1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
|
//======================================================================
//
// modexpa7_systolic_multiplier_array.v
// -----------------------------------------------------------------------------
// Systolic Montgomery multiplier Processing Element Array
//
// Authors: Pavel Shatov
//
// Copyright (c) 2017, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module modexpa7_systolic_multiplier_array #
(
parameter OPERAND_ADDR_WIDTH = 4,
parameter SYSTOLIC_ARRAY_POWER = 2
)
(
input clk,
input rst_n,
input ena,
output rdy,
input crt,
output [OPERAND_ADDR_WIDTH - SYSTOLIC_ARRAY_POWER - 1 : 0] loader_addr_rd,
input [ 32 * (2 ** SYSTOLIC_ARRAY_POWER) - 1 : 0] pe_a_wide,
input [ 32 * (2 ** SYSTOLIC_ARRAY_POWER) - 1 : 0] pe_b_wide,
output [ OPERAND_ADDR_WIDTH - 1 : 0] a_bram_addr,
output [ OPERAND_ADDR_WIDTH : 0] p_bram_addr,
output [ 32 - 1 : 0] p_bram_in,
output p_bram_wr,
input [ OPERAND_ADDR_WIDTH - 1 : 0] n_num_words,
input [ OPERAND_ADDR_WIDTH : 0] p_num_words
);
/*
* Include Settings
*/
`include "cryptech_primitive_switch.vh"
`include "modexpa7_settings.vh"
/*
* FSM Declaration
*/
localparam [ 7: 0] FSM_STATE_IDLE = 8'h00;
localparam [ 7: 0] FSM_STATE_MULT_START = 8'h11;
localparam [ 7: 0] FSM_STATE_MULT_CRUNCH = 8'h12;
localparam [ 7: 0] FSM_STATE_MULT_RELOAD = 8'h13;
localparam [ 7: 0] FSM_STATE_MULT_FINAL = 8'h14;
localparam [ 7: 0] FSM_STATE_STOP = 8'hFF;
/*
* FSM State / Next State
*/
reg [ 7: 0] fsm_state = FSM_STATE_IDLE;
reg [ 7: 0] fsm_next_state;
/*
* Enable Delay and Trigger
*/
reg ena_dly = 1'b0;
// delay enable by one clock cycle
always @(posedge clk) ena_dly <= ena;
// trigger new operation when enable goes high
wire ena_trig = ena && !ena_dly;
/*
* Ready Flag Logic
*/
reg rdy_reg = 1'b1;
assign rdy = rdy_reg;
always @(posedge clk or negedge rst_n)
// reset flag
if (rst_n == 1'b0) rdy_reg <= 1'b1;
else begin
// clear flag when operation is started
if (fsm_state == FSM_STATE_IDLE) rdy_reg <= ~ena_trig;
// set flag after operation is finished
if (fsm_state == FSM_STATE_STOP) rdy_reg <= 1'b1;
end
/*
* Parameters Latch
*/
reg [OPERAND_ADDR_WIDTH-1:0] n_num_words_latch;
reg [OPERAND_ADDR_WIDTH :0] p_num_words_latch;
// save number of words in n when new operation starts
always @(posedge clk)
//
if ((fsm_state == FSM_STATE_IDLE) && ena_trig) begin
n_num_words_latch <= n_num_words;
p_num_words_latch <= p_num_words;
end
/*
* Systolic Cycle Counters
*/
// handy values
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_zero = {SYSTOLIC_CNTR_WIDTH{1'b0}};
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_last = n_num_words_latch[OPERAND_ADDR_WIDTH-1:SYSTOLIC_ARRAY_POWER];
// counters
reg [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_load;
