#!/usr/bin/env python3 # -*- coding: utf-8 -*- #======================================================================= # # chacha.py # --------- # Simple model of the ChaCha stream cipher. Used as a reference for # the HW implementation. The code follows the structure of the # HW implementation as much as possible. # # # Author: Joachim Strombergson # Copyright (c) 2011, NORDUnet A/S All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # - Neither the name of the NORDUnet nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # #======================================================================= #------------------------------------------------------------------- # Python module imports. #------------------------------------------------------------------- import sys #------------------------------------------------------------------- # Constants. #------------------------------------------------------------------- TAU = [0x61707865, 0x3120646e, 0x79622d36, 0x6b206574] SIGMA = [0x61707865, 0x3320646e, 0x79622d32, 0x6b206574] #------------------------------------------------------------------- # ChaCha() #------------------------------------------------------------------- class ChaCha(): #--------------------------------------------------------------- # __init__() # # Given the key, iv initializes the state of the cipher. # The number of rounds used can be set. By default 8 rounds # are used. Accepts a list of either 16 or 32 bytes as key. # Accepts a list of 8 bytes as IV. #--------------------------------------------------------------- def __init__(self, key, iv, rounds = 8, verbose = 0): self.state = [0] * 16 self.x = [0] * 16 self.rounds = rounds self.verbose = verbose self.set_key_iv(key, iv) #--------------------------------------------------------------- # set_key_iv() # # Set key and iv. Basically reinitialize the cipher. # This also resets the block counter. #--------------------------------------------------------------- def set_key_iv(self, key, iv): keyword0 = self._b2w(key[0:4]) keyword1 = self._b2w(key[4:8]) keyword2 = self._b2w(key[8:12]) keyword3 = self._b2w(key[12:16]) if len(key) == 16: self.state[0] = TAU[0] self.state[1] = TAU[1] self.state[2] = TAU[2] self.state[3] = TAU[3] self.state[4] = keyword0 self.state[5] = keyword1 self.state[6] = keyword2 self.state[7] = keyword3 self.state[8] = keyword0 self.state[9] = keyword1 self.state[10] = keyword2 self.state[11] = keyword3 elif len(key) == 32: keyword4 = self._b2w(key[16:20]) keyword5 = self._b2w(key[20:24]) keyword6 = self._b2w(key[24:28]) keyword7 = self._b2w(key[28:32]) self.state[0] = SIGMA[0] self.state[1] = SIGMA[1] self.state[2] = SIGMA[2] self.state[3] = SIGMA[3] self.state[4] = keyword0 self.state[5] = keyword1 self.state[6] = keyword2 self.state[7] = keyword3 self.state[8] = keyword4 self.state[9] = keyword5 self.state[10] = keyword6 self.state[11] = keyword7 else: print("Key length of %d bits, is not supported." % (len(key) * 8)) # Common state init for both key lengths. self.block_counter = [0, 0] self.state[12] = self.block_counter[0] self.state[13] = self.block_counter[1] self.state[14] = self._b2w(iv[0:4]) self.state[15] = self._b2w(iv[4:8]) if