************/ + +/* + * Return context subtype-specific information. All supported hash + * algorithms currently use the same state object, so they can all use + * this method. + */ + +static int hashGetInfo(const CAPABILITY_INFO_TYPE type, + CONTEXT_INFO *contextInfoPtr, + void *data, const int length) +{ + switch (type) { + case CAPABILITY_INFO_STATESIZE: + /* + * Tell cryptlib how much hash-state storage we want allocated. + */ + *(int *) data = sizeof(hash_state_t); + return CRYPT_OK; + + default: + return getDefaultInfo(type, contextInfoPtr, data, length); + } +} + +/* + * Hash data. All supported hash algorithms use similar block + * manipulations and padding algorithms, so all can use this method + * with a few parameters which we handle via closures below. + */ + +static int doHash(CONTEXT_INFO *contextInfoPtr, const unsigned char *buffer, int length, + const size_t block_length, const unsigned char addr_prefix, const unsigned char addr_block, + const size_t digest_length, const unsigned char addr_digest, const unsigned char ctrl_mode, + const size_t length_length) +{ + hash_state_t *state = NULL; + size_t n; + int i; + + assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO))); + assert(length == 0 || isWritePtr(buffer, length)); + + state = (hash_state_t *) contextInfoPtr->ctxHash->hashInfo; + + /* + * If the hash state was reset to allow another round of hashing, + * reinitialise things. + */ + + if (!(contextInfoPtr->flags & CONTEXT_FLAG_HASH_INITED)) { + memset(state, 0, sizeof(*state)); + state->block_length = block_length; + } + + /* May want an assertion here that state->block_length is correct */ + + if (length > 0) { /* More data to hash */ + + const unsigned char *p = buffer; + + while ((n = state->block_length - state->block_used) <= length) { + /* + * We have enough data for another complete block. + */ + if (debug) + fprintf(stderr, "[ Full block, length %lu, used %lu, n %lu, msg_length %llu ]\n", + (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low); + memcpy(state->block + state->block_used, p, n); + if ((state->msg_length_low += n) < n) + state->msg_length_high++; + state->block_used = 0; + length -= n; + p += n; + if (!hash_write_block(addr_prefix, addr_block, ctrl_mode, state)) + return CRYPT_ERROR_FAILED; + state->block_count++; + } + + if (length > 0) { + /* + * Data left over, but not enough for a full block, stash it. + */ + if (debug) + fprintf(stderr, "[ Partial block, length %lu, used %lu, n %lu, msg_length %llu ]\n", + (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low); + assert(length < n); + memcpy(state->block + state->block_used, p, length); + if ((state->msg_length_low += length) < length) + state->msg_length_high++; + state->block_used += length; + } + } + + else { /* Done: add padding, then pull result from chip */ + + unsigned long long bit_length_low = (state->msg_length_low << 3); + unsigned long long bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61); + unsigned char *p; + + /* Initial pad byte */ + assert(state->block_used < state->block_length); + state->block[state->block_used++] = 0x80; + + /* If not enough room for bit count, zero and push current block */ + if ((n = state->block_length - state->block_used) < length_length) { + if (debug) + fprintf(stderr, "[ Overflow block, length %lu, used %lu, n %lu, msg_length %llu ]\n", + (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low); + if (n > 0) + memset(state->block + state->block_used, 0, n); + if (!hash_write_block(addr_prefix, addr_block, ctrl_mode, state)) + return CRYPT_ERROR_FAILED; + state->block_count++; + state->block_used = 0; + } + + /* Pad final block */ + n = state->block_length - state->block_used; + assert(n >= length_length); + if (n > 0) + memset(state->block + state->block_used, 0, n); + if (debug) + fprintf(stderr, "[ Final block, length %lu, used %lu, n %lu, msg_length %llu ]\n", + (unsigned long) length, (unsigned long) state->block_used, (unsigned long) n, state->msg_length_low); + p = state->block + state->block_length; + for (i = 0; (bit_length_low || bit_length_high) && i < length_length; i++) { + *--p = (unsigned char) (bit_length_low & 0xFF); + bit_length_low >>= 8; + if (bit_length_high) { + bit_length_low |= ((bit_length_high & 0xFF) << 56); + bit_length_high >>= 8; + } + } + + /* Push final block */ + if (!hash_write_block(addr_prefix, addr_block, ctrl_mode, state)) + return CRYPT_ERROR_FAILED; + state->block_count++; + + /* All data pushed to core, now we just need to read back the result */ + + assert(digest_length <= sizeof(contextInfoPtr->ctxHash->hash)); + if (!hash_read_digest(addr_prefix, addr_digest, contextInfoPtr->ctxHash->hash, digest_length)) + return CRYPT_ERROR_FAILED; + } + + return CRYPT_OK; +} + +/* Perform a self-test */ + +static int sha1SelfTest(void) +{ + /* + * If we think of a self-test, insert it here. + */ + + return CRYPT_OK; +} + +/* Hash data */ + +static int sha1Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length) +{ + return doHash(contextInfoPtr, buffer, length, + SHA1_BLOCK_LEN, SHA1_ADDR_PREFIX, SHA1_ADDR_BLOCK, + SHA1_DIGEST_LEN, SHA1_ADDR_DIGEST, 0, SHA1_LENGTH_LEN); +} + +/* Perform a self-test */ + +static int sha2SelfTest(void) +{ + /* + * If we think of a self-test, insert it here. + */ + + return CRYPT_OK; +} + +/* Hash data */ + +static int sha2Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length) +{ + assert(contextInfoPtr != NULL && contextInfoPtr->capabilityInfo != NULL); + + switch (contextInfoPtr->capabilityInfo->blockSize) { + + case bitsToBytes(256): + return doHash(contextInfoPtr, buffer, length, + SHA256_BLOCK_LEN, SHA256_ADDR_PREFIX, SHA256_ADDR_BLOCK, + SHA256_DIGEST_LEN, SHA256_ADDR_DIGEST, 0, SHA256_LENGTH_LEN); + + case bitsToBytes(384): + return doHash(contextInfoPtr, buffer, length, + SHA512_BLOCK_LEN, SHA512_ADDR_PREFIX, SHA512_ADDR_BLOCK, + SHA384_DIGEST_LEN, SHA512_ADDR_DIGEST, MODE_SHA_384, + SHA512_LENGTH_LEN); + + case bitsToBytes(512): + return doHash(contextInfoPtr, buffer, length, + SHA512_BLOCK_LEN, SHA512_ADDR_PREFIX, SHA512_ADDR_BLOCK, + SHA512_DIGEST_LEN, SHA512_ADDR_DIGEST, MODE_SHA_512, + SHA512_LENGTH_LEN); + + default: + return CRYPT_ERROR_FAILED; + } +} + +/* Parameter initialization, to handle SHA-2 algorithms other than SHA-256 */ + +static int sha2InitParams(INOUT CONTEXT_INFO *contextInfoPtr, + IN_ENUM(KEYPARAM) const KEYPARAM_TYPE paramType, + IN_OPT const void *data, + IN_INT const int dataLength) +{ + static const CAPABILITY_INFO capabilityInfoSHA384 = { + CRYPT_ALGO_SHA2, bitsToBytes( 384 ), "SHA-384", 7, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash + }; + + static const CAPABILITY_INFO capabilityInfoSHA512 = { + CRYPT_ALGO_SHA2, bitsToBytes( 512 ), "SHA-512", 7, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash + }; + + assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO))); + REQUIRES(contextInfoPtr->type == CONTEXT_HASH); + REQUIRES(paramType > KEYPARAM_NONE && paramType < KEYPARAM_LAST); + + if (paramType == KEYPARAM_BLOCKSIZE) { + switch (dataLength) { + case bitsToBytes(256): + return CRYPT_OK; + case bitsToBytes(384): + contextInfoPtr->capabilityInfo = &capabilityInfoSHA384; + return CRYPT_OK; + case bitsToBytes(512): + contextInfoPtr->capabilityInfo = &capabilityInfoSHA512; + return CRYPT_OK; + default: + return CRYPT_ARGERROR_NUM1; + } + } + + return initGenericParams(contextInfoPtr, paramType, data, dataLength); +} + +/**************************************************************************** + * * + * Hardware External Interface * + * * + ****************************************************************************/ + +/* The capability information for this device */ + +static const CAPABILITY_INFO capabilities[] = { + + { CRYPT_ALGO_SHA1, bitsToBytes( 160 ), "SHA-1", 5, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha1SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha1Hash, sha1Hash }, + + { CRYPT_ALGO_SHA2, bitsToBytes( 256 ), "SHA-2", 5, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha2SelfTest, hashGetInfo, NULL, sha2InitParams, NULL, NULL, sha2Hash, sha2Hash }, + + { CRYPT_ALGO_NONE }, { CRYPT_ALGO_NONE } +}; + +/* Return the hardware capabilities list */ + +int hwGetCapabilities(const CAPABILITY_INFO **capabilityInfo, int *noCapabilities) +{ + assert(isReadPtr(capabilityInfo, sizeof(CAPABILITY_INFO *))); + assert(isWritePtr(noCapabilities, sizeof(int))); + + *capabilityInfo = capabilities; + *noCapabilities = FAILSAFE_ARRAYSIZE(capabilities, CAPABILITY_INFO); + + return CRYPT_OK; +} + +/* + * Get random data from the hardware. We have a TRNG core, but I + * don't think we hae I2C code for it yet, so leave this as a dummy + * for the moment. + */ + +int hwGetRandom(void *buffer, const int length) +{ + assert(isWritePtr(buffer, length)); + + REQUIRES(length >= 1 && length < MAX_INTLENGTH); + + /* Fill the buffer with random-ish data */ + dummyGenRandom(buffer, length); + + return CRYPT_OK; +} + +/* + * These "personality" methods are trivial stubs, as we do not yet + * have any cores which do encyrption or signature. When we do, these + * methods will need to be rewritten, and whoever does that rewriting + * will definitely want to look at the detailed comments and template + * code in device/hw_dummy.c. + */ + +/* Look up an item held in the hardware */ + +int hwLookupItem(const void *keyID, const int keyIDlength, int *keyHandle) +{ + assert(keyHandle != NULL); + *keyHandle = CRYPT_ERROR; + return CRYPT_ERROR_NOTFOUND; +} + +/* Delete an item held in the hardware */ + +int hwDeleteItem(const int keyHandle) +{ + return CRYPT_OK; +} + +/* Initialise/zeroise the hardware */ + +int hwInitialise(void) +{ + return CRYPT_OK; +} + +#endif /* USE_HARDWARE */ + +/* + * "Any programmer who fails to comply with the standard naming, formatting, + * or commenting conventions should be shot. If it so happens that it is + * inconvenient to shoot him, then he is to be politely requested to recode + * his program in adherence to the above standard." + * -- Michael Spier, Digital Equipment Corporation + * + * Local variables: + * indent-tabs-mode: nil + * End: + */ diff --git a/src/cryptech_novena_i2c_simple.c b/src/cryptech_novena_i2c_simple.c new file mode 100644 index 0000000..e023b3b --- /dev/null +++ b/src/cryptech_novena_i2c_simple.c @@ -0,0 +1,542 @@ +/* + * cryptech_novena_i2c_simple.c + * ---------------------------- + * + * This is an early prototype Hardware Adaption Layer (HAL) for using + * Cryptlib