reg [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_unload;
// handy increment values
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_load_next = syst_cnt_load + 1'b1;
wire [SYSTOLIC_CNTR_WIDTH-1:0] syst_cnt_unload_next = syst_cnt_unload + 1'b1;
// handy stop flags
wire syst_cnt_load_done = (syst_cnt_load == syst_cnt_last) ? 1'b1 : 1'b0;
wire syst_cnt_unload_done = (syst_cnt_unload == syst_cnt_last) ? 1'b1 : 1'b0;
always @(posedge clk)
//
case (fsm_next_state)
FSM_STATE_MULT_START,
FSM_STATE_MULT_RELOAD:
//
syst_cnt_load <= syst_cnt_zero;
FSM_STATE_MULT_CRUNCH:
//
syst_cnt_load <= !syst_cnt_load_done ? syst_cnt_load_next : syst_cnt_load;
endcase
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_CRUNCH) begin
//
if (shreg_done_latency)
syst_cnt_unload <= syst_cnt_zero;
else if (shreg_now_unloading)
syst_cnt_unload <= !syst_cnt_unload_done ? syst_cnt_unload_next : syst_cnt_unload;
//
end
/*
* Timing Shift Registers
*/
reg [SYSTOLIC_NUM_CYCLES-1:0] shreg_load;
reg [SYSTOLIC_PE_LATENCY :0] shreg_latency;
reg [SYSTOLIC_NUM_CYCLES-1:0] shreg_unload;
wire shreg_done_load = shreg_load[syst_cnt_last];
wire shreg_done_latency = shreg_latency[SYSTOLIC_PE_LATENCY];
wire shreg_done_unload = shreg_unload[syst_cnt_last];
reg shreg_now_loading;
//reg shreg_now_latency;
reg shreg_now_unloading;
reg shreg_done_latency_dly;
always @(posedge clk)
shreg_done_latency_dly <= shreg_done_latency;
always @(posedge clk)
//
case (fsm_state)
//
FSM_STATE_MULT_START,
FSM_STATE_MULT_RELOAD: begin
//
shreg_now_loading <= 1'b1;
//shreg_now_latency <= 1'b1;
shreg_now_unloading <= 1'b0;
//
shreg_load <= {{SYSTOLIC_NUM_CYCLES-1{1'b0}}, 1'b1};
shreg_latency <= {{SYSTOLIC_PE_LATENCY {1'b0}}, 1'b1};
shreg_unload <= {{SYSTOLIC_NUM_CYCLES-1{1'b0}}, 1'b0};
//
end
//
FSM_STATE_MULT_CRUNCH: begin
//
shreg_load <= {shreg_load [SYSTOLIC_NUM_CYCLES-2:0], 1'b0};
shreg_latency <= {shreg_latency[SYSTOLIC_PE_LATENCY-1:0], 1'b0};
shreg_unload <= {shreg_unload [SYSTOLIC_NUM_CYCLES-2:0], shreg_latency[SYSTOLIC_PE_LATENCY]};
//
if (shreg_done_load) shreg_now_loading <= 1'b0;
//if (shreg_done_latency) shreg_now_latency <= 1'b0;
if (shreg_done_latency) shreg_now_unloading <= 1'b1;
else if (shreg_done_unload) shreg_now_unloading <= 1'b0;
end
//
default: begin
shreg_now_loading <= 1'b0;
//shreg_now_latency <= 1'b0;
shreg_now_unloading <= 1'b0;
end
//
endcase
/*
* Systolic Array of Processing Elements
*/
reg [31: 0] pe_a [0:SYSTOLIC_ARRAY_LENGTH-1];
reg [31: 0] pe_b [0:SYSTOLIC_ARRAY_LENGTH-1];
wire [31: 0] pe_t [0:SYSTOLIC_ARRAY_LENGTH-1];
wire [31: 0] pe_c_in [0:SYSTOLIC_ARRAY_LENGTH-1];
wire [31: 0] pe_p [0:SYSTOLIC_ARRAY_LENGTH-1];
wire [31: 0] pe_c_out [0:SYSTOLIC_ARRAY_LENGTH-1];
/*
* FIFOs
*/
reg fifo_c_rst;
reg fifo_t_rst;
reg fifo_c_wren;
wire fifo_c_rden;
reg fifo_t_wren;
wire fifo_t_rden;
