aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/rtl/modexpa7_top.v120
-rw-r--r--src/rtl/modexpa7_wrapper.v30
-rw-r--r--src/stm32/modexpa7_driver_sample.c236
-rw-r--r--src/tb/tb_wrapper.v121
4 files changed, 382 insertions, 125 deletions
diff --git a/src/rtl/modexpa7_top.v b/src/rtl/modexpa7_top.v
index ad101dd..ea3d2c2 100644
--- a/src/rtl/modexpa7_top.v
+++ b/src/rtl/modexpa7_top.v
@@ -54,7 +54,7 @@ module modexpa7_top #
input bus_cs,
input bus_we,
- input [OPERAND_ADDR_WIDTH+1:0] bus_addr,
+ input [OPERAND_ADDR_WIDTH+2:0] bus_addr,
input [ 32-1:0] bus_data_wr,
output [ 32-1:0] bus_data_rd
);
@@ -109,24 +109,38 @@ module modexpa7_top #
reg valid_reg = 1'b0;
assign ready = ready_reg;
- assign valid = valid_reg;
+ assign valid = valid_reg;
+
+ reg init_trig_latch;
+ reg next_trig_latch;
+
+ always @(posedge clk)
+ //
+ if (fsm_state == FSM_STATE_IDLE)
+ //
+ case ({next_trig, init_trig})
+ 2'b00: {next_trig_latch, init_trig_latch} <= 2'b00; // do nothing
+ 2'b01: {next_trig_latch, init_trig_latch} <= 2'b01; // precalculate
+ 2'b10: {next_trig_latch, init_trig_latch} <= 2'b10; // exponentiate
+ 2'b11: {next_trig_latch, init_trig_latch} <= 2'b01; // 'init' has priority over 'next'
+ endcase
// ready flag logic
always @(posedge clk or negedge rst_n)
//
- if (rst_n == 1'b0) ready_reg <= 1'b0; // reset flag to default state
+ if (rst_n == 1'b0) ready_reg <= 1'b0; // reset flag to default state
else case (fsm_state)
- FSM_STATE_IDLE: if (init_trig) ready_reg <= 1'b0; // clear flag when operation is started
- FSM_STATE_STOP: if (!ready_reg) ready_reg <= 1'b1; // set flag after operation is finished
+ FSM_STATE_IDLE: if (init_trig) ready_reg <= 1'b0; // clear flag when operation is started
+ FSM_STATE_STOP: if (init_trig_latch) ready_reg <= 1'b1; // set flag after operation is finished
endcase
// valid flag logic
always @(posedge clk or negedge rst_n)
//
- if (rst_n == 1'b0) valid_reg <= 1'b0; // reset flag to default state
+ if (rst_n == 1'b0) valid_reg <= 1'b0; // reset flag to default state
else case (fsm_state)
- FSM_STATE_IDLE: if (next_trig) valid_reg <= 1'b0; // clear flag when operation is started
- FSM_STATE_STOP: if (!valid_reg) valid_reg <= 1'b1; // set flag after operation is finished
+ FSM_STATE_IDLE: if (next_trig) valid_reg <= 1'b0; // clear flag when operation is started
+ FSM_STATE_STOP: if (next_trig_latch) valid_reg <= 1'b1; // set flag after operation is finished
endcase
@@ -137,14 +151,20 @@ module modexpa7_top #
reg [OPERAND_ADDR_WIDTH+4:0] exponent_num_bits_latch;
// save number of words in modulus when pre-calculation has been triggered,
- // i.e. user has apparently loaded a new modulus into the core
+ // i.e. user has apparently loaded a new modulus into the core
+ //
+ // we also need to update modulus length when user wants to exponentiate,
+ // because he could have done precomputation for some modulus, then used
+ // a different length modulus and then reverted back the original modulus
+ // without doing precomputation (dammit, spent whole day chasing this bug :(
always @(posedge clk)
//
- if (fsm_next_state == FSM_STATE_PRECALC_START)
+ if ((fsm_next_state == FSM_STATE_PRECALC_START) ||
+ (fsm_next_state == FSM_STATE_EXPONENT_START))
modulus_num_words_latch <= modulus_num_words;
// save number of bits in exponent when exponentiation has been triggered,
- // i.e. user has loaded a new message into the core and wants exponentiate
+ // i.e. user has loaded a new message into the core and wants to exponentiate
always @(posedge clk)
//
if (fsm_next_state == FSM_STATE_EXPONENT_START)
@@ -154,17 +174,21 @@ module modexpa7_top #
/*
* Split bus address into bank/word parts.
*/
- wire [ 2 - 1 : 0] bus_addr_bank = bus_addr[OPERAND_ADDR_WIDTH+1:OPERAND_ADDR_WIDTH];
+ wire [ 3 - 1 : 0] bus_addr_bank = bus_addr[OPERAND_ADDR_WIDTH+2:OPERAND_ADDR_WIDTH];
wire [OPERAND_ADDR_WIDTH - 1 : 0] bus_addr_word = bus_addr[OPERAND_ADDR_WIDTH-1:0];
/*
* Define bank offsets.
