// // TODO: Add license text! // module modexpng_mem # ( parameter MEM_WIDTH = 17, parameter MEM_ADDR_BITS = 6 ) ( input clk, input [MEM_ADDR_BITS-1:0] a_addr, input a_en, input a_wr, input [MEM_WIDTH -1:0] a_in, output [MEM_WIDTH -1:0] a_out, input [MEM_ADDR_BITS-1:0] b_addr, input b_en, input b_reg_en, output [MEM_WIDTH -1:0] b_out ); // // BRAM // (* RAM_STYLE="BLOCK" *) reg [MEM_WIDTH-1:0] bram[0:(2**MEM_ADDR_BITS)-1]; // // Initialization for Simulation // /* integer c; initial begin for (c=0; c<(2**MEM_ADDR_BITS); c=c+1) bram[c] = {MEM_WIDTH{1'b0}}; end */ // // Output Registers // reg [MEM_WIDTH-1:0] bram_b; reg [MEM_WIDTH-1:0] bram_b_reg; assign a_out = 32'hDEADCE11; assign b_out = bram_b_reg; // // Note, that when both ports are accessing the same location, conflict can // potentionally arise. See Xilinx UG473 (pages 19-20, "Conflict // Avoidance") for more information. In our configuration to avoid that the // write port must be coded to operate in READ_FIRST mode. If the write // port is overwriting the same address the read port is accessing, the // write port must read the previously stored data (not the data it is // writing, as that would be WRITE_FIRST mode). // // // Write-Only Port A // always @(posedge clk) // if (a_en) // if (a_wr) bram[a_addr] <= a_in; // // Read-Only Port B // always @(posedge clk) // if (b_en) // bram_b <= bram[b_addr]; always @(posedge clk) // if (b_reg_en) // bram_b_reg <= bram_b; endmodule