1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
//======================================================================
//
// Copyright (c) 2016, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
`timescale 1ns / 1ps
module modexpa7_top #
(
parameter OPERAND_ADDR_WIDTH = 7,
parameter SYSTOLIC_ARRAY_POWER = 1
)
(
input clk,
input rst_n,
input init,
output ready,
input next,
output valid,
input crt_mode,
input [OPERAND_ADDR_WIDTH-1:0] modulus_num_words,
input [OPERAND_ADDR_WIDTH+4:0] exponent_num_bits,
input bus_cs,
input bus_we,
input [OPERAND_ADDR_WIDTH+1:0] bus_addr,
input [ 32-1:0] bus_data_wr,
output [ 32-1:0] bus_data_rd
);
/*
* FSM Declaration
*/
localparam [ 2: 0] FSM_STATE_IDLE = 3'd0;
localparam [ 2: 0] FSM_STATE_PRECALC_START = 3'd1;
localparam [ 2: 0] FSM_STATE_PRECALC_CRUNCH = 3'd2;
localparam [ 2: 0] FSM_STATE_PRECALC_FINAL = 3'd3;
localparam [ 2: 0] FSM_STATE_EXPONENT_START = 3'd4;
localparam [ 2: 0] FSM_STATE_EXPONENT_CRUNCH = 3'd5;
localparam [ 2: 0] FSM_STATE_EXPONENT_FINAL = 3'd6;
localparam [ 7: 0] FSM_STATE_STOP = 3'd7;
/*
* FSM State / Next State
*/
reg [ 7: 0] fsm_state = FSM_STATE_IDLE;
reg [ 7: 0] fsm_next_state;
/*
* Enable Delay (Trigger)
*/
reg init_dly = 1'b0;
reg next_dly = 1'b0;
// delay init and next by one clock cycle
always @(posedge clk) init_dly <= init;
always @(posedge clk) next_dly <= next;
// trigger new operation when one of the control inputs goes from low to high
wire init_trig = init && !init_dly;
wire next_trig = next && !next_dly;
/*
* Ready and Valid Flags Logic
*/
reg ready_reg = 1'b0;
reg valid_reg = 1'b0;
assign ready = ready_reg;
assign valid = valid_reg;
// ready flag logic
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) ready_reg <= 1'b0; // reset flag to default state
else case (fsm_state)
FSM_STATE_IDLE: if (init_trig) ready_reg <= 1'b0; // clear flag when operation is started
FSM_STATE_STOP: if (!ready_reg) ready_reg <= 1'b1; // set flag after operation is finished
endcase
// valid flag logic
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) valid_reg <= 1'b0; // reset flag to default state
else case (fsm_state)
FSM_STATE_IDLE: if (next_trig) valid_reg <= 1'b0; // clear flag when operation is started
FSM_STATE_STOP: if (!valid_reg) valid_reg <= 1'b1; // set flag after operation is finished
endcase
/*
* Parameters Latch
*/
reg [OPERAND_ADDR_WIDTH-1:0] modulus_num_words_latch;
reg [OPERAND_ADDR_WIDTH+4:0] exponent_num_bits_latch;
// save number of words in modulus when pre-calculation has been triggered,
// i.e. user has apparently loaded a new modulus into the core
always @(posedge clk)
//
if (fsm_next_state == FSM_STATE_PRECALC_START)
modulus_num_words_latch <= modulus_num_words;
// save number of bits in exponent when exponentiation has been triggered,
// i.e. user has loaded a new message into the core and wants exponentiate
always @(posedge clk)
//
if (fsm_next_state == FSM_STATE_EXPONENT_START)
exponent_num_bits_latch <= exponent_num_bits;
/*
* Split bus address into bank/word parts.
*/
wire [ 2 - 1 : 0] bus_addr_bank = bus_addr[OPERAND_ADDR_WIDTH+1:OPERAND_ADDR_WIDTH];
wire [OPERAND_ADDR_WIDTH - 1 : 0] bus_addr_word = bus_addr[OPERAND_ADDR_WIDTH-1:0];
/*
* Define bank offsets.