*/
- localparam [ 1: 0] BANK_MODULUS = 2'b00; // 0
- localparam [ 1: 0] BANK_MESSAGE = 2'b01; // 1
- localparam [ 1: 0] BANK_EXPONENT = 2'b10; // 2
- localparam [ 1: 0] BANK_RESULT = 2'b11; // 3
+ localparam [ 2: 0] BANK_MODULUS = 3'b000; // 0
+ localparam [ 2: 0] BANK_MESSAGE = 3'b001; // 1
+ localparam [ 2: 0] BANK_EXPONENT = 3'b010; // 2
+ localparam [ 2: 0] BANK_RESULT = 3'b011; // 3
+ localparam [ 2: 0] BANK_MODULUS_COEFF_OUT = 3'b100; // 5
+ localparam [ 2: 0] BANK_MODULUS_COEFF_IN = 3'b101; // 4
+ localparam [ 2: 0] BANK_MONTGOMERY_FACTOR_OUT = 3'b110; // 7
+ localparam [ 2: 0] BANK_MONTGOMERY_FACTOR_IN = 3'b111; // 6
/*
@@ -176,7 +200,7 @@ module modexpa7_top #
*
* Note, that the core does squaring and multiplication simultaneously, so
* there are two identical systolic multipliers inside. It's better to have two
- * copies of modulus to give router some freeding in placing the multipliers,
+ * copies of modulus to give router some freedom in placing the multipliers,
* that's why there are actually two identical block memories N1 and N2 instead of N.
* User reads from the first one, but writes to both of them. Note that the synthesis
* tool might get too clever and find out that N1 and N2 are identical and decide
@@ -250,14 +274,18 @@ module modexpa7_top #
/*
- * Instantiate internal memories.
+ * Instantiate more block memories.
+ *
+ * Fast modular exponentiation requires two pre-calculated helper quantities: Montgomery
+ * factor F and modulus-dependent speed-up coefficient N_COEFF. This core has two separate
+ * buffers for each of those quantities, during pre-computation F and N_COEFF are written to
+ * the "output" buffers, so that user can retrieve them and store along with the key for
+ * future use. During exponentiation F and N_COEFF are read from the "input" buffers and
+ * must be supplied by user along with the modulus.
*
- * We have two block memories: F for Montgomery factor and N_COEFF for modulus-dependent
- * coefficient, they are written to during pre-calculation and read from during exponentiation.
- *
- * Note, that there are actually two identical block memories N_COEFF1 and N_COEFF2 instead of
- * just one N_COEFF, read the explanation above. F is only used by one of the multipliers, so
- * we don't need F1 and F2.
+ * Note, that there are actually two identical input block memories N_COEFF1 and N_COEFF2
+ * instead of just one N_COEFF, read the explanation above. F is only used by one of
+ * the multipliers, so we don't need F1 and F2.
*/
wire [OPERAND_ADDR_WIDTH-1:0] core_f_addr_wr;
@@ -274,20 +302,38 @@ module modexpa7_top #
wire core_f_wren;
wire core_n_coeff_wren;
+
+ wire [ 32-1:0] user_f_out_data;
+ wire [ 32-1:0] user_f_in_data;
+ wire [ 32-1:0] user_n_coeff_out_data;
+ wire [ 32-1:0] user_n_coeff_in_data;
+
+ wire user_f_in_wren = bus_cs && bus_we && (bus_addr_bank == BANK_MONTGOMERY_FACTOR_IN);
+ wire user_n_coeff_in_wren = bus_cs && bus_we && (bus_addr_bank == BANK_MODULUS_COEFF_IN);
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
- bram_f (.clk(clk),
+ bram_f_out (.clk(clk),
.a_addr(core_f_addr_wr), .a_out(), .a_wr(core_f_wren), .a_in(core_f_data_wr),
+ .b_addr(bus_addr_word), .b_out(user_f_out_data));
+
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
+ bram_f_in (.clk(clk),
+ .a_addr(bus_addr_word), .a_out(user_f_in_data), .a_wr(user_f_in_wren), .a_in(bus_data_wr),
.b_addr(core_f_addr_rd), .b_out(core_f_data_rd));
-
+
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
- bram_n_coeff1 (.clk(clk),
+ bram_n_coeff_out (.clk(clk),
.a_addr(core_n_coeff_addr_wr), .a_out(), .a_wr(core_n_coeff_wren), .a_in(core_n_coeff_data_wr),
+ .b_addr(bus_addr_word), .b_out(user_n_coeff_out_data));
+
+ bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
+ bram_n_coeff_in1 (.clk(clk),
+ .a_addr(bus_addr_word), .a_out(user_n_coeff_in_data), .a_wr(user_n_coeff_in_wren), .a_in(bus_data_wr),
.b_addr(core_n_coeff1_addr_rd), .b_out(core_n_coeff1_data_rd));
bram_1rw_1ro_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
- bram_n_coeff2 (.clk(clk),