self.verbose: print("State after init:") self._print_state() #--------------------------------------------------------------- # next() # # Encyp/decrypt the next block. This also updates the # internal state and increases the block counter. #--------------------------------------------------------------- def next(self, data_in): # Copy the current internal state to the temporary state x. self.x = self.state[:] if self.verbose: print("State before round processing.") self._print_state() if self.verbose: print("X before round processing:") self._print_x() # Update the internal state by performing # (rounds / 2) double rounds. for i in range(int(self.rounds / 2)): if (self.verbose > 1): print("Doubleround 0x%02x:" % i) self._doubleround() if (self.verbose > 1): print("") if self.verbose: print("X after round processing:") self._print_x() # Update the internal state by adding the elements # of the temporary state to the internal state. self.state = [((self.state[i] + self.x[i]) & 0xffffffff) for i in range(16)] if self.verbose: print("State after round processing.") self._print_state() bytestate = [] for i in self.state: bytestate += self._w2b(i) # Create the data out words. data_out = [data_in[i] ^ bytestate[i] for i in range(64)] # Update the block counter. self._inc_counter() return data_out #--------------------------------------------------------------- # _doubleround() # # Perform the two complete rounds that comprises the # double round. #--------------------------------------------------------------- def _doubleround(self): if (self.verbose > 0): print("Start of double round processing.") self._quarterround(0, 4, 8, 12) if (self.verbose > 1): print("X after QR 0") self._print_x() self._quarterround(1, 5, 9, 13) if (self.verbose > 1): print("X after QR 1") self._print_x() self._quarterround(2, 6, 10, 14) if (self.verbose > 1): print("X after QR 2") self._print_x() self._quarterround(3, 7, 11, 15) if (self.verbose > 1): print("X after QR 3") self._print_x() self._quarterround(0, 5, 10, 15) if (self.verbose > 1): print("X after QR 4") self._print_x() self._quarterround(1, 6, 11, 12) if (self.verbose > 1): print("X after QR 5") self._print_x() self._quarterround(2, 7, 8, 13) if (self.verbose > 1): print("X after QR 6") self._print_x() self._quarterround(3, 4, 9, 14) if (self.verbose > 1): print("X after QR 7") self._print_x() if (self.verbose > 0): print("End of double round processing.") #--------------------------------------------------------------- # _quarterround() # # Updates four elements in the state vector x given by # their indices. #--------------------------------------------------------------- def _quarterround(self, ai, bi, ci, di): # Extract four elemenst from x using the qi tuple. a, b, c, d = self.x[ai], self.x[bi], self.x[ci], self.x[di] if (self.verbose > 1): print("Indata to quarterround:") print("X state indices:", ai, bi, ci, di) print("a = 0x%08x, b = 0x%08x, c = 0x%08x, d = 0x%08x" %\ (a, b, c, d)) print("") a0 = (a + b) & 0xffffffff d0 = d ^ a0 d1 = ((d0 << 16) + (d0 >> 16)) & 0xffffffff c0 = (c + d1) & 