1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
|
//======================================================================
//
// modexp.v
// --------
// Modular exponentiation core for implementing public key algorithms
// such as RSA, DH, ElGamal etc.
//
// The core calculates the following function:
//
// C = M ** e mod N
//
// M is a message with a length of n bits
// e is the exponent with a length of m bits
// N is the modulus with a length of n bits
//
// n can be 32 and up to and including 8192 bits in steps
// of 32 bits.
// m can be one and up to and including 8192 bits in steps
// of 32 bits.
//
// The core has a 32-bit memory like interface, but provides
// status signals to inform the system that a given operation
// has is done. Additionally, any errors will also be asserted.
//
//
// Author: Joachim Strombergson, Peter Magnusson
// Copyright (c) 2015, Assured AB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
//======================================================================
module modexp(
input wire clk,
input wire reset_n,
input wire cs,
input wire we,
input wire [11 : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam GENERAL_PREFIX = 4'h0;
localparam ADDR_NAME0 = 8'h00;
localparam ADDR_NAME1 = 8'h01;
localparam ADDR_VERSION = 8'h02;
localparam ADDR_CTRL = 8'h08;
localparam CTRL_INIT_BIT = 0;
localparam CTRL_NEXT_BIT = 1;
localparam ADDR_STATUS = 8'h09;
localparam STATUS_READY_BIT = 0;
localparam ADDR_MODULUS_LENGTH = 8'h20;
localparam ADDR_EXPONENT_LENGTH = 8'h21;
localparam ADDR_LENGTH = 8'h22; // Should be deprecated.
localparam ADDR_MODULUS_PTR_RST = 8'h30;
localparam ADDR_MODULUS_DATA = 8'h31;
localparam ADDR_EXPONENT_PTR_RST = 8'h40;
localparam ADDR_EXPONENT_DATA = 8'h41;
localparam ADDR_MESSAGE_PTR_RST = 8'h50;
localparam ADDR_MESSAGE_DATA = 8'h51;
localparam ADDR_RESULT_PTR_RST = 8'h60;
localparam ADDR_RESULT_DATA = 8'h61;
localparam DEFAULT_MODLENGTH = 8'h80; // 2048 bits.
localparam DEFAULT_EXPLENGTH = 8'h80;
localparam MONTPROD_SELECT_ONE_NR = 3'h0;
localparam MONTPROD_SELECT_X_NR = 3'h1;
localparam MONTPROD_SELECT_Z_P = 3'h2;
localparam MONTPROD_SELECT_P_P = 3'h3;
localparam MONTPROD_SELECT_Z_ONE = 3'h4;
localparam MONTPROD_DEST_Z = 2'b00;
localparam MONTPROD_DEST_P = 2'b01;
localparam MONTPROD_DEST_NOWHERE = 2'b10;
localparam CTRL_IDLE = 4'h0;
localparam CTRL_RESIDUE = 4'h1;
localparam CTRL_CALCULATE_Z0 = 4'h2;
localparam CTRL_CALCULATE_P0 = 4'h3;
localparam CTRL_ITERATE = 4'h4;
localparam CTRL_ITERATE_Z_P = 4'h5;
localparam CTRL_ITERATE_P_P = 4'h6;
localparam CTRL_ITERATE_END = 4'h7;
localparam CTRL_CALCULATE_ZN = 4'h8;
localparam CTRL_DONE = 4'h9;
localparam EXPONATION_MODE_SECRET_SECURE = 1'b0;
localparam EXPONATION_MODE_PUBLIC_FAST = 1'b1; //for rsa, c=M^65537 etc, there is no need to slow down to hide the exponent
localparam CORE_NAME0 = 32'h6d6f6465; // "mode"
localparam CORE_NAME1 = 32'h78702020; // "xp "
localparam CORE_VERSION = 32'h302e3531; // "0.51"
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [07 : 0] exponent_length_reg;
reg [07 : 0] exponent_length_new;