reg [32 * SYSTOLIC_ARRAY_LENGTH - 1 : 0] fifo_c_din;
wire [32 * SYSTOLIC_ARRAY_LENGTH - 1 : 0] fifo_c_dout;
wire [32 * SYSTOLIC_ARRAY_LENGTH - 1 : 0] fifo_t_din;
wire [32 * SYSTOLIC_ARRAY_LENGTH - 1 : 0] fifo_t_dout;
wire [32 * 1 - 1 : 0] fifo_t_din_msb;
reg [32 * (SYSTOLIC_ARRAY_LENGTH - 1) - 1 : 0] fifo_t_din_lsb;
assign fifo_t_din = {fifo_t_din_msb, fifo_t_din_lsb};
modexpa7_simple_fifo #
(
.BUS_WIDTH (32 * SYSTOLIC_ARRAY_LENGTH),
.DEPTH_BITS (SYSTOLIC_CNTR_WIDTH)
)
fifo_c
(
.clk (clk),
.rst (fifo_c_rst),
.wr_en (fifo_c_wren),
.d_in (fifo_c_din),
.rd_en (fifo_c_rden),
.d_out (fifo_c_dout)
);
modexpa7_simple_fifo #
(
.BUS_WIDTH (32 * SYSTOLIC_ARRAY_LENGTH),
.DEPTH_BITS (SYSTOLIC_CNTR_WIDTH)
)
fifo_t
(
.clk (clk),
.rst (fifo_t_rst),
.wr_en (fifo_t_wren),
.d_in (fifo_t_din),
.rd_en (fifo_t_rden),
.d_out (fifo_t_dout)
);
genvar i;
generate for (i=0; i<SYSTOLIC_ARRAY_LENGTH; i=i+1)
//
begin : gen_modexpa7_systolic_pe
//
`CRYPTECH_PRIMITIVE_MODEXP_SYSTOLIC_PE systolic_pe_inst
(
.clk (clk),
.a (pe_a[i]),
.b (pe_b[i]),
.t (pe_t[i]),
.c_in (pe_c_in[i]),
.p (pe_p[i]),
.c_out (pe_c_out[i])
);
//
assign pe_c_in[i] = fifo_c_dout[32 * (i + 1) - 1 -: 32];
assign pe_t[i] = fifo_t_dout[32 * (i + 1) - 1 -: 32];
//
always @(posedge clk)
fifo_c_din[32 * (i + 1) - 1 -: 32] <= pe_c_out[i];
//
end
//
endgenerate
generate for (i=1; i<SYSTOLIC_ARRAY_LENGTH; i=i+1)
//
begin : gen_modexpa7_fifo_t_lsb
//
always @(posedge clk)
fifo_t_din_lsb[32 * i - 1 -: 32] <= pe_p[i];
//
end
//
endgenerate
assign fifo_t_din_msb = shreg_now_unloading ? pe_p[0] : 32'd0;
/*
* FIFO Reset Logic
*/
always @(posedge clk)
//
case (fsm_state)
FSM_STATE_MULT_START: fifo_c_rst <= 1'b1;
FSM_STATE_MULT_CRUNCH: if (shreg_done_load) fifo_c_rst <= 1'b0;
endcase
always @(posedge clk)
//
case (fsm_state)
FSM_STATE_MULT_START: fifo_t_rst <= 1'b1;
FSM_STATE_MULT_CRUNCH: if (shreg_done_load) fifo_t_rst <= 1'b0;
endcase
/*
*
*/
assign fifo_c_rden = shreg_now_loading;
assign fifo_t_rden = shreg_now_loading;
always @(posedge clk) fifo_c_wren <= shreg_now_unloading;
always @(posedge clk) fifo_t_wren <= shreg_now_unloading;
/*
* Block Memory Interface
*/
// the very first address
wire [OPERAND_ADDR_WIDTH - 1 : 0] bram_addr_zero = {OPERAND_ADDR_WIDTH {1'b0}};
wire [OPERAND_ADDR_WIDTH : 0] bram_addr_ext_zero = {OPERAND_ADDR_WIDTH+1{1'b0}};
// the very last address
wire [OPERAND_ADDR_WIDTH - 1 : 0] bram_addr_last = n_num_words_latch;
wire [OPERAND_ADDR_WIDTH - 1 : 0] bram_addr_last_crt =
{n_num_words_latch[OPERAND_ADDR_WIDTH-2:0], 1'b1};
wire [OPERAND_ADDR_WIDTH : 0] bram_addr_ext_last = p_num_words_latch;
// registers
reg [OPERAND_ADDR_WIDTH - 1 : 0] a_addr;
reg [OPERAND_ADDR_WIDTH : 0] p_addr;
reg [ 32 - 1 : 0] p_data_in;
reg p_wren;
// handy values
wire [OPERAND_ADDR_WIDTH - 1 : 0] a_addr_next = a_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH : 0] p_addr_next = p_addr + 1'b1;