0xffffffff b0 = b ^ c0 b1 = ((b0 << 12) + (b0 >> 20)) & 0xffffffff a1 = (a0 + b1) & 0xffffffff d2 = d1 ^ a1 d3 = ((d2 << 8) + (d2 >> 24)) & 0xffffffff c1 = (c0 + d3) & 0xffffffff b2 = b1 ^ c1 b3 = ((b2 << 7) + (b2 >> 25)) & 0xffffffff if (self.verbose > 2): print("Intermediate values:") print("a0 = 0x%08x, a1 = 0x%08x" % (a0, a1)) print("b0 = 0x%08x, b1 = 0x%08x, b2 = 0x%08x, b3 = 0x%08x" %\ (b0, b1, b2, b3)) print("c0 = 0x%08x, c1 = 0x%08x" % (c0, c1)) print("d0 = 0x%08x, d1 = 0x%08x, d2 = 0x%08x, d3 = 0x%08x" %\ (d0, d1, d2, d3)) print("") a_prim = a1 b_prim = b3 c_prim = c1 d_prim = d3 if (self.verbose > 1): print("Outdata from quarterround:") print("a_prim = 0x%08x, b_prim = 0x%08x, c_prim = 0x%08x, d_prim = 0x%08x" %\ (a_prim, b_prim, c_prim, d_prim)) print("") # Update the four elemenst in x using the qi tuple. self.x[ai], self.x[bi] = a_prim, b_prim self.x[ci], self.x[di] = c_prim, d_prim #--------------------------------------------------------------- # _inc_counter() # # Increase the 64 bit block counter. #--------------------------------------------------------------- def _inc_counter(self): self.block_counter[0] += 1 & 0xffffffff if not (self.block_counter[0] % 0xffffffff): self.block_counter[1] += 1 & 0xffffffff #--------------------------------------------------------------- # _b2w() # # Given a list of four bytes returns the little endian # 32 bit word representation of the bytes. #--------------------------------------------------------------- def _b2w(self, bytes): return (bytes[0] + (bytes[1] << 8) + (bytes[2] << 16) + (bytes[3] << 24)) & 0xffffffff #--------------------------------------------------------------- # _w2b() # # Given a 32-bit word returns a list of set of four bytes # that is the little endian byte representation of the word. #--------------------------------------------------------------- def _w2b(self, word): return [(word & 0x000000ff), ((word & 0x0000ff00) >> 8), ((word & 0x00ff0000) >> 16), ((word & 0xff000000) >> 24)] #--------------------------------------------------------------- # _print_state() # # Print the internal state. #--------------------------------------------------------------- def _print_state(self): print(" 0: 0x%08x, 1: 0x%08x, 2: 0x%08x, 3: 0x%08x" %\ (self.state[0], self.state[1], self.state[2], self.state[3])) print(" 4: 0x%08x, 5: 0x%08x, 6: 0x%08x, 7: 0x%08x" %\ (self.state[4], self.state[5], self.state[6], self.state[7])) print(" 8: 0x%08x, 9: 0x%08x, 10: 0x%08x, 11: 0x%08x" %\ (self.state[8], self.state[9], self.state[10], self.state[11])) print("12: 0x%08x, 13: 0x%08x, 14: 0x%08x, 15: 0x%08x" %\ (self.state[12], self.state[13], self.state[14], self.state[15])) print("") #--------------------------------------------------------------- # _print_x() # # Print the temporary state X. #--------------------------------------------------------------- def _print_x(self): print(" 0: 0x%08x, 1: 0x%08x, 2: 0x%08x, 3: 0x%08x" %\ (self.x[0], self.x[1], self.x[2], self.x[3])) print(" 4: 0x%08x, 5: 0x%08x, 6: 0x%08x, 7: 0x%08x" %\ (self.x[4], self.x[5], self.x[6], self.x[7])) print(" 8: 0x%08x, 9: 0x%08x, 10: 0x%08x, 11: 0x%08x" %\ (self.x[8], self.x[9], self.x[10], self.x[11])) print("12: 0x%08x, 13: 0x%08x, 14: 0x%08x, 15: 0x%08x" %\ (self.x[12], self.x[13], self.x[14], self.x[15])) print("") #------------------------------------------------------------------- # print_block() # # Print a given block (list) of bytes ordered in # rows of eight bytes. #------------------------------------------------------------------- def print_block(block): for i in range(0, len(block), 8): print("0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x" %\ (block[i], block[i+1], block[i+2], block[i+3], block[i+4], block[i+5], block[i+6], block[i+7])) #------------------------------------------------------------------- # check_block() # # Compare the result block with the expected block and print # if the result for the given test case was correct or not. #------------------------------------------------------------------- def check_block(result, expected, test_case): if result == expected: print("SUCCESS: %s was correct." % test_case) else: print("ERROR: %s was not correct." % test_case) print("Expected:") print_block(expected) print("") print("Result:") print_block(result) print("") #------------------------------------------------------------------- # main() # # If executed tests the ChaCha class using known test vectors. #------------------------------------------------------------------- def main(): print("Testing the ChaCha Python model.") print("--------------------------------") print # Testing with TC1-128-8. # All zero inputs. IV all zero. 128 bit key, 8 rounds. print("TC1-128-8: All zero inputs. 128 bit key, 8 rounds.") key1 = [0x00] * 16 iv1 = [0x00] * 8 expected1 = [0xe2, 0x8a, 0x5f, 0xa4, 0xa6, 0x7f, 0x8c, 0x5d, 0xef, 0xed, 0x3e, 0x6f, 0xb7, 0x30, 0x34, 0x86, 0xaa, 0x84, 0x27, 0xd3, 0x14, 0x19, 0xa7, 0x29, 0x57, 0x2d, 0x77, 0x79, 0x53, 0x49, 0x11, 0x20, 0xb6, 0x4a, 0xb8, 0xe7, 0x2b, 0x8d, 0xeb, 0x85, 0xcd, 0x6a, 0xea, 0x7c, 0xb6, 0x08, 0x9a, 0x10, 0x18, 0x24, 0xbe, 0xeb, 0x08, 0x81, 0x4a, 0x42, 0x8a, 0xab, 0x1f, 0xa2, 0xc8, 0x16, 0x08, 0x1b] block1 = [0x00] * 64 cipher1 = ChaCha(key1, iv1, verbose=0) result1 = cipher1.next(block1) check_block(result1, expected1, "TC1-128-8") print # Testing with TC1-128-12. # All zero inputs. IV all zero. 128 bit key, 12 rounds. print("TC1-128-12: All zero inputs. 128 bit key, 12 rounds.") key1 = [0x00] * 16 iv1 = [0x00] * 8 expected1 = [0xe1, 0x04, 0x7b, 0xa9, 0x47, 0x6b, 0xf8, 0xff, 0x31, 0x2c, 0x01, 0xb4, 0x34, 0x5a, 0x7d, 0x8c, 0xa5, 0x79, 0x2b, 0x0a, 0xd4, 0x67, 0x31, 0x3f, 0x1d, 0xc4, 0x12, 0xb5, 0xfd, 0xce, 0x32, 0x41, 0x0d, 0xea, 0x8b, 0x68, 0xbd, 0x77, 0x4c, 0x36, 0xa9, 0x20, 0xf0, 0x92, 0xa0, 0x4d, 0x3f, 0x95, 0x27, 0x4f, 0xbe, 0xff, 0x97, 0xbc, 0x84, 0x91, 0xfc, 0xef, 0x37, 0xf8, 0x59, 0x70, 0xb4, 0x50] block1 = [0x00] * 64 cipher1 = ChaCha(key1, iv1, rounds = 12, verbose=0) result1 = cipher1.next(block1) check_block(result1, expected1, "TC1-128-12") print # Testing with TC1-128-20. # All zero inputs. IV all zero. 128 bit key, 20 rounds. print("TC1-128-20: All zero inputs. 