with the Cryptech project's FGPA cores over an I2C bus on + * the Novena PVT1 development board using a simple stream-based + * protocol in which each core is represented as a separate I2C device. + * This is compatible with the core/novena_i2c_simple FPGA build. + * + * The communication channel used here is not suitable for production + * use, this is just a prototype. + * + * Authors: Joachim Strömbergson, Paul Selkirk, Rob Austein + * Copyright (c) 2014, SUNET + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF + * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * The HAL framework is taken from the Cryptlib hw_dummy.c template, + * and is Copyright 1998-2009 by Peter Gutmann. + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined( INC_ALL ) + #include "crypt.h" + #include "context.h" + #include "hardware.h" +#else + #include "crypt.h" + #include "context/context.h" + #include "device/hardware.h" +#endif /* Compiler-specific includes */ + +/* + * I2C_SLAVE comes from /usr/include/linux/i2c-dev.h, but if we + * include that we won't be able to compile this except on Linux. It + * won't *run* anywhere but on Linux, but it's useful to be able to do + * compilation tests on other platforms, eg, with Clang, so for now we + * take the small risk that this one magic constant might change. + */ + +#define I2C_SLAVE 0x0703 + +#ifdef USE_HARDWARE + +/* + * I2C configuration. Note that, unlike the i2c_coretest HAL, each + * hash core has its own I2C address. The SHA-512 core still has mode + * bits to select which of its four hash algorithms we want, but since + * they're stuffed into the low bits of the I2C address, they look + * like separate devices to us, so we treat them that way. + */ + +#define I2C_DEV "/dev/i2c-2" +#define I2C_SHA1_ADDR 0x1e +#define I2C_SHA256_ADDR 0x1f +#define I2C_SHA384_ADDR 0x22 +#define I2C_SHA512_ADDR 0x23 + +/* + * Length parameters for the various hashes. + */ + +#define SHA1_BLOCK_LEN bitsToBytes(512) +#define SHA1_LENGTH_LEN bitsToBytes(64) +#define SHA1_DIGEST_LEN bitsToBytes(160) + +#define SHA256_BLOCK_LEN bitsToBytes(512) +#define SHA256_LENGTH_LEN bitsToBytes(64) +#define SHA256_DIGEST_LEN bitsToBytes(256) + +#define SHA384_BLOCK_LEN SHA512_BLOCK_LEN +#define SHA384_LENGTH_LEN SHA512_LENGTH_LEN +#define SHA384_DIGEST_LEN bitsToBytes(384) + +#define SHA512_BLOCK_LEN bitsToBytes(1024) +#define SHA512_LENGTH_LEN bitsToBytes(128) +#define SHA512_DIGEST_LEN bitsToBytes(512) + +#define MAX_BLOCK_LEN SHA512_BLOCK_LEN + +/* Hash state */ +typedef struct { + unsigned long long msg_length_high; /* Total data hashed in this message */ + unsigned long long msg_length_low; /* (128 bits in SHA-512 cases) */ +} hash_state_t; + +static int i2cfd = -1; +static int debug = 0; + +/* + * I2C low-level code + */ + +static int i2c_open(void) +{ + if (i2cfd >= 0) + return 1; + + i2cfd = open(I2C_DEV, O_RDWR); + + if (i2cfd < 0) { + perror("Unable to open " I2C_DEV); + i2cfd = -1; + return 0; + } + + if (debug) + fprintf(stderr, "[ Opened %s, fd %d ]\n", I2C_DEV, i2cfd); + + return 1; +} + +static int i2c_addr(const int addr) +{ + if (!addr) + return 1; + + if (ioctl(i2cfd, I2C_SLAVE, addr) < 0) { + perror("Unable to set slave address on I2C " I2C_DEV); + return 0; + } + + if (debug) + fprintf(stderr, "[ Selected I2C slave 0x%x ]\n", (unsigned) addr); + + return 1; +} + +static int i2c_write(const int addr, const unsigned char *buf, const size_t len) +{ + if (debug) { + int i; + fprintf(stderr, "write ["); + for (i = 0; i < len; ++i) + fprintf(stderr, " %02x", buf[i]); + fprintf(stderr, " ]\n"); + } + + if (!i2c_open() || !i2c_addr(addr)) + return 0; + + if (write(i2cfd, buf, len) != len) { + perror("i2c write failed"); + return 0; + } + + return 1; +} + +/* + * read() on i2c device returns one byte at a time. + */ + +static int i2c_read(unsigned char *buf, const size_t len) +{ + size_t i; + + assert(i2cfd >= 0); + + for (i = 0; i < len; i++) { + if (read(i2cfd, buf + i, 1) != 1) { + perror("i2c read failed"); + return 0; + } + } + + return 1; +} + +/**************************************************************************** + * * + * Random Numbers * + * * + ****************************************************************************/ + +/* + * We have a TRNG core, but I don't think it's hooked up to I2C yet, so + * for the moment we use the toy generator from hw_dummy.c. + */ + +static void dummyGenRandom(void *buffer, const int length) +{ + HASHFUNCTION_ATOMIC hashFunctionAtomic; + BYTE hashBuffer[CRYPT_MAX_HASHSIZE], *bufPtr = buffer; + static int counter = 0; + int hashSize, i; + + assert(isWritePtr(buffer, length)); + + REQUIRES_V(length >= 1 && length < MAX_INTLENGTH); + + /* + * Fill the buffer with random-ish data. This gets a bit tricky + * because we need to fool the entropy tests so we can't just fill + * it with a fixed (or even semi-random) pattern but have to set up + * a somewhat kludgy PRNG. + */ + getHashAtomicParameters(CRYPT_ALGO_SHA1, 0, &hashFunctionAtomic, &hashSize); + memset(hashBuffer, counter, hashSize); + counter++; + for (i = 0; i < length; i++) { + if (i % hashSize == 0) + hashFunctionAtomic(hashBuffer, CRYPT_MAX_HASHSIZE, hashBuffer, hashSize); + bufPtr[i] = hashBuffer[i % hashSize]; + } +} + +/**************************************************************************** + * * + * Hash/MAC Capability Interface Routines * + * * + ****************************************************************************/ + +/* + * Return context subtype-specific information. All supported hash + * algorithms currently use the same state object, so they can all use + * this method. + */ + +static int hashGetInfo(const CAPABILITY_INFO_TYPE type, + CONTEXT_INFO *contextInfoPtr, + void *data, const int length) +{ + switch (type) { + case CAPABILITY_INFO_STATESIZE: + /* + * Tell cryptlib how much hash-state storage we want allocated. + */ + *(int *) data = sizeof(hash_state_t); + return CRYPT_OK; + + default: + return getDefaultInfo(type, contextInfoPtr, data, length); + } +} + +/* + * Hash data. All supported hash algorithms use similar block + * manipulations and padding algorithms, so all can use this method + * with a few parameters which we handle via closures below. + */ + +static int doHash(CONTEXT_INFO *contextInfoPtr, + const unsigned char *buffer, + int length, + const int addr, + const size_t block_length, + const size_t digest_length, + const size_t length_length) +{ + hash_state_t *state = NULL; + + assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO))); + assert(length == 0 || isWritePtr(buffer, length)); + + state = (hash_state_t *) contextInfoPtr->ctxHash->hashInfo; + + /* + * If the hash state was reset to allow another round of hashing, + * reinitialise things. + */ + + if (!