- .a_addr(core_n_coeff_addr_wr), .a_out(), .a_wr(core_n_coeff_wren), .a_in(core_n_coeff_data_wr),
+ bram_n_coeff_in2 (.clk(clk),
+ .a_addr(bus_addr_word), .a_out(), .a_wr(user_n_coeff_in_wren), .a_in(bus_data_wr),
.b_addr(core_n_coeff2_addr_rd), .b_out(core_n_coeff2_data_rd));
@@ -461,7 +507,7 @@ module modexpa7_top #
*/
// delay bus_addr_bank by 1 clock cycle to remember from where we've just been reading
- reg [1: 0] bus_addr_bank_dly;
+ reg [2: 0] bus_addr_bank_dly;
always @(posedge clk)
if (bus_cs) bus_addr_bank_dly <= bus_addr_bank;
@@ -474,12 +520,16 @@ module modexpa7_top #
//
case (bus_addr_bank_dly)
//
- BANK_MODULUS: bus_data_rd_mux = user_n_data;
- BANK_MESSAGE: bus_data_rd_mux = user_m_data;
- BANK_EXPONENT: bus_data_rd_mux = user_d_data;
- BANK_RESULT: bus_data_rd_mux = user_r_data;
+ BANK_MODULUS: bus_data_rd_mux = user_n_data;
+ BANK_MESSAGE: bus_data_rd_mux = user_m_data;
+ BANK_EXPONENT: bus_data_rd_mux = user_d_data;
+ BANK_RESULT: bus_data_rd_mux = user_r_data;
+ //
+ BANK_MODULUS_COEFF_OUT: bus_data_rd_mux = user_n_coeff_out_data;
+ BANK_MODULUS_COEFF_IN: bus_data_rd_mux = user_n_coeff_in_data;
+ BANK_MONTGOMERY_FACTOR_OUT: bus_data_rd_mux = user_f_out_data;
+ BANK_MONTGOMERY_FACTOR_IN: bus_data_rd_mux = user_f_in_data;
//
endcase
-
endmodule
diff --git a/src/rtl/modexpa7_wrapper.v b/src/rtl/modexpa7_wrapper.v
index a4e2319..8ebc22a 100644
--- a/src/rtl/modexpa7_wrapper.v
+++ b/src/rtl/modexpa7_wrapper.v
@@ -42,7 +42,7 @@ module modexpa7_wrapper #
input cs,
input we,
- input [OPERAND_ADDR_WIDTH+2:0] address,
+ input [OPERAND_ADDR_WIDTH+3:0] address,
input [ 32-1:0] write_data,
output [ 32-1:0] read_data
);
@@ -54,8 +54,8 @@ module modexpa7_wrapper #
localparam ADDR_MSB_REGS = 1'b0;
localparam ADDR_MSB_CORE = 1'b1;
- wire address_msb = address[OPERAND_ADDR_WIDTH+2];
- wire [OPERAND_ADDR_WIDTH+1:0] address_lsb = address[OPERAND_ADDR_WIDTH+1:0];
+ wire address_msb = address[OPERAND_ADDR_WIDTH+3];
+ wire [OPERAND_ADDR_WIDTH+2:0] address_lsb = address[OPERAND_ADDR_WIDTH+2:0];
/*
@@ -68,17 +68,17 @@ module modexpa7_wrapper #
/*
* Registers
*/
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_NAME0 = 'h00; //
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_NAME1 = 'h01; //
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_VERSION = 'h02; //
-
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_CONTROL = 'h08; // {next, init}
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_STATUS = 'h09; // {valid, ready}
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_MODE = 'h10; // {crt, dummy}
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_MODULUS_BITS = 'h11; // number of bits in modulus
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_EXPONENT_BITS = 'h12; // number of bits in exponent
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_BUFFER_BITS = 'h13; // largest supported number of bits
- localparam [OPERAND_ADDR_WIDTH+1:0] ADDR_ARRAY_BITS = 'h14; // number of bits in systolic array
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_NAME0 = 'h00; //
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_NAME1 = 'h01; //
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_VERSION = 'h02; //
+
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_CONTROL = 'h08; // {next, init}
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_STATUS = 'h09; // {valid, ready}
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_MODE = 'h10; // {crt, dummy}
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_MODULUS_BITS = 'h11; // number of bits in modulus
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_EXPONENT_BITS = 'h12; // number of bits in exponent
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_BUFFER_BITS = 'h13; // largest supported number of bits
+ localparam [OPERAND_ADDR_WIDTH+2:0] ADDR_ARRAY_BITS = 'h14; // number of bits in systolic array
localparam CONTROL_INIT_BIT = 0;
localparam CONTROL_NEXT_BIT = 1;
@@ -91,7 +91,7 @@ module modexpa7_wrapper #
localparam CORE_NAME0 = 32'h6D6F6465; // "mode"
localparam CORE_NAME1 = 32'h78706137; // "xpa7"