128 bit key, 20 rounds.") key1 = [0x00] * 16 iv1 = [0x00] * 8 expected1 = [0x89, 0x67, 0x09, 0x52, 0x60, 0x83, 0x64, 0xfd, 0x00, 0xb2, 0xf9, 0x09, 0x36, 0xf0, 0x31, 0xc8, 0xe7, 0x56, 0xe1, 0x5d, 0xba, 0x04, 0xb8, 0x49, 0x3d, 0x00, 0x42, 0x92, 0x59, 0xb2, 0x0f, 0x46, 0xcc, 0x04, 0xf1, 0x11, 0x24, 0x6b, 0x6c, 0x2c, 0xe0, 0x66, 0xbe, 0x3b, 0xfb, 0x32, 0xd9, 0xaa, 0x0f, 0xdd, 0xfb, 0xc1, 0x21, 0x23, 0xd4, 0xb9, 0xe4, 0x4f, 0x34, 0xdc, 0xa0, 0x5a, 0x10, 0x3f] block1 = [0x00] * 64 cipher1 = ChaCha(key1, iv1, rounds = 20, verbose=0) result1 = cipher1.next(block1) check_block(result1, expected1, "TC1-128-20") print # Testing with TC1-256-8. # All zero inputs. IV all zero. 256 bit key, 8 rounds. print("TC1-256-8: All zero inputs. 256 bit key, 8 rounds.") key1 = [0x00] * 32 iv1 = [0x00] * 8 expected1 = [0x3e, 0x00, 0xef, 0x2f, 0x89, 0x5f, 0x40, 0xd6, 0x7f, 0x5b, 0xb8, 0xe8, 0x1f, 0x09, 0xa5, 0xa1, 0x2c, 0x84, 0x0e, 0xc3, 0xce, 0x9a, 0x7f, 0x3b, 0x18, 0x1b, 0xe1, 0x88, 0xef, 0x71, 0x1a, 0x1e, 0x98, 0x4c, 0xe1, 0x72, 0xb9, 0x21, 0x6f, 0x41, 0x9f, 0x44, 0x53, 0x67, 0x45, 0x6d, 0x56, 0x19, 0x31, 0x4a, 0x42, 0xa3, 0xda, 0x86, 0xb0, 0x01, 0x38, 0x7b, 0xfd, 0xb8, 0x0e, 0x0c, 0xfe, 0x42] block1 = [0x00] * 64 cipher1 = ChaCha(key1, iv1, verbose=0) result1 = cipher1.next(block1) check_block(result1, expected1, "TC1-256-8") print # Testing with TC1-256-12. # All zero inputs. IV all zero. 256 bit key, 12 rounds. print("TC1-256-12: All zero inputs. 256 bit key, 12 rounds.") key1 = [0x00] * 32 iv1 = [0x00] * 8 expected1 = [0x9b, 0xf4, 0x9a, 0x6a, 0x07, 0x55, 0xf9, 0x53, 0x81, 0x1f, 0xce, 0x12, 0x5f, 0x26, 0x83, 0xd5, 0x04, 0x29, 0xc3, 0xbb, 0x49, 0xe0, 0x74, 0x14, 0x7e, 0x00, 0x89, 0xa5, 0x2e, 0xae, 0x15, 0x5f, 0x05, 0x64, 0xf8, 0x79, 0xd2, 0x7a, 0xe3, 0xc0, 0x2c, 0xe8, 0x28, 0x34, 0xac, 0xfa, 0x8c, 0x79, 0x3a, 0x62, 0x9f, 0x2c, 0xa0, 0xde, 0x69, 0x19, 0x61, 0x0b, 0xe8, 0x2f, 0x41, 0x13, 0x26, 0xbe] block1 = [0x00] * 64 cipher1 = ChaCha(key1, iv1, rounds = 12, verbose=0) result1 = cipher1.next(block1) check_block(result1, expected1, "TC1-256-12") print # Testing with TC1-256-20. # All zero inputs. IV all zero. 256 bit key, 20 rounds. print("TC1-256-20: All zero inputs. 256 bit key, 20 rounds.") key1 = [0x00] * 32 iv1 = [0x00] * 8 expected1 = [0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90, 0x40, 0x5d, 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28, 0xbd, 0xd2, 0x19, 0xb8, 0xa0, 0x8d, 0xed, 0x1a, 0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77, 0x0d, 0xc7, 0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d, 0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37, 0x6a, 0x43, 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c, 0xc3, 0x87, 0xb6, 0x69, 0xb2, 0xee, 0x65, 0x86] block1 = [0x00] * 64 cipher1 = ChaCha(key1, iv1, rounds = 20, verbose=0) result1 = cipher1.next(block1) check_block(result1, expected1, "TC1-256-20") print # Testing with TC2-128-8. # Single bit set in key. IV all zero. 128 bit key. print("TC2-128-8: One bit in key set. IV all zeros. 