//====================================================================== // // sha512_core.v // ------------- // Verilog 2001 implementation of the SHA-512 hash function. // This is the internal core with wide interfaces. // // // Author: Joachim Strombergson // Copyright (c) 2014, NORDUnet A/S // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of the NORDUnet nor the names of its contributors may // be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // //====================================================================== module sha512_core( input wire clk, input wire reset_n, input wire init, input wire next, input wire [1 : 0] mode, input wire work_factor, input wire [31 : 0] work_factor_num, input wire [1023 : 0] block, output wire ready, input wire [31 : 0] state_wr_data, input wire state00_we, input wire state01_we, input wire state02_we, input wire state03_we, input wire state04_we, input wire state05_we, input wire state06_we, input wire state07_we, input wire state08_we, input wire state09_we, input wire state10_we, input wire state11_we, input wire state12_we, input wire state13_we, input wire state14_we, input wire state15_we, output wire [511 : 0] digest, output wire digest_valid ); //---------------------------------------------------------------- // Internal constant and parameter definitions. //---------------------------------------------------------------- parameter SHA512_ROUNDS = 79; parameter CTRL_IDLE = 0; parameter CTRL_ROUNDS1 = 1; parameter CTRL_ROUNDS2 = 2; parameter CTRL_DONE = 3; //---------------------------------------------------------------- // Registers including update variables and write enable. //---------------------------------------------------------------- reg [63 : 0] a_reg; reg [63 : 0] a_new; reg [63 : 0] b_reg; reg [63 : 0] b_new; reg [63 : 0] c_reg; reg [63 : 0] c_new; reg [63 : 0] d_reg; reg [63 : 0] d_new; reg [63 : 0] e_reg; reg [63 : 0] e_new; reg [63 : 0] f_reg; reg [63 : 0] f_new; reg [63 : 0] g_reg; reg [63 : 0] g_new; reg [63 : 0] h_reg; reg [63 : 0] h_new; reg a_h_we; reg [63 : 0] H0_reg; reg [63 : 0] H0_new; reg [63 : 0] H1_reg; reg [63 : 0] H1_new; reg [63 : 0] H2_reg; reg [63 : 0] H2_new; reg [63 : 0] H3_reg; reg [63 : 0] H3_new; reg [63 : 0] H4_reg; reg [63 : 0] H4_new; reg [63 : 0] H5_reg; reg [63 : 0] H5_new; reg [63 : 0] H6_reg; reg [63 : 0] H6_new; reg [63 : 0] H7_reg; reg [63 : 0] H7_new; reg H_we; reg [6 : 0] round_ctr_reg; reg [6 : 0] round_ctr_new; reg round_ctr_we; reg round_ctr_inc; reg round_ctr_rst; reg [31 : 0] work_factor_ctr_reg; reg [31 : 0] work_factor_ctr_new; reg work_factor_ctr_rst; reg work_factor_ctr_inc; reg work_factor_ctr_done; reg work_factor_ctr_we; reg digest_valid_reg; reg digest_valid_new; reg digest_valid_we; reg [1 : 0] sha512_ctrl_reg; reg [1 : 0] sha512_ctrl_new; reg sha512_ctrl_we; reg [63 : 0] t1_reg; //---------------------------------------------------------------- // Wires. //---------------------------------------------------------------- reg digest_init; reg digest_update; reg state_init; reg state_update; reg first_block; reg ready_flag; reg [63 : 0] t1; reg [63 : 0] t2; wire [63 : 0] k_data; reg w_init; reg w_next; wire [63 : 0] w_data; wire [63 : 0] H0_0; wire [63 : 0] H0_1; wire [63 : 0] H0_2; wire [63 : 0] H0_3; wire [63 : 0] H0_4; wire [63 : 0] H0_5; wire [63 : 0] H0_6; wire [63 : 0] H0_7; //---------------------------------------------------------------- // Module instantiantions. //---------------------------------------------------------------- sha512_k_constants k_constants_inst( .addr(round_ctr_reg), .K(k_data) ); sha512_h_constants h_constants_inst( .mode(mode), .H0(H0_0), .H1(H0_1), .H2(H0_2), .H3(H0_3), .H4(H0_4), .H5(H0_5), .H6(H0_6), .H7(H0_7) ); sha512_w_mem w_mem_inst( .clk(clk), .reset_n(reset_n), .block(block), .init(w_init), .next(w_next), .w(w_data) ); //---------------------------------------------------------------- // Concurrent connectivity for ports etc. //---------------------------------------------------------------- assign ready = ready_flag; assign digest = {H0_reg, H1_reg, H2_reg, H3_reg, H4_reg, H5_reg, H6_reg, H7_reg}; assign digest_valid = digest_valid_reg; //---------------------------------------------------------------- // reg_update // Update functionality for all registers in the core. // All registers are positive edge triggered with asynchronous // active low reset. All registers have write enable. //---------------------------------------------------------------- always @ (posedge clk or negedge reset_n) begin : reg_update if (!reset_n) begin a_reg <= 64'h0000000000000000; b_reg <= 64'h0000000000000000; c_reg <= 64'h0000000000000000; d_reg <= 64'h0000000000000000; e_reg <= 64'h0000000000000000; f_reg <= 64'h0000000000000000; g_reg <= 64'h0000000000000000; h_reg <= 64'h0000000000000000; H0_reg <= 64'h0000000000000000; H1_reg <= 64'h0000000000000000; H2_reg <= 64'h0000000000000000; H3_reg <= 64'h0000000000000000; H4_reg <= 64'h0000000000000000; H5_reg <= 64'h0000000000000000; H6_reg <= 64'h0000000000000000; H7_reg <= 64'h0000000000000000; work_factor_ctr_reg <= 32'h00000000; digest_valid_reg <= 0; round_ctr_reg <= 7'h0; sha512_ctrl_reg <= CTRL_IDLE; t1_reg <= 64'h0; end else begin t1_reg <= t1; if (a_h_we) begin a_reg <= a_new; b_reg <= b_new; c_reg <= c_new; d_reg <= d_new; e_reg <= e_new; f_reg <= f_new; g_reg <= g_new; h_reg <= h_new; end if (H_we) begin H0_reg <= H0_new; H1_reg <= H1_new; H2_reg <= H2_new; H3_reg <= H3_new; H4_reg <= H4_new; H5_reg <= H5_new; H6_reg <= H6_new; H7_reg <= H7_new; end if (state00_we) H0_reg <= {state_wr_data, H0_reg[31 : 0]}; if (state01_we) H0_reg <= {H0_reg[63 : 32], state_wr_data}; if (state02_we) H1_reg <= {state_wr_data, H1_reg[31 : 0]}; if (state03_we) H1_reg <= {H1_reg[63 : 32], state_wr_data}; if (state04_we) H2_reg <= {state_wr_data, H2_reg[31 : 0]}; if (state05_we) H2_reg <= {H2_reg[63 : 32], state_wr_data}; if (state06_we) H3_reg <= {state_wr_data, H3_reg[31 : 0]}; if (state07_we) H3_reg <= {H3_reg[63 : 32], state_wr_data}; if (state08_we) H4_reg <= {state_wr_data, H4_reg[31 : 0]}; if (state09_we) H4_reg <= {H4_reg[63 : 32], state_wr_data}; if (state10_we) H5_reg <= {state_wr_data, H5_reg[31 : 0]}; if (state11_we) H5_reg <= {H5_reg[63 : 32], state_wr_data}; if (state12_we) H6_reg <= {state_wr_data, H6_reg[31 : 0]}; if (state13_we) H6_reg <= {H6_reg[63 : 32], state_wr_data}; if (state14_we) H7_reg <= {state_wr_data, H7_reg[31 : 0]}; if (state15_we) H7_reg <= {H7_reg[63 : 32], state_wr_data}; if (round_ctr_we) begin round_ctr_reg <= round_ctr_new; end if (work_factor_ctr_we) begin work_factor_ctr_reg <= work_factor_ctr_new; end if (digest_valid_we) begin digest_valid_reg <= digest_valid_new; end if (sha512_ctrl_we) begin sha512_ctrl_reg <= sha512_ctrl_new; end end end // reg_update //---------------------------------------------------------------- // digest_logic // // The logic needed to init as well as update the digest. //---------------------------------------------------------------- always @* begin : digest_logic H0_new = 64'h00000000; H1_new = 64'h00000000; H2_new = 64'h00000000; H3_new = 64'h00000000; H4_new = 64'h00000000; H5_new = 64'h00000000; H6_new = 64'h00000000; H7_new = 64'h00000000; H_we = 0; if (digest_init) begin H0_new = H0_0; H1_new = H0_1; H2_new = H0_2; H3_new = H0_3; H4_new = H0_4; H5_new = H0_5; H6_new = H0_6; H7_new = H0_7; H_we = 1; end if (digest_update) begin H0_new = H0_reg + a_reg; H1_new = H1_reg + b_reg; H2_new = H2_reg + c_reg; H3_new = H3_reg + d_reg; H4_new = H4_reg + e_reg; H5_new = H5_reg + f_reg; H6_new = H6_reg + g_reg; H7_new = H7_reg + h_reg; H_we = 1; end end // digest_logic //---------------------------------------------------------------- // t1_logic // // The logic for the T1 function. //---------------------------------------------------------------- always @* begin : t1_logic reg [63 : 0] sum1; reg [63 : 0] ch; sum1 = {e_reg[13 : 0], e_reg[63 : 14]} ^ {e_reg[17 : 0], e_reg[63 : 18]} ^ {e_reg[40 : 0], e_reg[63 : 41]}; ch = (e_reg & f_reg) ^ ((~e_reg) & g_reg); t1 = h_reg + sum1 + ch + k_data + w_data; end // t1_logic //---------------------------------------------------------------- // t2_logic // // The logic for the T2 function //---------------------------------------------------------------- always @* begin : t2_logic reg [63 : 0] sum0; reg [63 : 0] maj; sum0 = {a_reg[27 : 0], a_reg[63 : 28]} ^ {a_reg[33 : 0], a_reg[63 : 34]} ^ {a_reg[38 : 0], a_reg[63 : 39]}; maj = (a_reg & b_reg) ^ (a_reg & c_reg) ^ (b_reg & c_reg); t2 = sum0 + maj; end // t2_logic //---------------------------------------------------------------- // state_logic // // The logic needed to init as well as update the state during // round processing. //---------------------------------------------------------------- always @* begin : state_logic a_new = 64'h00000000; b_new = 64'h00000000; c_new = 64'h00000000; d_new = 64'h00000000; e_new = 64'h00000000; f_new = 64'h00000000; g_new = 64'h00000000; h_new = 64'h00000000; a_h_we = 0; if (state_init) begin if (first_block) begin a_new = H0_0; b_new = H0_1; c_new = H0_2; d_new = H0_3; e_new = H0_4; f_new = H0_5; g_new = H0_6; h_new = H0_7; a_h_we = 1; end else begin a_new = H0_reg; b_new = H1_reg; c_new = H2_reg; d_new = H3_reg; e_new = H4_reg; f_new = H5_reg; g_new = H6_reg; h_new = H7_reg; a_h_we = 1; end end if (state_update) begin a_new = t1 + t2; b_new = a_reg; c_new = b_reg; d_new = c_reg; e_new = d_reg + t1; f_new = e_reg; g_new = f_reg; h_new = g_reg; a_h_we = 1; end end // state_logic //---------------------------------------------------------------- // round_ctr // // Update logic for the round counter, a monotonically // increasing counter with reset. //---------------------------------------------------------------- always @* begin : round_ctr round_ctr_new = 7'h0; round_ctr_we = 0; if (round_ctr_rst) begin round_ctr_new = 7'h00; round_ctr_we = 1; end if (round_ctr_inc) begin round_ctr_new = round_ctr_reg + 1'b1; round_ctr_we = 1; end end // round_ctr //---------------------------------------------------------------- // work_factor_ctr // // Work factor counter logic. //---------------------------------------------------------------- always @* begin : work_factor_ctr work_factor_ctr_new = 32'h00000000; work_factor_ctr_we = 0; work_factor_ctr_done = 0; if (work_factor_ctr_reg == work_factor_num) begin work_factor_ctr_done = 1; end if (work_factor_ctr_rst) begin work_factor_ctr_new = 32'h00000000; work_factor_ctr_we = 1; end if (work_factor_ctr_inc) begin work_factor_ctr_new = work_factor_ctr_reg + 1'b1; work_factor_ctr_we = 1; end end // work_factor_ctr //---------------------------------------------------------------- // sha512_ctrl_fsm // // Logic for the state machine controlling the core behaviour. //---------------------------------------------------------------- always @* begin : sha512_ctrl_fsm digest_init = 0; digest_update = 0; state_init = 0; state_update = 0; first_block = 0; ready_flag = 0; w_init = 0; w_next = 0; round_ctr_inc = 0; round_ctr_rst = 0; digest_valid_new = 0; digest_valid_we = 0; work_factor_ctr_rst = 0; work_factor_ctr_inc = 0; sha512_ctrl_new = CTRL_IDLE; sha512_ctrl_we = 0; case (sha512_ctrl_reg) CTRL_IDLE: begin ready_flag = 1; if (init) begin work_factor_ctr_rst = 1; digest_init = 1; w_init = 1; state_init = 1; first_block = 1; round_ctr_rst = 1; digest_valid_new = 0; digest_valid_we = 1; sha512_ctrl_new = CTRL_ROUNDS1; sha512_ctrl_we = 1; end if (next) begin work_factor_ctr_rst = 1; w_init = 1; state_init = 1; round_ctr_rst = 1; digest_valid_new = 0; digest_valid_we = 1; sha512_ctrl_new = CTRL_ROUNDS1; sha512_ctrl_we = 1; end end CTRL_ROUNDS1: begin sha512_ctrl_new = CTRL_ROUNDS2; sha512_ctrl_we = 1; end CTRL_ROUNDS2: begin w_next = 1; state_update = 1; round_ctr_inc = 1; if (round_ctr_reg == SHA512_ROUNDS) begin work_factor_ctr_inc = 1; sha512_ctrl_new = CTRL_DONE; sha512_ctrl_we = 1; end end CTRL_DONE: begin if (work_factor) begin if (!work_factor_ctr_done) begin w_init = 1; state_init = 1; round_ctr_rst = 1; sha512_ctrl_new = CTRL_ROUNDS1; sha512_ctrl_we = 1; end else begin digest_update = 1; digest_valid_new = 1; digest_valid_we = 1; sha512_ctrl_new = CTRL_IDLE; sha512_ctrl_we = 1; end end else begin digest_update = 1; digest_valid_new = 1; digest_valid_we = 1; sha512_ctrl_new = CTRL_IDLE; sha512_ctrl_we = 1; end end endcase // case (sha512_ctrl_reg) end // sha512_ctrl_fsm endmodule // sha512_core //====================================================================== // EOF sha512_core.v //======================================================================