- localparam CORE_VERSION = 32'h302E3230; // "0.20"
+ localparam CORE_VERSION = 32'h302E3235; // "0.25"
/*
diff --git a/src/stm32/modexpa7_driver_sample.c b/src/stm32/modexpa7_driver_sample.c
index 390c949..e1de2bd 100644
--- a/src/stm32/modexpa7_driver_sample.c
+++ b/src/stm32/modexpa7_driver_sample.c
@@ -59,12 +59,19 @@
#define CORE_ADDR_BUFFER_BITS (0x13 << 2)
#define CORE_ADDR_ARRAY_BITS (0x14 << 2)
+ // operand bank size
+#define BANK_LENGTH 0x200 // 0x200 = 512 bytes = 4096 bits
// locations of operand buffers
-#define CORE_ADDR_BANK_MODULUS (0x800 + 0 * 0x200)
-#define CORE_ADDR_BANK_MESSAGE (0x800 + 1 * 0x200)
-#define CORE_ADDR_BANK_EXPONENT (0x800 + 2 * 0x200)
-#define CORE_ADDR_BANK_RESULT (0x800 + 3 * 0x200)
+#define CORE_ADDR_BANK_MODULUS (BANK_LENGTH * (8 + 0))
+#define CORE_ADDR_BANK_MESSAGE (BANK_LENGTH * (8 + 1))
+#define CORE_ADDR_BANK_EXPONENT (BANK_LENGTH * (8 + 2))
+#define CORE_ADDR_BANK_RESULT (BANK_LENGTH * (8 + 3))
+
+#define CORE_ADDR_BANK_MODULUS_COEFF_OUT (BANK_LENGTH * (8 + 4))
+#define CORE_ADDR_BANK_MODULUS_COEFF_IN (BANK_LENGTH * (8 + 5))
+#define CORE_ADDR_BANK_MONTGOMERY_FACTOR_OUT (BANK_LENGTH * (8 + 6))
+#define CORE_ADDR_BANK_MONTGOMERY_FACTOR_IN (BANK_LENGTH * (8 + 7))
// bit maps
#define CORE_CONTROL_BIT_INIT 0x00000001
@@ -75,6 +82,27 @@
#define CORE_MODE_BIT_CRT 0x00000002
+ /*
+ * zero operands
+ */
+#define Z_384 \
+ {0x00000000, 0x00000000, 0x00000000, 0x00000000, \
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000}
+
+#define Z_192 \
+ {0x00000000, 0x00000000, 0x00000000, 0x00000000, \
+ 0x00000000, 0x00000000}
+
+#define Z_512 \
+ {0x00000000, 0x00000000, 0x00000000, 0x00000000, \
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000}
+
+#define Z_256 \
+ {0x00000000, 0x00000000, 0x00000000, 0x00000000, \
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000}
/*
* test vectors
@@ -83,11 +111,15 @@ static const uint32_t m_384[] = M_384;
static const uint32_t n_384[] = N_384;
static const uint32_t d_384[] = D_384;
static const uint32_t s_384[] = S_384;
+static uint32_t n_coeff_384[] = Z_384;
+static uint32_t factor_384[] = Z_384;
static const uint32_t m_512[] = M_512;
static const uint32_t n_512[] = N_512;
static const uint32_t d_512[] = D_512;
static const uint32_t s_512[] = S_512;
+static uint32_t n_coeff_512[] = Z_512;
+static uint32_t factor_512[] = Z_512;
static const uint32_t p_192[] = P_192;
static const uint32_t q_192[] = Q_192;
@@ -95,6 +127,10 @@ static const uint32_t dp_192[] = DP_192;
static const uint32_t dq_192[] = DQ_192;
static const uint32_t mp_192[] = MP_192;
static const uint32_t mq_192[] = MQ_192;
+static uint32_t p_coeff_192[] = Z_192;
+static uint32_t q_coeff_192[] = Z_192;
+static uint32_t factor_p_192[] = Z_192;
+static uint32_t factor_q_192[] = Z_192;
static const uint32_t p_256[] = P_256;
static const uint32_t q_256[] = Q_256;
@@ -102,7 +138,10 @@ static const uint32_t dp_256[] = DP_256;
static const uint32_t dq_256[] = DQ_256;
static const uint32_t mp_256[] = MP_256;
static const uint32_t mq_256[] = MQ_256;
-
+static uint32_t p_coeff_256[] = Z_256;
+static uint32_t q_coeff_256[] = Z_256;
+static uint32_t factor_p_256[] = Z_256;
+static uint32_t factor_q_256[] = Z_256;
/*
@@ -110,16 +149,25 @@ static const uint32_t mq_256[] = MQ_256;
*/
void toggle_yellow_led(void);
-void setup_modexpa7( const uint32_t *n, size_t l);
+void setup_modexpa7( const uint32_t *n,
+ uint32_t *coeff,
+ uint32_t *factor,
+ size_t l);
-int test_modexpa7( const uint32_t *m,
+int test_modexpa7( const uint32_t *n,
+ const uint32_t *m,
const uint32_t *d,
const uint32_t *s,
+ const uint32_t *coeff,
+ const uint32_t *factor,
size_t l);
-int test_modexpa7_crt( const uint32_t *m,
+int test_modexpa7_crt( const uint32_t *n,
+ const uint32_t *m,
const uint32_t *d,
const uint32_t *s,
+ const uint32_t *coeff,
+ const uint32_t *factor,
size_t l);
@@ -148,10 +196,10 @@ int main()
fmc_read_32(CORE_ADDR_NAME1, &core_name1);
fmc_read_32(CORE_ADDR_VERSION, &core_version);
- // must be "mode", "xpa7", "0.20"
+ // must be "mode", "xpa7", "0.25"