128 bit key, 8 rounds.") key2 = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] iv2 = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] expected2 = [0x03, 0xa7, 0x66, 0x98, 0x88, 0x60, 0x5a, 0x07, 0x65, 0xe8, 0x35, 0x74, 0x75, 0xe5, 0x86, 0x73, 0xf9, 0x4f, 0xc8, 0x16, 0x1d, 0xa7, 0x6c, 0x2a, 0x3a, 0xa2, 0xf3, 0xca, 0xf9, 0xfe, 0x54, 0x49, 0xe0, 0xfc, 0xf3, 0x8e, 0xb8, 0x82, 0x65, 0x6a, 0xf8, 0x3d, 0x43, 0x0d, 0x41, 0x09, 0x27, 0xd5, 0x5c, 0x97, 0x2a, 0xc4, 0xc9, 0x2a, 0xb9, 0xda, 0x37, 0x13, 0xe1, 0x9f, 0x76, 0x1e, 0xaa, 0x14] block2 = [0x00] * 64 cipher2 = ChaCha(key2, iv2, verbose=0) result2 = cipher2.next(block2) check_block(result2, expected2, "TC2-128-8") print # Testing with TC2-256-8. # Single bit set in key. IV all zero. 256 bit key. print("TC2-256-8: One bit in key set. IV all zeros. 256 bit key, 8 rounds.") key2 = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] iv2 = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] expected2 = [0xcf, 0x5e, 0xe9, 0xa0, 0x49, 0x4a, 0xa9, 0x61, 0x3e, 0x05, 0xd5, 0xed, 0x72, 0x5b, 0x80, 0x4b, 0x12, 0xf4, 0xa4, 0x65, 0xee, 0x63, 0x5a, 0xcc, 0x3a, 0x31, 0x1d, 0xe8, 0x74, 0x04, 0x89, 0xea, 0x28, 0x9d, 0x04, 0xf4, 0x3c, 0x75, 0x18, 0xdb, 0x56, 0xeb, 0x44, 0x33, 0xe4, 0x98, 0xa1, 0x23, 0x8c, 0xd8, 0x46, 0x4d, 0x37, 0x63, 0xdd, 0xbb, 0x92, 0x22, 0xee, 0x3b, 0xd8, 0xfa, 0xe3, 0xc8] block2 = [0x00] * 64 cipher2 = ChaCha(key2, iv2, verbose=0) result2 = cipher2.next(block2) check_block(result2, expected2, "TC2-256-8") print # Testing with TC3-128-8. # All zero key. Single bit in IV set. 128 bit key. print("TC3-128-8: All zero key. Single bit in IV set. 128 bit key, 8 rounds.") key3 = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] iv3 = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] expected3 = [0x25, 0xf5, 0xbe, 0xc6, 0x68, 0x39, 0x16, 0xff, 0x44, 0xbc, 0xcd, 0x12, 0xd1, 0x02, 0xe6, 0x92, 0x17, 0x66, 0x63, 0xf4, 0xca, 0xc5, 0x3e, 0x71, 0x95, 0x09, 0xca, 0x74, 0xb6, 0xb2, 0xee, 0xc8, 0x5d, 0xa4, 0x23, 0x6f, 0xb2, 0x99, 0x02, 0x01, 0x2a, 0xdc, 0x8f, 0x0d, 0x86, 0xc8, 0x18, 0x7d, 0x25, 0xcd, 0x1c, 0x48, 0x69, 0x66, 0x93, 0x0d, 0x02, 0x04, 0xc4, 0xee, 0x88, 0xa6, 0xab, 0x35] block3 = [0x00] * 64 cipher3 = ChaCha(key3, iv3, verbose=0) result3 = cipher3.next(block3) check_block(result3, expected3, "TC3-128-8") print # Testing with TC4-128-8. # All bits in key IV are set. 128 bit key, 8 rounds. print("TC4-128-8: All bits in key IV are set. 128 bit key, 8 rounds.") key4 = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff] iv4 = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff] expected4 = [0x22, 0x04, 0xd5, 0xb8, 0x1c, 0xe6, 0x62, 0x19, 0x3e, 0x00, 0x96, 0x60, 0x34, 0xf9, 0x13, 0x02, 0xf1, 0x4a, 0x3f, 0xb0, 0x47, 0xf5, 0x8b, 0x6e, 0x6e, 0xf0, 0xd7, 0x21, 0x13, 0x23, 0x04, 0x16, 0x3e, 0x0f, 0xb6, 0x40, 0xd7, 0x6f, 0xf9, 0xc3, 0xb9, 0xcd, 0x99, 0x99, 0x6e, 0x6e, 0x38, 0xfa, 0xd1, 0x3f, 0x0e, 0x31, 0xc8, 0x22, 0x44, 0xd3, 0x3a, 0xbb, 0xc1, 0xb1, 0x1e, 0x8b, 0xf1, 0x2d] block4 = [0x00] * 64 cipher4 = ChaCha(key4, iv4, verbose=0) result4 = cipher4.next(block4) check_block(result4, expected4, "TC4-128-8") print # Testing with TC5-128-8 print("TC5-128-8: Even bits set. 128 bit key, 8 rounds.") key5 = [0x55] * 16 iv5 = [0x55] * 8 expected5 = [0xf0, 0xa2, 0x3b, 0xc3, 0x62, 0x70, 0xe1, 0x8e, 0xd0, 0x69, 0x1d, 0xc3, 0x84, 0x37, 0x4b, 0x9b, 0x2c, 0x5c, 