(contextInfoPtr->flags & CONTEXT_FLAG_HASH_INITED)) + memset(state, 0, sizeof(*state)); + + if (length > 0) { /* More data to hash */ + + if (!i2c_write(addr, buffer, length)) + return CRYPT_ERROR_FAILED; + + if ((state->msg_length_low += length) < length) + state->msg_length_high++; + + } + + else { /* Done: add padding, then pull result from chip */ + + unsigned long long bit_length_low = (state->msg_length_low << 3); + unsigned long long bit_length_high = (state->msg_length_high << 3) | (state->msg_length_low >> 61); + unsigned char block[MAX_BLOCK_LEN]; + unsigned char *p; + size_t n; + int i; + + /* Prepare padding buffer */ + memset(block, 0, sizeof(block)); + block[0] = 0x80; + + /* How much room is left in the current block */ + n = block_length - ((state->msg_length_low) & (block_length - 1)); + + /* If there's not enough room for length count and initial padding byte, push an extra block */ + if (n < length_length + 1) { + if (debug) + fprintf(stderr, "[ Overflow block, n %lu, msg_length %llu ]\n", n, state->msg_length_low); + if (!i2c_write(addr, block, n)) + return CRYPT_ERROR_FAILED; + block[0] = 0; + n = block_length; + } + + /* Finish padding with length count and push final block */ + assert(n >= length_length + 1); + if (debug) + fprintf(stderr, "[ Final block, n %lu, msg_length %llu ]\n", (unsigned long) n, state->msg_length_low); + p = block + n; + for (i = 0; (bit_length_low || bit_length_high) && i < length_length; i++) { + *--p = (unsigned char) (bit_length_low & 0xFF); + bit_length_low >>= 8; + if (bit_length_high) { + bit_length_low |= ((bit_length_high & 0xFF) << 56); + bit_length_high >>= 8; + } + } + if (!i2c_write(addr, block, n)) + return CRYPT_ERROR_FAILED; + + /* All data pushed to core, now we just need to read back the result */ + + assert(digest_length <= sizeof(contextInfoPtr->ctxHash->hash)); + if (!i2c_read(contextInfoPtr->ctxHash->hash, digest_length)) + return CRYPT_ERROR_FAILED; + } + + return CRYPT_OK; +} + +/* Perform a self-test */ + +static int sha1SelfTest(void) +{ + /* + * If we think of a self-test, insert it here. + */ + + return CRYPT_OK; +} + +/* Hash data */ + +static int sha1Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length) +{ + return doHash(contextInfoPtr, buffer, length, I2C_SHA1_ADDR, SHA1_BLOCK_LEN, SHA1_DIGEST_LEN, SHA1_LENGTH_LEN); +} + +/* Perform a self-test */ + +static int sha2SelfTest(void) +{ + /* + * If we think of a self-test, insert it here. + */ + + return CRYPT_OK; +} + +/* Hash data */ + +static int sha2Hash(CONTEXT_INFO *contextInfoPtr, unsigned char *buffer, int length) +{ + assert(contextInfoPtr != NULL && contextInfoPtr->capabilityInfo != NULL); + switch (contextInfoPtr->capabilityInfo->blockSize) { + case bitsToBytes(256): + return doHash(contextInfoPtr, buffer, length, I2C_SHA256_ADDR, SHA256_BLOCK_LEN, SHA256_DIGEST_LEN, SHA256_LENGTH_LEN); + case bitsToBytes(384): + return doHash(contextInfoPtr, buffer, length, I2C_SHA384_ADDR, SHA384_BLOCK_LEN, SHA384_DIGEST_LEN, SHA384_LENGTH_LEN); + case bitsToBytes(512): + return doHash(contextInfoPtr, buffer, length, I2C_SHA512_ADDR, SHA512_BLOCK_LEN, SHA512_DIGEST_LEN, SHA512_LENGTH_LEN); + default: + return CRYPT_ERROR_FAILED; + } +} + +/* Parameter initialization, to handle SHA-2 algorithms other than SHA-256 */ + +static int sha2InitParams(INOUT CONTEXT_INFO *contextInfoPtr, + IN_ENUM(KEYPARAM) const KEYPARAM_TYPE paramType, + IN_OPT const void *data, + IN_INT const int dataLength) +{ + static const CAPABILITY_INFO capabilityInfoSHA384 = { + CRYPT_ALGO_SHA2, bitsToBytes( 384 ), "SHA-384", 7, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash + }; + + static const CAPABILITY_INFO capabilityInfoSHA512 = { + CRYPT_ALGO_SHA2, bitsToBytes( 