reg exponent_length_we;
reg [07 : 0] modulus_length_reg;
reg [07 : 0] modulus_length_new;
reg modulus_length_we;
reg [07 : 0] length_m1_reg;
reg [07 : 0] length_m1_new;
reg start_reg;
reg start_new;
reg start_we;
reg clear_start;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [2 : 0] montprod_select_reg;
reg [2 : 0] montprod_select_new;
reg montprod_select_we;
reg [1 : 0] montprod_dest_reg;
reg [1 : 0] montprod_dest_new;
reg montprod_dest_we;
reg [3 : 0] modexp_ctrl_reg;
reg [3 : 0] modexp_ctrl_new;
reg modexp_ctrl_we;
reg [31 : 0] one_reg;
reg [31 : 0] one_new;
reg [31 : 0] b_one_reg;
reg [31 : 0] b_one_new;
reg [12 : 0] loop_counter_reg;
reg [12 : 0] loop_counter_new;
reg loop_counter_we;
reg [07 : 0] E_word_index;
reg [04 : 0] E_bit_index;
reg last_iteration;
reg ei_reg;
reg ei_new;
reg ei_we;
reg exponation_mode_reg;
reg exponation_mode_new;
reg exponation_mode_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg [07 : 0] modulus_mem_int_rd_addr;
wire [31 : 0] modulus_mem_int_rd_data;
wire [31 : 0] modulus_mem_api_rd_data;
reg [07 : 0] message_mem_int_rd_addr;
wire [31 : 0] message_mem_int_rd_data;
wire [31 : 0] message_mem_api_rd_data;
reg [07 : 0] exponent_mem_int_rd_addr;
wire [31 : 0] exponent_mem_int_rd_data;
wire [31 : 0] exponent_mem_api_rd_data;
wire [31 : 0] result_mem_api_rd_data;
reg [07 : 0] result_mem_int_rd_addr;
wire [31 : 0] result_mem_int_rd_data;
reg [07 : 0] result_mem_int_wr_addr;
reg [31 : 0] result_mem_int_wr_data;
reg result_mem_int_we;
reg [07 : 0] p_mem_rd0_addr;
wire [31 : 0] p_mem_rd0_data;
reg [07 : 0] p_mem_rd1_addr;
wire [31 : 0] p_mem_rd1_data;
reg [07 : 0] p_mem_wr_addr;
reg [31 : 0] p_mem_wr_data;
reg p_mem_we;
reg [31 : 0] tmp_read_data;
//reg tmp_error;
reg montprod_calc;
wire montprod_ready;
reg [07 : 0] montprod_length;
wire [07 : 0] montprod_opa_addr;
reg [31 : 0] montprod_opa_data;
wire [07 : 0] montprod_opb_addr;
reg [31 : 0] montprod_opb_data;
wire [07 : 0] montprod_opm_addr;
reg [31 : 0] montprod_opm_data;
wire [07 : 0] montprod_result_addr;
wire [31 : 0] montprod_result_data;
wire montprod_result_we;
reg residue_calculate;
wire residue_ready;
reg [14 : 0] residue_nn;
reg [07 : 0] residue_length;
wire [07 : 0] residue_opa_rd_addr;
wire [31 : 0] residue_opa_rd_data;
wire [07 : 0] residue_opa_wr_addr;
wire [31 : 0] residue_opa_wr_data;
wire residue_opa_wr_we;
wire [07 : 0] residue_opm_addr;
reg [31 : 0] residue_opm_data;
reg [07 : 0] residue_mem_montprod_read_addr;
wire [31 : 0] residue_mem_montprod_read_data;
reg residue_valid_reg;
reg residue_valid_new;
reg invalidate_residue;
reg residue_valid_int_validated;
reg modulus_mem_api_rst;
reg modulus_mem_api_cs;
reg modulus_mem_api_wr;
reg exponent_mem_api_rst;
reg exponent_mem_api_cs;
reg exponent_mem_api_wr;
reg message_mem_api_rst;
reg message_mem_api_cs;
reg message_mem_api_wr;
reg result_mem_api_rst;
reg result_mem_api_cs;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign read_data = tmp_read_data;
//----------------------------------------------------------------
// core instantiations.