if ( (core_name0 != 0x6D6F6465) ||
(core_name1 != 0x78706137) ||
- (core_version != 0x302E3230))
+ (core_version != 0x302E3235))
{
led_off(LED_GREEN);
led_on(LED_RED);
@@ -164,61 +212,63 @@ int main()
// largest supported operand width, systolic array "power"
fmc_read_32(CORE_ADDR_BUFFER_BITS, &core_buffer_bits);
- fmc_read_32(CORE_ADDR_ARRAY_BITS, &core_array_bits);
+ fmc_read_32(CORE_ADDR_ARRAY_BITS, &core_array_bits);
+
+ //
+ // do pre-computation for all the moduli and store speed-up quantities,
+ // note that each key requires three precomputations: one for the entire
+ // public key and two for each of the corresponding private key components
+ //
+ // we set the 'init' control bit, wait for `ready' status bit to go high,
+ // then retrieve the calculated values from the corresponding "output" banks
+ //
+ // we turn off the green led and turn the yellow led during the process to
+ // get an idea of how long it takes
+ //
+
+ led_off(LED_GREEN);
+ led_on(LED_YELLOW);
+
+ // 384-bit key and 192-bit primes
+ setup_modexpa7(n_384, n_coeff_384, factor_384, 384);
+ setup_modexpa7(p_192, p_coeff_192, factor_p_192, 192);
+ setup_modexpa7(q_192, q_coeff_192, factor_q_192, 192);
+
+ // 512-bit key and 256-bit primes
+ setup_modexpa7(n_512, n_coeff_512, factor_512, 512);
+ setup_modexpa7(p_256, p_coeff_256, factor_p_256, 256);
+ setup_modexpa7(q_256, q_coeff_256, factor_q_256, 256);
+
+ led_off(LED_YELLOW);
+ led_on(LED_GREEN);
+
// repeat forever
while (1)
- {
- // New modulus requires precomputation of modulus-dependent
- // speed-up coefficient, this must be done once per new
- // modulus, i.e. when we're repeatedly signing with the
- // same key, we only need to do precomputation once before
- // starting the very first signing operation.
-
+ {
// fresh start
ok = 1;
-
- {
- // run precomputation of modulus-dependent factor for the 384-bit modulus
- setup_modexpa7(n_384, 384);
-
- // try signing the message from the 384-bit test vector
- ok = ok && test_modexpa7(m_384, d_384, s_384, 384);
- }
- {
- // run precomputation of modulus-dependent factor for the 512-bit modulus
- setup_modexpa7(n_512, 512);
-
- // try signing the message from the 512-bit test vector
- ok = ok && test_modexpa7(m_512, d_512, s_512, 512);
- }
- {
- // run precomputation of modulus-dependent factor for the first 192-bit part of 384-bit modulus
- setup_modexpa7(p_192, 192);
-
+ {
+ // try signing the message with the 384-bit test vector
+ ok = ok && test_modexpa7(n_384, m_384, d_384, s_384, n_coeff_384, factor_384, 384);
+
// try signing 384-bit base using 192-bit exponent
- ok = ok && test_modexpa7_crt(m_384, dp_192, mp_192, 192);
-
- // run precomputation of modulus-dependent factor for the second 192-bit part of 384-bit modulus
- setup_modexpa7(q_192, 192);
+ ok = ok && test_modexpa7_crt(p_192, m_384, dp_192, mp_192, p_coeff_192, factor_p_192, 192);
// try signing 384-bit base using 192-bit exponent
- ok = ok && test_modexpa7_crt(m_384, dq_192, mq_192, 192);
+ ok = ok && test_modexpa7_crt(q_192, m_384, dq_192, mq_192, q_coeff_192, factor_q_192, 192);
}
+
+ {
+ // try signing the message with the 512-bit test vector
+ ok = ok && test_modexpa7(n_512, m_512, d_512, s_512, n_coeff_512, factor_512, 512);
- {
- // run precomputation of modulus-dependent factor for the first 256-bit part of 512-bit modulus
- setup_modexpa7(p_256, 256);
-
// try signing 512-bit base using 256-bit exponent
- ok = ok && test_modexpa7_crt(m_512, dp_256, mp_256, 256);
-
- // run precomputation of modulus-dependent factor for the second 256-bit part of 512-bit modulus
- setup_modexpa7(q_256, 256);
+ ok = ok && test_modexpa7_crt(p_256, m_512, dp_256, mp_256, p_coeff_256, factor_p_256, 256);
// try signing 512-bit base using 256-bit exponent
- ok = ok && test_modexpa7_crt(m_512, dq_256, mq_256, 256);
+ ok = ok && test_modexpa7_crt(q_256, m_512, dq_256, mq_256, q_coeff_256, factor_q_256, 256);
}
// turn on the red led to indicate something went wrong
@@ -234,15 +284,18 @@ int main()
/*
- * Load new modulus and do the necessary precomputations.