512 ), "SHA-512", 7, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha2SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha2Hash, sha2Hash + }; + + assert(isWritePtr(contextInfoPtr, sizeof(CONTEXT_INFO))); + REQUIRES(contextInfoPtr->type == CONTEXT_HASH); + REQUIRES(paramType > KEYPARAM_NONE && paramType < KEYPARAM_LAST); + + if (paramType == KEYPARAM_BLOCKSIZE) { + switch (dataLength) { + case bitsToBytes(256): + return CRYPT_OK; + case bitsToBytes(384): + contextInfoPtr->capabilityInfo = &capabilityInfoSHA384; + return CRYPT_OK; + case bitsToBytes(512): + contextInfoPtr->capabilityInfo = &capabilityInfoSHA512; + return CRYPT_OK; + default: + return CRYPT_ARGERROR_NUM1; + } + } + + return initGenericParams(contextInfoPtr, paramType, data, dataLength); +} + +/**************************************************************************** + * * + * Hardware External Interface * + * * + ****************************************************************************/ + +/* The capability information for this device */ + +static const CAPABILITY_INFO capabilities[] = { + + { CRYPT_ALGO_SHA1, bitsToBytes( 160 ), "SHA-1", 5, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha1SelfTest, hashGetInfo, NULL, NULL, NULL, NULL, sha1Hash, sha1Hash }, + + { CRYPT_ALGO_SHA2, bitsToBytes( 256 ), "SHA-2", 5, + bitsToBytes( 0 ), bitsToBytes( 0 ), bitsToBytes( 0 ), + sha2SelfTest, hashGetInfo, NULL, sha2InitParams, NULL, NULL, sha2Hash, sha2Hash }, + + { CRYPT_ALGO_NONE }, { CRYPT_ALGO_NONE } +}; + +/* Return the hardware capabilities list */ + +int hwGetCapabilities(const CAPABILITY_INFO **capabilityInfo, int *noCapabilities) +{ + assert(isReadPtr(capabilityInfo, sizeof(CAPABILITY_INFO *))); + assert(isWritePtr(noCapabilities, sizeof(int))); + + *capabilityInfo = capabilities; + *noCapabilities = FAILSAFE_ARRAYSIZE(capabilities, CAPABILITY_INFO); + + return CRYPT_OK; +} + +/* + * Get random data from the hardware. We have a TRNG core, but I + * don't think we hae I2C code for it yet, so leave this as a dummy + * for the moment. + */ + +int hwGetRandom(void *buffer, const int length) +{ + assert(isWritePtr(buffer, length)); + + REQUIRES(length >= 1 && length < MAX_INTLENGTH); + + /* Fill the buffer with random-ish data */ + dummyGenRandom(buffer, length); + + return CRYPT_OK; +} + +/* + * These "personality" methods are trivial stubs, as we do not yet + * have any cores which do encyrption or signature. When we do, these + * methods will need to be rewritten, and whoever does that rewriting + * will definitely want to look at the detailed comments and template + * code in device/hw_dummy.c. + */ + +/* Look up an item held in the hardware */ + +int hwLookupItem(const void *keyID, const int keyIDlength, int *keyHandle) +{ + assert(keyHandle != NULL); + *keyHandle = CRYPT_ERROR; + return CRYPT_ERROR_NOTFOUND; +} + +/* Delete an item held in the hardware */ + +int hwDeleteItem(const int keyHandle) +{ + return CRYPT_OK; +} + +/* Initialise/zeroise the hardware */ + +int hwInitialise(void) +{ + return CRYPT_OK; +} + +#endif /* USE_HARDWARE */ + +/* + * "Any programmer who fails to comply with the standard naming, formatting, + * or commenting conventions should be shot. If it so happens that it is + * inconvenient to shoot him, then he is to be politely requested to recode + * his program in adherence to the above standard." + * -- Michael Spier, Digital Equipment Corporation + * + * Local variables: + * indent-tabs-mode: nil + * End: + */ -- cgit v1.2.3