//----------------------------------------------------------------
montprod montprod_inst(
.clk(clk),
.reset_n(reset_n),
.calculate(montprod_calc),
.ready(montprod_ready),
.length(montprod_length),
.opa_addr(montprod_opa_addr),
.opa_data(montprod_opa_data),
.opb_addr(montprod_opb_addr),
.opb_data(montprod_opb_data),
.opm_addr(montprod_opm_addr),
.opm_data(montprod_opm_data),
.result_addr(montprod_result_addr),
.result_data(montprod_result_data),
.result_we(montprod_result_we)
);
residue residue_inst(
.clk(clk),
.reset_n(reset_n),
.calculate(residue_calculate),
.ready(residue_ready),
.nn(residue_nn),
.length(residue_length),
.opa_rd_addr(residue_opa_rd_addr),
.opa_rd_data(residue_opa_rd_data),
.opa_wr_addr(residue_opa_wr_addr),
.opa_wr_data(residue_opa_wr_data),
.opa_wr_we(residue_opa_wr_we),
.opm_addr(residue_opm_addr),
.opm_data(residue_opm_data)
);
blockmem2r1w residue_mem(
.clk(clk),
.read_addr0(residue_opa_rd_addr),
.read_data0(residue_opa_rd_data),
.read_addr1(residue_mem_montprod_read_addr),
.read_data1(residue_mem_montprod_read_data),
.wr(residue_opa_wr_we),
.write_addr(residue_opa_wr_addr),
.write_data(residue_opa_wr_data)
);
blockmem2r1wptr modulus_mem(
.clk(clk),
.reset_n(reset_n),
.read_addr0(modulus_mem_int_rd_addr),
.read_data0(modulus_mem_int_rd_data),
.read_data1(modulus_mem_api_rd_data),
.rst(modulus_mem_api_rst),
.cs(modulus_mem_api_cs),
.wr(modulus_mem_api_wr),
.write_data(write_data)
);
blockmem2r1wptr message_mem(
.clk(clk),
.reset_n(reset_n),
.read_addr0(message_mem_int_rd_addr),
.read_data0(message_mem_int_rd_data),
.read_data1(message_mem_api_rd_data),
.rst(message_mem_api_rst),
.cs(message_mem_api_cs),
.wr(message_mem_api_wr),
.write_data(write_data)
);
blockmem2r1wptr exponent_mem(
.clk(clk),
.reset_n(reset_n),
.read_addr0(exponent_mem_int_rd_addr),
.read_data0(exponent_mem_int_rd_data),
.read_data1(exponent_mem_api_rd_data),
.rst(exponent_mem_api_rst),
.cs(exponent_mem_api_cs),
.wr(exponent_mem_api_wr),
.write_data(write_data)
);
blockmem2rptr1w result_mem(
.clk(clk),
.reset_n(reset_n),
.read_addr0(result_mem_int_rd_addr[7 : 0]),
.read_data0(result_mem_int_rd_data),
.read_data1(result_mem_api_rd_data),
.rst(result_mem_api_rst),
.cs(result_mem_api_cs),
.wr(result_mem_int_we),
.write_addr(result_mem_int_wr_addr),
.write_data(result_mem_int_wr_data)
);
blockmem2r1w p_mem(
.clk(clk),
.read_addr0(p_mem_rd0_addr),