+ * Load new modulus and do all the necessary precomputations.
*/
void setup_modexpa7( const uint32_t *n,
+ uint32_t *coeff,
+ uint32_t *factor,
size_t l)
{
size_t i, num_words;
uint32_t num_bits;
uint32_t reg_control, reg_status;
uint32_t n_word;
+ uint32_t coeff_word, factor_word;
uint32_t dummy_num_cyc;
// determine numbers of 32-bit words
@@ -250,10 +303,9 @@ void setup_modexpa7( const uint32_t *n,
// set modulus width
num_bits = l;
- fmc_write_32(CORE_ADDR_MODULUS_BITS, &num_bits);
+ fmc_write_32(CORE_ADDR_MODULUS_BITS, &num_bits);
- // fill modulus bank (the least significant word
- // is at the lowest offset)
+ // fill modulus bank (the least significant word is at the lowest offset)
for (i=0; i<num_words; i++)
{ n_word = n[i];
fmc_write_32(CORE_ADDR_BANK_MODULUS + ((num_words - (i + 1)) * sizeof(uint32_t)), &n_word);
@@ -273,42 +325,70 @@ void setup_modexpa7( const uint32_t *n,
fmc_read_32(CORE_ADDR_STATUS, &reg_status);
}
while (!(reg_status & CORE_STATUS_BIT_READY));
+
+ // retrieve the modulus-dependent coefficient and Montgomery factor
+ // from the corresponding core "output" banks and store them for later use
+ for (i=0; i<num_words; i++)
+ {
+ fmc_read_32(CORE_ADDR_BANK_MODULUS_COEFF_OUT + i * sizeof(uint32_t), &coeff_word);
+ coeff[i] = coeff_word;
+
+ fmc_read_32(CORE_ADDR_BANK_MONTGOMERY_FACTOR_OUT + i * sizeof(uint32_t), &factor_word);
+ factor[i] = factor_word;
+ }
}
//
// Sign the message and compare it against the correct reference value.
//
-int test_modexpa7( const uint32_t *m,
+int test_modexpa7( const uint32_t *n,
+ const uint32_t *m,
const uint32_t *d,
const uint32_t *s,
+ const uint32_t *coeff,
+ const uint32_t *factor,
size_t l)
{
size_t i, num_words;
uint32_t num_bits;
uint32_t reg_control, reg_status;
- uint32_t m_word, d_word, s_word;
+ uint32_t n_word, m_word, d_word, s_word;
+ uint32_t coeff_word, factor_word;
uint32_t dummy_num_cyc;
uint32_t mode;
// determine numbers of 32-bit words
num_words = l >> 5;
- // set exponent width
+ // set modulus width, exponent width
num_bits = l;
- fmc_write_32(CORE_ADDR_EXPONENT_BITS, &num_bits);
+ fmc_write_32(CORE_ADDR_MODULUS_BITS, &num_bits);
+ fmc_write_32(CORE_ADDR_EXPONENT_BITS, &num_bits);
// disable CRT mode
mode = 0;
fmc_write_32(CORE_ADDR_MODE, &mode);
- // fill message and exponent banks (the least significant
- // word is at the lowest offset)
+ // fill modulus, message and exponent banks (the least significant
+ // word is at the lowest offset), we also need to fill "input" core
+ // banks with previously pre-calculated and saved modulus-dependent
+ // speed-up coefficient and Montgomery factor
for (i=0; i<num_words; i++)
- { m_word = m[i];
+ {
+ n_word = n[i];
+ m_word = m[i];
d_word = d[i];
+
+ fmc_write_32(CORE_ADDR_BANK_MODULUS + ((num_words - (i + 1)) * sizeof(uint32_t)), &n_word);
fmc_write_32(CORE_ADDR_BANK_MESSAGE + ((num_words - (i + 1)) * sizeof(uint32_t)), &m_word);
fmc_write_32(CORE_ADDR_BANK_EXPONENT + ((num_words - (i + 1)) * sizeof(uint32_t)), &d_word);
+