// handy flags
wire a_addr_done = (a_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire a_addr_done_crt = (a_addr == bram_addr_last_crt) ? 1'b1 : 1'b0;
wire p_addr_done = (p_addr == bram_addr_ext_last) ? 1'b1 : 1'b0;
// map top-level ports to internal registers
assign a_bram_addr = a_addr;
assign p_bram_addr = p_addr;
assign p_bram_in = p_data_in;
assign p_bram_wr = p_wren;
integer j;
always @(posedge clk)
//
if (fsm_state == FSM_STATE_MULT_CRUNCH)
//
for (j=0; j<SYSTOLIC_ARRAY_LENGTH; j=j+1)
//
if (shreg_now_loading) begin
pe_a[j] <= (p_addr > {1'b0, a_addr}) ? 32'd0 : pe_a_wide[32 * (j + 1) - 1 -: 32];
pe_b[j] <= pe_b_wide[32 * (j + 1) - 1 -: 32];
end else begin
pe_a[j] <= 32'hXXXXXXXX;
pe_b[j] <= 32'hXXXXXXXX;
end
/*
*
*/
always @(posedge clk)
//
case (fsm_next_state)
FSM_STATE_MULT_RELOAD: p_wren <= 1'b1;
default: p_wren <= 1'b0;
endcase
always @(posedge clk)
//
if ((fsm_state == FSM_STATE_MULT_CRUNCH) && shreg_done_latency_dly)
p_data_in <= crt ? pe_a_wide[31:0] : pe_p[0];
/*
* Block Memory Address Control
*/
always @(posedge clk) begin
//
case (fsm_state)
FSM_STATE_MULT_START: p_addr <= bram_addr_zero;
FSM_STATE_MULT_RELOAD: p_addr <= p_addr_next;
endcase
//
case (fsm_next_state)
FSM_STATE_MULT_START: a_addr <= bram_addr_zero;
FSM_STATE_MULT_RELOAD: if (crt) a_addr <= !a_addr_done_crt ? a_addr_next : a_addr;
else a_addr <= !a_addr_done ? a_addr_next : a_addr;
endcase
//
end
/*
* Loader Address Control
*/
reg [SYSTOLIC_CNTR_WIDTH-1:0] loader_addr;
assign loader_addr_rd = loader_addr;
always @(posedge clk)
//
case (fsm_next_state)
//
FSM_STATE_MULT_START,
FSM_STATE_MULT_RELOAD:
loader_addr <= syst_cnt_zero;
//
FSM_STATE_MULT_CRUNCH:
//
loader_addr <= !syst_cnt_load_done ? syst_cnt_load_next : syst_cnt_load;
//
endcase
/*
* FSM Process
*/
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) fsm_state <= FSM_STATE_IDLE;
else fsm_state <= fsm_next_state;
/*
* FSM Transition Logic
*/
always @* begin
//
fsm_next_state = FSM_STATE_STOP;
//
case (fsm_state)
//
FSM_STATE_IDLE: if (ena_trig) fsm_next_state = FSM_STATE_MULT_START;
else fsm_next_state = FSM_STATE_IDLE;
//
FSM_STATE_MULT_START: fsm_next_state = FSM_STATE_MULT_CRUNCH;
FSM_STATE_MULT_CRUNCH: if (shreg_done_unload) fsm_next_state = FSM_STATE_MULT_RELOAD;
else fsm_next_state = FSM_STATE_MULT_CRUNCH;
FSM_STATE_MULT_RELOAD: if (p_addr_done) fsm_next_state = FSM_STATE_MULT_FINAL;
else fsm_next_state = FSM_STATE_MULT_CRUNCH;
FSM_STATE_MULT_FINAL: fsm_next_state = FSM_STATE_STOP;
//
FSM_STATE_STOP: fsm_next_state = FSM_STATE_IDLE;
//
endcase
//
end
endmodule
//======================================================================
// End of file
//======================================================================
|