*/
localparam [ 1: 0] BANK_MODULUS = 2'b00; // 0
localparam [ 1: 0] BANK_MESSAGE = 2'b01; // 1
localparam [ 1: 0] BANK_EXPONENT = 2'b10; // 2
localparam [ 1: 0] BANK_RESULT = 2'b11; // 3
/*
* Instantiate user-accessible memories.
*
* We have four block memories: N for modulus, M for message, D for exponent
* and R for result. Memories N, M and D and writeable from the user's side,
* memory R is writeable from the core's side and is read-only by user.
*
* Note, that the core does squaring and multiplication simultaneously, so
* there are two identical systolic multipliers inside. It's better to have two
* copies of modulus to give router some freeding in placing the multipliers,
* that's why there are actually two identical block memories N1 and N2 instead of N.
* User reads from the first one, but writes to both of them. Note that the synthesis
* tool might get too clever and find out that N1 and N2 are identical and decide
* to throw one of them away, use (* KEEP="TRUE" *) or something like that then.
*
* We also need N3 and N4, because during pre-computation F and N_COEFF are calculated
* at the same time, so we need two more copies of modulus to allow different words
* of it to be read at the same time.
*/
wire [OPERAND_ADDR_WIDTH-1:0] core_n1_addr;
wire [OPERAND_ADDR_WIDTH-1:0] core_n2_addr;
wire [OPERAND_ADDR_WIDTH-1:0] core_n3_addr;
wire [OPERAND_ADDR_WIDTH-1:0] core_n4_addr;
wire [OPERAND_ADDR_WIDTH-1:0] core_m_addr;
wire [OPERAND_ADDR_WIDTH-1:0] core_d_addr;
wire [OPERAND_ADDR_WIDTH-1:0] core_r_addr;
wire [ 32-1:0] core_n1_data;
wire [ 32-1:0] core_n2_data;
wire [ 32-1:0] core_n3_data;
wire [ 32-1:0] core_n4_data;
wire [ 32-1:0] core_m_data;
wire [ 32-1:0] core_d_data;
wire [ 32-1:0] core_r_data;
wire [ 32-1:0] user_n_data;
wire [ 32-1:0] user_m_data;
wire [ 32-1:0] user_d_data;
wire [ 32-1:0] user_r_data;
wire core_r_wren;
wire user_n_wren = bus_cs && bus_we && (bus_addr_bank == BANK_MODULUS);
wire user_m_wren = bus_cs && bus_we && (bus_addr_bank == BANK_MESSAGE);
wire user_d_wren = bus_cs && bus_we && (bus_addr_bank == BANK_EXPONENT);
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_n1 (.clk(clk),
.a_addr(bus_addr_word), .a_out(user_n_data), .a_wr(user_n_wren), .a_in(bus_data_wr),
.b_addr(core_n1_addr), .b_out(core_n1_data));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_n2 (.clk(clk),
.a_addr(bus_addr_word), .a_out(), .a_wr(user_n_wren), .a_in(bus_data_wr),
.b_addr(core_n2_addr), .b_out(core_n2_data));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_n3 (.clk(clk),
.a_addr(bus_addr_word), .a_out(), .a_wr(user_n_wren), .a_in(bus_data_wr),
.b_addr(core_n3_addr), .b_out(core_n3_data));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_n4 (.clk(clk),
.a_addr(bus_addr_word), .a_out(), .a_wr(user_n_wren), .a_in(bus_data_wr),
.b_addr(core_n4_addr), .b_out(core_n4_data));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_m (.clk(clk),
.a_addr(bus_addr_word), .a_out(user_m_data), .a_wr(user_m_wren), .a_in(bus_data_wr),
.b_addr(core_m_addr), .b_out(core_m_data));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_d (.clk(clk),
.a_addr(bus_addr_word), .a_out(user_d_data), .a_wr(user_d_wren), .a_in(bus_data_wr),
.b_addr(core_d_addr), .b_out(core_d_data));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_r (.clk(clk),
.a_addr(core_r_addr), .a_out(), .a_wr(core_r_wren), .a_in(core_r_data),
.b_addr(bus_addr_word), .b_out(user_r_data));
/*
* Instantiate internal memories.