.read_data0(p_mem_rd0_data),
.read_addr1(p_mem_rd1_addr),
.read_data1(p_mem_rd1_data),
.wr(p_mem_we),
.write_addr(p_mem_wr_addr),
.write_data(p_mem_wr_data)
);
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
exponent_length_reg <= DEFAULT_EXPLENGTH;
modulus_length_reg <= DEFAULT_MODLENGTH;
start_reg <= 1'b0;
ready_reg <= 1'b1;
montprod_select_reg <= MONTPROD_SELECT_ONE_NR;
montprod_dest_reg <= MONTPROD_DEST_NOWHERE;
modexp_ctrl_reg <= CTRL_IDLE;
one_reg <= 32'h0;
b_one_reg <= 32'h0;
length_m1_reg <= 8'h0;
loop_counter_reg <= 13'b0;
ei_reg <= 1'b0;
residue_valid_reg <= 1'b0;
exponation_mode_reg <= EXPONATION_MODE_SECRET_SECURE;
end
else
begin
one_reg <= one_new;
b_one_reg <= b_one_new;
residue_valid_reg <= residue_valid_new;
if (exponent_length_we)
exponent_length_reg <= exponent_length_new;
if (modulus_length_we)
begin
modulus_length_reg <= modulus_length_new;
length_m1_reg <= length_m1_new;
end
if (start_we)
start_reg <= start_new;
if (ready_we)
ready_reg <= ready_new;
if (montprod_select_we)
montprod_select_reg <= montprod_select_new;
if (montprod_dest_we)
montprod_dest_reg <= montprod_dest_new;
if (modexp_ctrl_we)
modexp_ctrl_reg <= modexp_ctrl_new;
if (loop_counter_we)
loop_counter_reg <= loop_counter_new;
if (ei_we)
ei_reg <= ei_new;
if (exponation_mode_we)
exponation_mode_reg <= exponation_mode_new;
end
end // reg_update
//----------------------------------------------------------------
// api
//
// The interface command decoding logic.
//----------------------------------------------------------------
always @*
begin : api
modulus_length_we = 1'b0;
exponent_length_we = 1'b0;
start_new = 1'b0;
start_we = 1'b0;
invalidate_residue = 1'b0;
modulus_mem_api_rst = 1'b0;
modulus_mem_api_cs = 1'b0;
modulus_mem_api_wr = 1'b0;
exponent_mem_api_rst = 1'b0;
exponent_mem_api_cs = 1'b0;
exponent_mem_api_wr = 1'b0;
message_mem_api_rst = 1'b0;
message_mem_api_cs = 1'b0;
message_mem_api_wr = 1'b0;
result_mem_api_rst = 1'b0;
result_mem_api_cs = 1'b0;
//TODO: Add API code to enable fast exponation for working with public exponents.
exponation_mode_we = 1'b0;
exponation_mode_new = EXPONATION_MODE_SECRET_SECURE;
modulus_length_new = write_data[7 : 0];
exponent_length_new = write_data[7 : 0];
length_m1_new = write_data[7 : 0] - 8'h1;
tmp_read_data = 32'h00000000;
// We need to be able to clear start bit after we have
// started a modexp operation.