0xb6, 0x01, 0x10, 0xa0, 0x3f, 0x56, 0xfa, 0x48, 0xa9, 0xfb, 0xba, 0xd9, 0x61, 0xaa, 0x6b, 0xab, 0x4d, 0x89, 0x2e, 0x96, 0x26, 0x1b, 0x6f, 0x1a, 0x09, 0x19, 0x51, 0x4a, 0xe5, 0x6f, 0x86, 0xe0, 0x66, 0xe1, 0x7c, 0x71, 0xa4, 0x17, 0x6a, 0xc6, 0x84, 0xaf, 0x1c, 0x93, 0x19, 0x96] block5 = [0x00] * 64 cipher5 = ChaCha(key5, iv5, verbose=0) result5 = cipher5.next(block5) check_block(result5, expected5, "TC5-128-8") print # Testing with TC6-128-8 print("TC6-128-8: Odd bits set. 128 bit key, 8 rounds.") key6 = [0xaa] * 16 iv6 = [0xaa] * 8 expected6 = [0x31, 0x2d, 0x95, 0xc0, 0xbc, 0x38, 0xef, 0xf4, 0x94, 0x2d, 0xb2, 0xd5, 0x0b, 0xdc, 0x50, 0x0a, 0x30, 0x64, 0x1e, 0xf7, 0x13, 0x2d, 0xb1, 0xa8, 0xae, 0x83, 0x8b, 0x3b, 0xea, 0x3a, 0x7a, 0xb0, 0x38, 0x15, 0xd7, 0xa4, 0xcc, 0x09, 0xdb, 0xf5, 0x88, 0x2a, 0x34, 0x33, 0xd7, 0x43, 0xac, 0xed, 0x48, 0x13, 0x6e, 0xba, 0xb7, 0x32, 0x99, 0x50, 0x68, 0x55, 0xc0, 0xf5, 0x43, 0x7a, 0x36, 0xc6] block6 = [0x00] * 64 cipher6 = ChaCha(key6, iv6, verbose=0) result6 = cipher6.next(block6) check_block(result6, expected6, "TC6-128-8") print # Testing with TC7-128-8 print("TC7-128-8: Key and IV are increasing, decreasing patterns. 128 bit key, 8 rounds.") key7 = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff] iv7 = [0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x59, 0x68, 0x77] expected7 = [0xa7, 0xa6, 0xc8, 0x1b, 0xd8, 0xac, 0x10, 0x6e, 0x8f, 0x3a, 0x46, 0xa1, 0xbc, 0x8e, 0xc7, 0x02, 0xe9, 0x5d, 0x18, 0xc7, 0xe0, 0xf4, 0x24, 0x51, 0x9a, 0xea, 0xfb, 0x54, 0x47, 0x1d, 0x83, 0xa2, 0xbf, 0x88, 0x88, 0x61, 0x58, 0x6b, 0x73, 0xd2, 0x28, 0xea, 0xaf, 0x82, 0xf9, 0x66, 0x5a, 0x5a, 0x15, 0x5e, 0x86, 0x7f, 0x93, 0x73, 0x1b, 0xfb, 0xe2, 0x4f, 0xab, 0x49, 0x55, 0x90, 0xb2, 0x31] block7 = [0x00] * 64 cipher7 = ChaCha(key7, iv7, verbose=2) result7 = cipher7.next(block7) check_block(result7, expected7, "TC7-128-8") print # Testing with TC8-128-8 print("TC8-128-8: Random inputs. 128 bit key, 8 rounds.") key8 = [0xc4, 0x6e, 0xc1, 0xb1, 0x8c, 0xe8, 0xa8, 0x78, 0x72, 0x5a, 0x37, 0xe7, 0x80, 0xdf, 0xb7, 0x35] iv8 = [0x1a, 0xda, 0x31, 0xd5, 0xcf, 0x68, 0x82, 0x21] expected8 = [0x6a, 0x87, 0x01, 0x08, 0x85, 0x9f, 0x67, 0x91, 0x18, 0xf3, 0xe2, 0x05, 0xe2, 0xa5, 0x6a, 0x68, 0x26, 0xef, 0x5a, 0x60, 0xa4, 0x10, 0x2a, 0xc8, 0xd4, 0x77, 0x00, 0x59, 0xfc, 0xb7, 0xc7, 0xba, 0xe0, 0x2f, 0x5c, 0xe0, 0x04, 0xa6, 0xbf, 0xbb, 0xea, 0x53, 0x01, 0x4d, 0xd8, 0x21, 0x07, 0xc0, 0xaa, 0x1c, 0x7c, 0xe1, 0x1b, 0x7d, 0x78, 0xf2, 0xd5, 0x0b, 0xd3, 0x60, 0x2b, 0xbd, 0x25, 0x94] block8 = [0x00] * 64 cipher8 = ChaCha(key8, iv8, verbose=0) result8 = cipher8.next(block8) check_block(result8, expected8, "TC8-128-8") print #------------------------------------------------------------------- # __name__ # Python thingy which allows the file to be run standalone as # well as parsed from within a Python interpreter. #------------------------------------------------------------------- if __name__=="__main__": # Run the main function. sys.exit(main()) #======================================================================= # EOF chacha.py #=======================================================================