+ coeff_word = coeff[i];
+ factor_word = factor[i];
+
+ fmc_write_32(CORE_ADDR_BANK_MODULUS_COEFF_IN + i * sizeof(uint32_t), &coeff_word);
+ fmc_write_32(CORE_ADDR_BANK_MONTGOMERY_FACTOR_IN + i * sizeof(uint32_t), &factor_word);
}
// clear 'next' control bit, then set 'next' control bit again
@@ -331,8 +411,7 @@ int test_modexpa7( const uint32_t *m,
{
fmc_read_32(CORE_ADDR_BANK_RESULT + (i * sizeof(uint32_t)), &s_word);
- if (s_word != s[num_words - (i + 1)])
- return 0;
+ if (s_word != s[num_words - (i + 1)]) return 0;
}
// everything went just fine
@@ -340,34 +419,49 @@ int test_modexpa7( const uint32_t *m,
}
-int test_modexpa7_crt( const uint32_t *m,
+int test_modexpa7_crt( const uint32_t *n,
+ const uint32_t *m,
const uint32_t *d,
const uint32_t *s,
+ const uint32_t *coeff,
+ const uint32_t *factor,
size_t l)
{
size_t i, num_words;
uint32_t num_bits;
uint32_t reg_control, reg_status;
- uint32_t m_word, d_word, s_word;
+ uint32_t n_word, m_word, d_word, s_word;
+ uint32_t coeff_word, factor_word;
uint32_t dummy_num_cyc;
uint32_t mode;
// determine numbers of 32-bit words
num_words = l >> 5;
- // set exponent width
+ // set modulus width, exponent width
num_bits = l;
- fmc_write_32(CORE_ADDR_EXPONENT_BITS, &num_bits);
+ fmc_write_32(CORE_ADDR_MODULUS_BITS, &num_bits);
+ fmc_write_32(CORE_ADDR_EXPONENT_BITS, &num_bits);
// enable CRT mode
mode = CORE_MODE_BIT_CRT;
fmc_write_32(CORE_ADDR_MODE, &mode);
- // fill exponent bank (the least significant word
- // is at the lowest offset)
+ // fill modulus and exponent banks (the least significant word is at
+ // the lowest offset), we also need to fill "input" core banks with
+ // previously pre-calculated and saved modulus-dependent speed-up
+ // coefficient and Montgomery factor
for (i=0; i<num_words; i++)
- { d_word = d[i];
+ { n_word = n[i];
+ d_word = d[i];
+ fmc_write_32(CORE_ADDR_BANK_MODULUS + ((num_words - (i + 1)) * sizeof(uint32_t)), &n_word);
fmc_write_32(CORE_ADDR_BANK_EXPONENT + ((num_words - (i + 1)) * sizeof(uint32_t)), &d_word);
+
+ coeff_word = coeff[i];
+ factor_word = factor[i];
+
+ fmc_write_32(CORE_ADDR_BANK_MODULUS_COEFF_IN + i * sizeof(uint32_t), &coeff_word);
+ fmc_write_32(CORE_ADDR_BANK_MONTGOMERY_FACTOR_IN + i * sizeof(uint32_t), &factor_word);
}
// fill message bank (the least significant word
diff --git a/src/tb/tb_wrapper.v b/src/tb/tb_wrapper.v
index fae0934..c7619f0 100644
--- a/src/tb/tb_wrapper.v
+++ b/src/tb/tb_wrapper.v
@@ -2,6 +2,13 @@
module tb_wrapper;
+
+ //
+ // Test Vectors
+ //
+ `include "modexp_fpga_model_vectors.v";
+
+
/*
* Settings
*/
@@ -25,7 +32,7 @@ module tb_wrapper;
*/
reg bus_cs;
reg bus_we;
- reg [USE_OPERAND_ADDR_WIDTH+2:0] bus_addr;
+ reg [USE_OPERAND_ADDR_WIDTH+3:0] bus_addr;
reg [ 32-1:0] bus_wr_data;
wire [ 32-1:0] bus_rd_data;
@@ -47,7 +54,10 @@ module tb_wrapper;
.read_data (bus_rd_data)
);
+ integer i;
reg [31: 0] tmp;
+ reg [383:0] shreg;
+ reg poll;
initial begin
//
rst_n = 0;
@@ -61,6 +71,8 @@ module tb_wrapper;
//
rst_n = 1;
//