*
* We have two block memories: F for Montgomery factor and N_COEFF for modulus-dependent
* coefficient, they are written to during pre-calculation and read from during exponentiation.
*
* Note, that there are actually two identical block memories N_COEFF1 and N_COEFF2 instead of
* just one N_COEFF, read the explanation above. F is only used by one of the multipliers, so
* we don't need F1 and F2.
*/
wire [OPERAND_ADDR_WIDTH-1:0] core_f_addr_wr;
wire [OPERAND_ADDR_WIDTH-1:0] core_f_addr_rd;
wire [OPERAND_ADDR_WIDTH-1:0] core_n_coeff_addr_wr;
wire [OPERAND_ADDR_WIDTH-1:0] core_n_coeff1_addr_rd;
wire [OPERAND_ADDR_WIDTH-1:0] core_n_coeff2_addr_rd;
wire [ 32-1:0] core_f_data_wr;
wire [ 32-1:0] core_f_data_rd;
wire [ 32-1:0] core_n_coeff_data_wr;
wire [ 32-1:0] core_n_coeff1_data_rd;
wire [ 32-1:0] core_n_coeff2_data_rd;
wire core_f_wren;
wire core_n_coeff_wren;
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_f (.clk(clk),
.a_addr(core_f_addr_wr), .a_out(), .a_wr(core_f_wren), .a_in(core_f_data_wr),
.b_addr(core_f_addr_rd), .b_out(core_f_data_rd));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_n_coeff1 (.clk(clk),
.a_addr(core_n_coeff_addr_wr), .a_out(), .a_wr(core_n_coeff_wren), .a_in(core_n_coeff_data_wr),
.b_addr(core_n_coeff1_addr_rd), .b_out(core_n_coeff1_data_rd));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_n_coeff2 (.clk(clk),
.a_addr(core_n_coeff_addr_wr), .a_out(), .a_wr(core_n_coeff_wren), .a_in(core_n_coeff_data_wr),
.b_addr(core_n_coeff2_addr_rd), .b_out(core_n_coeff2_data_rd));
/*
* Montgomery factor calculation module.
*/
(* EQUIVALENT_REGISTER_REMOVAL="NO" *)
reg precalc_f_ena = 1'b0;
wire precalc_r_rdy;
modexpa7_factor #
(
.OPERAND_ADDR_WIDTH (OPERAND_ADDR_WIDTH)
)
precalc_f
(
.clk (clk),
.rst_n (rst_n),
.ena (precalc_f_ena),
.rdy (precalc_r_rdy),
.n_bram_addr (core_n3_addr),
.f_bram_addr (core_f_addr_wr),
.n_bram_out (core_n3_data),
.f_bram_in (core_f_data_wr),
.f_bram_wr (core_f_wren),
.n_num_words (modulus_num_words_latch)
);
/*
* Modulus-depentent coefficient calculation module.
*/
(* EQUIVALENT_REGISTER_REMOVAL="NO" *)
reg precalc_n_coeff_ena = 1'b0;
wire precalc_n_coeff_rdy;
modexpa7_n_coeff #
(
.OPERAND_ADDR_WIDTH (OPERAND_ADDR_WIDTH)
)
precalc_n_coeff
(
.clk (clk),
.rst_n (rst_n),
.ena (precalc_n_coeff_ena),
.rdy (precalc_n_coeff_rdy),
.n_bram_addr (core_n4_addr),
.n_coeff_bram_addr (core_n_coeff_addr_wr),
.n_bram_out (core_n4_data),
.n_coeff_bram_in (core_n_coeff_data_wr),
.n_coeff_bram_wr (core_n_coeff_wren),
.n_num_words (modulus_num_words_latch)
);
/*
* Exponentiation module.
