//====================================================================== // // sha1_core.v // ----------- // Verilog 2001 implementation of the SHA-1 hash function. // This is the internal core with wide interfaces. // // // Author: Joachim Strombergson // Copyright (c) 2014 SUNET // // Redistribution and use in source and binary forms, with or // without modification, are permitted provided that the following // conditions are met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // //====================================================================== module sha1_core( input wire clk, input wire reset_n, input wire init, input wire next, input wire [511 : 0] block, output wire ready, output wire [159 : 0] digest, output wire digest_valid ); //---------------------------------------------------------------- // Internal constant and parameter definitions. //---------------------------------------------------------------- parameter H0_0 = 32'h67452301; parameter H0_1 = 32'hefcdab89; parameter H0_2 = 32'h98badcfe; parameter H0_3 = 32'h10325476; parameter H0_4 = 32'hc3d2e1f0; parameter SHA1_ROUNDS = 79; parameter CTRL_IDLE = 0; parameter CTRL_ROUNDS = 1; parameter CTRL_DONE = 2; //---------------------------------------------------------------- // Registers including update variables and write enable. //---------------------------------------------------------------- reg [31 : 0] a_reg; reg [31 : 0] a_new; reg [31 : 0] b_reg; reg [31 : 0] b_new; reg [31 : 0] c_reg; reg [31 : 0] c_new; reg [31 : 0] d_reg; reg [31 : 0] d_new; reg [31 : 0] e_reg; reg [31 : 0] e_new; reg a_e_we; reg [31 : 0] H0_reg; reg [31 : 0] H0_new; reg [31 : 0] H1_reg; reg [31 : 0] H1_new; reg [31 : 0] H2_reg; reg [31 : 0] H2_new; reg [31 : 0] H3_reg; reg [31 : 0] H3_new; reg [31 : 0] H4_reg; reg [31 : 0] H4_new; reg H_we; reg [6 : 0] round_ctr_reg; reg [6 : 0] round_ctr_new; reg round_ctr_we; reg round_ctr_inc; reg round_ctr_rst; reg digest_valid_reg; reg digest_valid_new; reg digest_valid_we; reg [1 : 0] sha1_ctrl_reg; reg [1 : 0] sha1_ctrl_new; reg sha1_ctrl_we; //---------------------------------------------------------------- // Wires. //---------------------------------------------------------------- reg digest_init; reg digest_update; reg state_init; reg state_update; reg first_block; reg ready_flag; reg w_init; wire w_ready; wire [31 : 0] w; //---------------------------------------------------------------- // Module instantiantions. //---------------------------------------------------------------- sha1_w_mem w_mem( .clk(clk), .reset_n(reset_n), .init(w_init), .block(block), .addr(round_ctr_reg), .w(w) ); //---------------------------------------------------------------- // Concurrent connectivity for ports etc. //---------------------------------------------------------------- assign ready = ready_flag; assign digest = {H0_reg, H1_reg, H2_reg, H3_reg, H4_reg}; assign digest_valid = digest_valid_reg; //---------------------------------------------------------------- // reg_update // Update functionality for all registers in the core. // All registers are positive edge triggered with synchronous // active low reset. All registers have write enable. //---------------------------------------------------------------- always @ (posedge clk) begin : reg_update if (!reset_n) begin a_reg <= 32'h00000000; b_reg <= 32'h00000000; c_reg <= 32'h00000000; d_reg <= 32'h00000000; e_reg <= 32'h00000000; H0_reg <= 32'h00000000; H1_reg <= 32'h00000000; H2_reg <= 32'h00000000; H3_reg <= 32'h00000000; H4_reg <= 32'h00000000; digest_valid_reg <= 0; round_ctr_reg <= 7'b0000000; sha1_ctrl_reg <= CTRL_IDLE; end else begin if (a_e_we) begin a_reg <= a_new; b_reg <= b_new; c_reg <= c_new; d_reg <= d_new; e_reg <= e_new; end if (H_we) begin H0_reg <= H0_new; H1_reg <= H1_new; H2_reg <= H2_new; H3_reg <= H3_new; H4_reg <= H4_new; end if (round_ctr_we) begin round_ctr_reg <= round_ctr_new; end if (digest_valid_we) begin digest_valid_reg <= digest_valid_new; end if (sha1_ctrl_we) begin sha1_ctrl_reg <= sha1_ctrl_new; end end end // reg_update //---------------------------------------------------------------- // digest_logic // // The logic needed to init as well as update the digest. //---------------------------------------------------------------- always @* begin : digest_logic H0_new = 32'h00000000; H1_new = 32'h00000000; H2_new = 32'h00000000; H3_new = 32'h00000000; H4_new = 32'h00000000; H_we = 0; if (digest_init) begin H0_new = H0_0; H1_new = H0_1; H2_new = H0_2; H3_new = H0_3; H4_new = H0_4; H_we = 1; end if (digest_update) begin H0_new = H0_reg + a_reg; H1_new = H1_reg + b_reg; H2_new = H2_reg + c_reg; H3_new = H3_reg + d_reg; H4_new = H4_reg + e_reg; H_we = 1; end end // digest_logic //---------------------------------------------------------------- // state_logic // // The logic needed to init as well as update the state during // round processing. //---------------------------------------------------------------- always @* begin : state_logic reg [31 : 0] a5; reg [31 : 0] f; reg [31 : 0] k; reg [31 : 0] t; a5 = 32'h00000000; f = 32'h00000000; k = 32'h00000000; t = 32'h00000000; a_new = 32'h00000000; b_new = 32'h00000000; c_new = 32'h00000000; d_new = 32'h00000000; e_new = 32'h00000000; a_e_we = 0; if (state_init) begin if (first_block) begin a_new = H0_0; b_new = H0_1; c_new = H0_2; d_new = H0_3; e_new = H0_4; a_e_we = 1; end else begin a_new = H0_reg; b_new = H1_reg; c_new = H2_reg; d_new = H3_reg; e_new = H4_reg; a_e_we = 1; end end if (state_update) begin if (round_ctr_reg <= 19) begin k = 32'h5a827999; f = ((b_reg & c_reg) ^ (~b_reg & d_reg)); end else if ((round_ctr_reg >= 20) && (round_ctr_reg <= 39)) begin k = 32'h6ed9eba1; f = b_reg ^ c_reg ^ d_reg; end else if ((round_ctr_reg >= 40) && (round_ctr_reg <= 59)) begin k = 32'h8f1bbcdc; f = ((b_reg | c_reg) ^ (b_reg | d_reg) ^ (c_reg | d_reg)); end else if (round_ctr_reg >= 60) begin k = 32'hca62c1d6; f = b_reg ^ c_reg ^ d_reg; end a5 = {a_reg[26 : 0], a_reg[31 : 27]}; t = a5 + e_reg + f + k + w; a_new = t; b_new = a_reg; c_new = {b_reg[1 : 0], b_reg[31 : 2]}; d_new = c_reg; e_new = d_reg; a_e_we = 1; end end // state_logic //---------------------------------------------------------------- // round_ctr // // Update logic for the round counter, a monotonically // increasing counter with reset. //---------------------------------------------------------------- always @* begin : round_ctr round_ctr_new = 0; round_ctr_we = 0; if (round_ctr_rst) begin round_ctr_new = 0; round_ctr_we = 1; end if (round_ctr_inc) begin round_ctr_new = round_ctr_reg + 1'b1; round_ctr_we = 1; end end // round_ctr //---------------------------------------------------------------- // sha1_ctrl_fsm // Logic for the state machine controlling the core behaviour. //---------------------------------------------------------------- always @* begin : sha1_ctrl_fsm digest_init = 0; digest_update = 0; state_init = 0; state_update = 0; first_block = 0; ready_flag = 0; w_init = 0; round_ctr_inc = 0; round_ctr_rst = 0; digest_valid_new = 0; digest_valid_we = 0; sha1_ctrl_new = CTRL_IDLE; sha1_ctrl_we = 0; case (sha1_ctrl_reg) CTRL_IDLE: begin ready_flag = 1; if (init) begin digest_init = 1; w_init = 1; state_init = 1; first_block = 1; round_ctr_rst = 1; digest_valid_new = 0; digest_valid_we = 1; sha1_ctrl_new = CTRL_ROUNDS; sha1_ctrl_we = 1; end if (next) begin w_init = 1; state_init = 1; round_ctr_rst = 1; digest_valid_new = 0; digest_valid_we = 1; sha1_ctrl_new = CTRL_ROUNDS; sha1_ctrl_we = 1; end end CTRL_ROUNDS: begin state_update = 1; round_ctr_inc = 1; if (round_ctr_reg == SHA1_ROUNDS) begin sha1_ctrl_new = CTRL_DONE; sha1_ctrl_we = 1; end end CTRL_DONE: begin digest_update = 1; digest_valid_new = 1; digest_valid_we = 1; sha1_ctrl_new = CTRL_IDLE; sha1_ctrl_we = 1; end endcase // case (sha1_ctrl_reg) end // sha1_ctrl_fsm endmodule // sha1_core //====================================================================== // EOF sha1_core.v //======================================================================