+ // read common registers to make sure core header reads out ok
+ //
read_reg('h00, tmp); // NAME0
read_reg('h01, tmp); // NAME1
read_reg('h02, tmp); // VERSION
@@ -74,11 +86,82 @@ module tb_wrapper;
write_reg('h11, 32'd384); // MODULUS_BITS
read_reg ('h11, tmp);
//
+ write_reg('h10, 32'd0); // MODE
+ read_reg ('h10, tmp);
+ //
+ // fill in 384-bit modulus
+ //
+ shreg = N_384;
+ for (i=0; i<384/32; i=i+1) begin
+ write_bank(3'b000, i[USE_OPERAND_ADDR_WIDTH-1:0], shreg[31:0]);
+ shreg = shreg >> 32;
+ end
+ //
+ // start precomputation
+ //
+ write_reg('h08, 32'd0); // CONTROL.init = 0
+ write_reg('h08, 32'd1); // CONTROL.init = 1
+ //
+ // wait for precomputation to complete
+ //
+ poll = 1;
+ while (poll) begin
+ #10;
+ read_reg('h09, tmp); // tmp = STATUS
+ poll = ~tmp[0]; // poll = STATUS.ready
+ end
+ //
+ // move modulus-dependent coefficient and Montgomery factor
+ // from "output" to "input" banks
+ //
+ for (i=0; i<384/32; i=i+1) begin
+ read_bank (3'b100, i[USE_OPERAND_ADDR_WIDTH-1:0], tmp);
+ write_bank(3'b101, i[USE_OPERAND_ADDR_WIDTH-1:0], tmp);
+ read_bank (3'b110, i[USE_OPERAND_ADDR_WIDTH-1:0], tmp);
+ write_bank(3'b111, i[USE_OPERAND_ADDR_WIDTH-1:0], tmp);
+ end
+ //
+ // fill in 384-bit message
+ //
+ shreg = M_384;
+ for (i=0; i<384/32; i=i+1) begin
+ write_bank(3'b001, i[USE_OPERAND_ADDR_WIDTH-1:0], shreg[31:0]);
+ shreg = shreg >> 32;
+ end
+ //
+ // fill in 384-bit exponent
+ //
+ shreg = D_384;
+ for (i=0; i<384/32; i=i+1) begin
+ write_bank(3'b010, i[USE_OPERAND_ADDR_WIDTH-1:0], shreg[31:0]);
+ shreg = shreg >> 32;
+ end
+ //
+ // start exponentiation
+ //
+ write_reg('h08, 32'd0); // CONTROL.next = 0
+ write_reg('h08, 32'd2); // CONTROL.next = 1
+ //
+ // wait for exponentiation to complete
+ //
+ poll = 1;
+ while (poll) begin
+ #10;
+ read_reg('h09, tmp); // tmp = STATUS
+ poll = ~tmp[1]; // poll = STATUS.valid
+ end
+ //
+ // read result
+ //
+ for (i=0; i<384/32; i=i+1) begin
+ read_bank(3'b011, i[USE_OPERAND_ADDR_WIDTH-1:0], tmp);
+ shreg = {tmp, shreg[383:32]};
+ end
//
end
task read_reg;
- input [USE_OPERAND_ADDR_WIDTH+1:0] addr;
+ input [USE_OPERAND_ADDR_WIDTH+2:0] addr;
output [ 32-1:0] data;
begin
bus_cs = 1;
@@ -89,9 +172,23 @@ module tb_wrapper;
data = bus_rd_data;
end
endtask
+
+ task read_bank;
+ input [ 2:0] bank;
+ input [USE_OPERAND_ADDR_WIDTH-1:0] addr;
+ output [ 32-1:0] data;
+ begin
+ bus_cs = 1;
+ bus_addr = {1'b1, bank, addr};
+ #10;
+ bus_cs = 0;
+ bus_addr = 'bX;
+ data = bus_rd_data;
+ end
+ endtask
task write_reg;
- input [USE_OPERAND_ADDR_WIDTH+1:0] addr;
+ input [USE_OPERAND_ADDR_WIDTH+2:0] addr;
input [ 32-1:0] data;
begin
bus_cs = 1;
@@ -104,6 +201,22 @@ module tb_wrapper;
bus_addr = 'bX;
end
endtask
-
+
+ task write_bank;
+ input [ 2:0] bank;
+ input [USE_OPERAND_ADDR_WIDTH-1:0] addr;
+ input [ 32-1:0] data;
+ begin
+ bus_cs = 1;
+ bus_we = 1;
+ bus_addr = {1'b1, bank, addr};
+ bus_wr_data = data;
+ #10;
+ bus_cs = 0;
+ bus_we = 0;
+ bus_addr = 'bX;
+ end
+ endtask
+
endmodule
a> 83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538