if (clear_start)
begin
start_new = 1'b0;
start_we = 1'b1;
end
if (cs)
begin
case (address[11 : 8])
GENERAL_PREFIX:
begin
if (we)
begin
case (address[7 : 0])
ADDR_CTRL:
begin
start_new = write_data[0];
start_we = 1'b1;
end
ADDR_MODULUS_LENGTH:
begin
modulus_length_we = 1'b1;
end
ADDR_EXPONENT_LENGTH:
begin
exponent_length_we = 1'b1;
end
ADDR_MODULUS_PTR_RST:
begin
modulus_mem_api_rst = 1'b1;
end
ADDR_MODULUS_DATA:
begin
modulus_mem_api_cs = 1'b1;
modulus_mem_api_wr = 1'b1;
invalidate_residue = 1'b1;
end
ADDR_EXPONENT_PTR_RST:
begin
exponent_mem_api_rst = 1'b1;
end
ADDR_EXPONENT_DATA:
begin
exponent_mem_api_cs = 1'b1;
exponent_mem_api_wr = 1'b1;
end
ADDR_MESSAGE_PTR_RST:
begin
message_mem_api_rst = 1'b1;
end
ADDR_MESSAGE_DATA:
begin
message_mem_api_cs = 1'b1;
message_mem_api_wr = 1'b1;
end
ADDR_RESULT_PTR_RST:
begin
result_mem_api_rst = 1'b1;
end
default:
begin
end
endcase // case (address[7 : 0])
end
else
begin
case (address[7 : 0])
ADDR_NAME0:
tmp_read_data = CORE_NAME0;
ADDR_NAME1:
tmp_read_data = CORE_NAME1;
ADDR_VERSION:
tmp_read_data = CORE_VERSION;
ADDR_CTRL:
tmp_read_data = {31'h00000000, start_reg};
ADDR_STATUS:
tmp_read_data = {31'h00000000, ready_reg};
ADDR_MODULUS_LENGTH:
tmp_read_data = {24'h000000, modulus_length_reg};
ADDR_EXPONENT_LENGTH:
tmp_read_data = {24'h000000, exponent_length_reg};
ADDR_MODULUS_DATA:
begin
modulus_mem_api_cs = 1'b1;
tmp_read_data = modulus_mem_api_rd_data;
end
ADDR_EXPONENT_DATA:
begin
exponent_mem_api_cs = 1'b1;
tmp_read_data = exponent_mem_api_rd_data;
end
ADDR_MESSAGE_DATA:
begin
message_mem_api_cs = 1'b1;
tmp_read_data = message_mem_api_rd_data;
end
ADDR_RESULT_DATA:
begin
result_mem_api_cs = 1'b1;
tmp_read_data = result_mem_api_rd_data;
end
default:
begin
end
endcase // case (address[7 : 0])
end
end
default:
begin
end
endcase // case (address[11 : 8])
end // if (cs)
end // api
//----------------------------------------------------------------
// one
//
// generates the big integer one ( 00... 01 )
//----------------------------------------------------------------
always @*
begin : one_process
one_new = 32'h00000000;
b_one_new = 32'h00000000;
if (montprod_opa_addr == length_m1_reg)
one_new = 32'h00000001;
if (montprod_opb_addr == length_m1_reg)
b_one_new = 32'h00000001;
end
//----------------------------------------------------------------
// Read mux for modulus. Needed since it is being
// addressed by two sources.
//----------------------------------------------------------------
always @*
begin : modulus_mem_reader_process
if (modexp_ctrl_reg == CTRL_RESIDUE)
modulus_mem_int_rd_addr = residue_opm_addr;
else
modulus_mem_int_rd_addr = montprod_opm_addr;
end
//----------------------------------------------------------------
// Feeds residue calculator.
//----------------------------------------------------------------
always @*
begin : residue_process
//N*2, N=length*32, *32 = shl5, *64 = shl6
residue_nn = { 1'b0, modulus_length_reg, 6'h0 };
residue_length = modulus_length_reg;
residue_opm_data = modulus_mem_int_rd_data;
end
//----------------------------------------------------------------
// Sets the register that decides if residue is valid or not.
//----------------------------------------------------------------
always @*
begin : residue_valid_process
if (invalidate_residue)
residue_valid_new = 1'b0;
else if ( residue_valid_int_validated == 1'b1)
residue_valid_new = 1'b1;
else
residue_valid_new = residue_valid_reg;
end
//----------------------------------------------------------------
// montprod_op_select
//
// Select operands used during montprod calculations depending
// on what operation we want to do.