*/
reg exponent_ena = 1'b0;
wire exponent_rdy;
modexpa7_exponentiator #
(
.OPERAND_ADDR_WIDTH (OPERAND_ADDR_WIDTH),
.SYSTOLIC_ARRAY_POWER (SYSTOLIC_ARRAY_POWER)
)
exponent_r
(
.clk (clk),
.rst_n (rst_n),
.ena (exponent_ena),
.rdy (exponent_rdy),
.crt (crt_mode),
.m_bram_addr (core_m_addr),
.d_bram_addr (core_d_addr),
.f_bram_addr (core_f_addr_rd),
.n1_bram_addr (core_n1_addr),
.n2_bram_addr (core_n2_addr),
.n_coeff1_bram_addr (core_n_coeff1_addr_rd),
.n_coeff2_bram_addr (core_n_coeff2_addr_rd),
.r_bram_addr (core_r_addr),
.m_bram_out (core_m_data),
.d_bram_out (core_d_data),
.f_bram_out (core_f_data_rd),
.n1_bram_out (core_n1_data),
.n2_bram_out (core_n2_data),
.n_coeff1_bram_out (core_n_coeff1_data_rd),
.n_coeff2_bram_out (core_n_coeff2_data_rd),
.r_bram_in (core_r_data),
.r_bram_wr (core_r_wren),
.m_num_words (modulus_num_words_latch),
.d_num_bits (exponent_num_bits_latch)
);
/*
* Sub-Module Enable Logic
*/
always @(posedge clk) begin
precalc_f_ena <= (fsm_next_state == FSM_STATE_PRECALC_START) ? 1'b1 : 1'b0;
precalc_n_coeff_ena <= (fsm_next_state == FSM_STATE_PRECALC_START) ? 1'b1 : 1'b0;
exponent_ena <= (fsm_next_state == FSM_STATE_EXPONENT_START) ? 1'b1 : 1'b0;
end
/*
* FSM Process
*/
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) fsm_state <= FSM_STATE_IDLE;
else fsm_state <= fsm_next_state;
/*
* FSM Transition Logic
*/
// handy flag that tells whether both pre-calculations modules are idle
wire precalc_rdy = precalc_n_coeff_rdy && precalc_r_rdy;
always @* begin
//
fsm_next_state = FSM_STATE_STOP;
//
case (fsm_state)
//
FSM_STATE_IDLE: if (init_trig) fsm_next_state = FSM_STATE_PRECALC_START; // init has priority over next
else if (next_trig) fsm_next_state = FSM_STATE_EXPONENT_START;
else fsm_next_state = FSM_STATE_IDLE;
//
FSM_STATE_PRECALC_START: fsm_next_state = FSM_STATE_PRECALC_CRUNCH;
FSM_STATE_PRECALC_CRUNCH: if (precalc_rdy) fsm_next_state = FSM_STATE_PRECALC_FINAL;
else fsm_next_state = FSM_STATE_PRECALC_CRUNCH;
FSM_STATE_PRECALC_FINAL: fsm_next_state = FSM_STATE_STOP;
//
FSM_STATE_EXPONENT_START: fsm_next_state = FSM_STATE_EXPONENT_CRUNCH;
FSM_STATE_EXPONENT_CRUNCH: if (exponent_rdy) fsm_next_state = FSM_STATE_EXPONENT_FINAL;
else fsm_next_state = FSM_STATE_EXPONENT_CRUNCH;
FSM_STATE_EXPONENT_FINAL: fsm_next_state = FSM_STATE_STOP;
//
FSM_STATE_STOP: fsm_next_state = FSM_STATE_IDLE;
//
endcase
//
end
/*
* Bus read mux.
*/
// delay bus_addr_bank by 1 clock cycle to remember from where we've just been reading
reg [1: 0] bus_addr_bank_dly;
always @(posedge clk)
if (bus_cs) bus_addr_bank_dly <= bus_addr_bank;
// map mux to output port
reg [31: 0] bus_data_rd_mux;
assign bus_data_rd = bus_data_rd_mux;
// select the right data word
always @(*)
//
case (bus_addr_bank_dly)
//
BANK_MODULUS: bus_data_rd_mux = user_n_data;
BANK_MESSAGE: bus_data_rd_mux = user_m_data;
BANK_EXPONENT: bus_data_rd_mux = user_d_data;
BANK_RESULT: bus_data_rd_mux = user_r_data;
//
endcase
endmodule
|