

Cryptech
TRNG Ideas 2014-03-17

Joachim Strömbersgon – Secworks AB

The Cryptech TRNG

A state of the art, modern
 True Random Number Generator

that can be verifed by the user

TRNG – High Level Requirements
● Development drivers

– Good performance – in embedded, low cost systems
– Conservative design - No wild, untested ideas and algorithms

● Support transparency and testability
– Debug access to raw entropy. Debug access to CSPRNG with injection
– All normal access blocked when operating in debug mode
– Full restart including warm-up when leaving debug mode

● Confgurable and scaleable
– Security (number of rounds),
– Number of entropy sources
– Amount of entropy/seed value
– Amount of Random values/seed

With sane/conservative
defaults

TRNG – Threats and Mitigation (1)
● M an ipu la tion o f en tropy sou rce

– Support multiple and different entropy sources to
force an attacker to manipulate more than one
physical process simultaneously

– Continuously observe the entropy sources to
determine their health

– Support access to raw entropy for off-line testing
– Use cryptographically good mixing of entropy sources

to make it hard for an attacker to predict the effect of
manipulating an entropy source.

TRNG – Threats and Mitigation (2)
● Loss of seed driving the CSPRNG

– Periodically reseed to minimize impact
– Increase cost of brute forcing the seed
– Use a mixer that makes it infeasible to determine

entropy values that generated the seed

● Denial of Service - Random Number Starvation
– Use high performance CSPRNG to generate random

numbers.
– Support scaleability of using parallel CSPRNGs
– Fast warm up using stored random numbers as entropy

TRNG - Architecture

Entropy
Collector

&
Mixer

CSPRNG

The
Random
Number

Generator

Entropy
Provider

Entropy
Provider

Entropy
Provider

S
1

S
2

S
3

Debug Access and Control

Entropy Providers (1)

ffo with
32 bit entropy

words

entropy
words

Interface to sensor
measuring some

property of a
random physical

process

sensor
ctrl

conditioning

malfunction
detection

raw entropy
access

error

Entropy Providers (1)

● Access to entropy sources
– Acts as interface for a given source. Hide specifcs from rest of TRNG

● P/N reverse bias avalanche noise
● CCD black out noise
● RSSI LSB
● Oscillator jitter
● etc

● Detect malfunctioning entropy sources
– on-line testing to detect a broken source

● Condition, whitening of entropy
– Remove bias

Stored random values
for fast warm up are

treated as just another
entropy source with a

provider

Entropy Collection and Mixing (1)

SHA-512

ffo with
512 bit
digests

seed

1024 bit
block

32 bit entropy
words from
providers

Entropy Collection and Mixing (2)

● Combine entropy from different providers
– Round robin retrieval to avoid starvation of providers with

lower rate

● Generate high quality seed values
– High grade mixing - bias free seeds

● Robust against attacker induces bias
– Infeasable to predict effect of induced bias on seed by attacker

Entropy Collection and Mixing (3)

● 32 entropy words form a message block

● Message block fed to SHA-512 (FIPS 180)

● n message blocks processed in sequence
– n can be confgured

● 512 bit digest from SHA-512 delivered to RNG as seed

Random number generation (1)

XChaCha

32 bit counter

key

iv
32 bit

random
values

ffo with
512 bit
blocks

seed
512 bits

Debug: inject of seed and extract
RNGs generated from injected seed

Random number generation (2)

● Generate high rate of random numbers
– In embedded systems with low clock frequency

● Generate random numbers with good quality
– Cryptographically strong CSPRNG

● Low impact of reseeding
– Short latency for initialization

And support testing too!

Random number generation (3)
● Based on XChaCha with 256 bit key

– Scalable security (number of rounds)
– Scalable performance
– Not AES, but fairly well proven. Good traction

● 96 bit IV and 32 bit counter
– (2**32 – 1) keystream blocks between reeseding
– 255 Gbyte max from a single seed

● At least 24 rounds. 32 possible with good performance

Seed used for key, IV, counter start

AES-CTR
would be

the alternative

Random number generation (4)

● Debug support for testing
– Inject user defned seed
– Generate at most n blocks of random values then stops
– Access to generated values via debug port only
– Reading from normal port during debug yields is a read error.
– Full restart including warm up when leaving debug mode

● Generates random values continuously
– Overwrites blocks in output buffer unless being used
– Some random values are sent to secure storage as entropy for

fast warm up.

References and inspiration (1)

● /dev/random in FreeBSD and OpenBSD
– Fortuna, Yarrow
– ChaCha as CSPRNG

● /dev/urandom in Linux
– Mixer

● The Fortuna RNG/collector
– Handling of multiple entropy sources and mixing

● IanG Hard Truths about the Hard Business of fnding Hard Random Numbers (
http://iang.org/ssl/hard_truths_hard_random_numbers.html)
– Architecture, multiple sources etc

These are just a few references.

http://iang.org/ssl/hard_truths_hard_random_numbers.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