//----------------------------------------------------------------
always @*
begin : montprod_op_select
montprod_length = modulus_length_reg;
result_mem_int_rd_addr = montprod_opa_addr;
message_mem_int_rd_addr = montprod_opa_addr;
p_mem_rd0_addr = montprod_opa_addr;
residue_mem_montprod_read_addr = montprod_opb_addr;
p_mem_rd1_addr = montprod_opb_addr;
montprod_opm_data = modulus_mem_int_rd_data;
case (montprod_select_reg)
MONTPROD_SELECT_ONE_NR:
begin
montprod_opa_data = one_reg;
montprod_opb_data = residue_mem_montprod_read_data;
end
MONTPROD_SELECT_X_NR:
begin
montprod_opa_data = message_mem_int_rd_data;
montprod_opb_data = residue_mem_montprod_read_data;
end
MONTPROD_SELECT_Z_P:
begin
montprod_opa_data = result_mem_int_rd_data;
montprod_opb_data = p_mem_rd1_data;
end
MONTPROD_SELECT_P_P:
begin
montprod_opa_data = p_mem_rd0_data;
montprod_opb_data = p_mem_rd1_data;
end
MONTPROD_SELECT_Z_ONE:
begin
montprod_opa_data = result_mem_int_rd_data;
montprod_opb_data = b_one_reg;
end
default:
begin
montprod_opa_data = 32'h00000000;
montprod_opb_data = 32'h00000000;
end
endcase // case (montprod_selcect_reg)
end
//----------------------------------------------------------------
// memory write mux
//
// Direct memory write signals to correct memory.
//----------------------------------------------------------------
always @*
begin : memory_write_process
result_mem_int_wr_addr = montprod_result_addr;
result_mem_int_wr_data = montprod_result_data;
result_mem_int_we = 1'b0;
p_mem_wr_addr = montprod_result_addr;
p_mem_wr_data = montprod_result_data;
p_mem_we = 1'b0;
case (montprod_dest_reg)
MONTPROD_DEST_Z:
result_mem_int_we = montprod_result_we;
MONTPROD_DEST_P:
p_mem_we = montprod_result_we;
default:
begin
end
endcase
// inhibit Z=Z*P when ei = 0
if (modexp_ctrl_reg == CTRL_ITERATE_Z_P)
result_mem_int_we = result_mem_int_we & ei_reg;
end
//----------------------------------------------------------------
// loop_counter
//
// Calculate the loop counter and related variables.
//----------------------------------------------------------------
always @*
begin : loop_counters_process
loop_counter_new = 13'b0;
loop_counter_we = 1'b0;
if (loop_counter_reg == { length_m1_reg, 5'b11111 })
last_iteration = 1'b1;
else
last_iteration = 1'b0;
case (modexp_ctrl_reg)
CTRL_CALCULATE_P0:
begin
loop_counter_new = 13'b0;
loop_counter_we = 1'b1;
end
CTRL_ITERATE_END:
begin
loop_counter_new = loop_counter_reg + 1'b1;
loop_counter_we = 1'b1;
end
default:
begin
loop_counter_new = loop_counter_reg;
loop_counter_we = 1'b0;
end
endcase
end
//----------------------------------------------------------------
// exponent
//
// Reads the exponent.
//----------------------------------------------------------------
always @*
begin : exponent_process
// Accessing new instead of reg - pick up update at
// CTRL_ITERATE_NEW to remove a pipeline stall.
E_word_index = length_m1_reg - loop_counter_new[ 12 : 5 ];
E_bit_index = loop_counter_reg[ 04 : 0 ];
exponent_mem_int_rd_addr = E_word_index;
ei_new = exponent_mem_int_rd_data[ E_bit_index ];
if (modexp_ctrl_reg == CTRL_ITERATE)
ei_we = 1'b1;
else
ei_we = 1'b0;
end
//----------------------------------------------------------------
// modexp_ctrl
//
// Control FSM logic needed to perform the modexp operation.
//----------------------------------------------------------------
always @*
begin
ready_new = 1'b0;
ready_we = 1'b0;
montprod_select_new = MONTPROD_SELECT_ONE_NR;
montprod_select_we = 0;
montprod_dest_new = MONTPROD_DEST_NOWHERE;
montprod_dest_we = 0;
montprod_calc = 0;
modexp_ctrl_new = CTRL_IDLE;
modexp_ctrl_we = 1'b0;
clear_start = 1'b0;
residue_calculate = 1'b0;
residue_valid_int_validated = 1'b0;
case (modexp_ctrl_reg)
CTRL_IDLE:
begin
if (start_reg)
begin
ready_new = 1'b0;
ready_we = 1'b1;
modexp_ctrl_new = CTRL_DONE;
modexp_ctrl_we = 1'b1;
if (residue_valid_reg)
begin
//residue has alrady been calculated, start with MONTPROD( 1, Nr, MODULUS )
montprod_select_new = MONTPROD_SELECT_ONE_NR;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_Z;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_CALCULATE_Z0;
modexp_ctrl_we = 1;
end
else
begin
//modulus has been written and residue (Nr) must be calculated
modexp_ctrl_new = CTRL_RESIDUE;
modexp_ctrl_we = 1;
residue_calculate = 1'b1;
end
end
end
CTRL_RESIDUE:
begin
if (residue_ready)
begin
montprod_select_new = MONTPROD_SELECT_ONE_NR;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_Z;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_CALCULATE_Z0;
modexp_ctrl_we = 1;
residue_valid_int_validated = 1'b1; //update registers telling residue is valid
end
end
CTRL_CALCULATE_Z0:
begin
if (montprod_ready)
begin
montprod_select_new = MONTPROD_SELECT_X_NR;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_P;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_CALCULATE_P0;
modexp_ctrl_we = 1;
end
end
CTRL_CALCULATE_P0:
begin
if (montprod_ready == 1'b1)
begin
modexp_ctrl_new = CTRL_ITERATE;
modexp_ctrl_we = 1;
end
end
CTRL_ITERATE:
begin
montprod_select_new = MONTPROD_SELECT_Z_P;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_Z;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_ITERATE_Z_P;
modexp_ctrl_we = 1;
if (ei_new == 1'b0 && exponation_mode_reg == EXPONATION_MODE_PUBLIC_FAST)
begin
//Skip the fake montgomery calculation, exponation_mode_reg optimizing for speed not blinding.
montprod_select_new = MONTPROD_SELECT_P_P;
montprod_dest_new = MONTPROD_DEST_P;
modexp_ctrl_new = CTRL_ITERATE_P_P;
end
end
CTRL_ITERATE_Z_P:
if (montprod_ready)
begin
montprod_select_new = MONTPROD_SELECT_P_P;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_P;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_ITERATE_P_P;
modexp_ctrl_we = 1;
end
CTRL_ITERATE_P_P:
if (montprod_ready == 1'b1)
begin
modexp_ctrl_new = CTRL_ITERATE_END;
modexp_ctrl_we = 1;
end
CTRL_ITERATE_END:
begin
if (!last_iteration)
begin
modexp_ctrl_new = CTRL_ITERATE;
modexp_ctrl_we = 1;
end
else
begin
montprod_select_new = MONTPROD_SELECT_Z_ONE;
montprod_select_we = 1;
montprod_dest_new = MONTPROD_DEST_Z;
montprod_dest_we = 1;
montprod_calc = 1;
modexp_ctrl_new = CTRL_CALCULATE_ZN;
modexp_ctrl_we = 1;
end
end
CTRL_CALCULATE_ZN:
begin
if (montprod_ready)
begin
modexp_ctrl_new = CTRL_DONE;
modexp_ctrl_we = 1;
end
end
CTRL_DONE:
begin
clear_start = 1'b1;
ready_new = 1'b1;
ready_we = 1'b1;
modexp_ctrl_new = CTRL_IDLE;
modexp_ctrl_we = 1;
end
default:
begin
end
endcase // case (modexp_ctrl_reg)
end
endmodule // modexp
//======================================================================
// EOF modexp.v
//======================================================================
|