From 6c1af517941fa35aa18a06a078be115fab36386a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Joachim=20Stro=CC=88mbergson?= Date: Wed, 3 Sep 2014 15:53:27 +0200 Subject: Adding a Python functional model of the ChaCha stream cipher. --- src/model/python/chacha.py | 696 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 696 insertions(+) create mode 100755 src/model/python/chacha.py diff --git a/src/model/python/chacha.py b/src/model/python/chacha.py new file mode 100755 index 0000000..c48b2d0 --- /dev/null +++ b/src/model/python/chacha.py @@ -0,0 +1,696 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +#======================================================================= +# +# chacha.py +# --------- +# Simple model of the ChaCha stream cipher. Used as a reference for +# the HW implementation. The code follows the structure of the +# HW implementation as much as possible. +# +# +# Author: Joachim Strombergson +# Copyright (c) 2011, NORDUnet A/S All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are +# met: +# - Redistributions of source code must retain the above copyright notice, +# this list of conditions and the following disclaimer. +# +# - Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. +# +# - Neither the name of the NORDUnet nor the names of its contributors may +# be used to endorse or promote products derived from this software +# without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED +# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +# +#======================================================================= + +#------------------------------------------------------------------- +# Python module imports. +#------------------------------------------------------------------- +import sys + + +#------------------------------------------------------------------- +# Constants. +#------------------------------------------------------------------- +TAU = [0x61707865, 0x3120646e, 0x79622d36, 0x6b206574] +SIGMA = [0x61707865, 0x3320646e, 0x79622d32, 0x6b206574] + + +#------------------------------------------------------------------- +# ChaCha() +#------------------------------------------------------------------- +class ChaCha(): + + #--------------------------------------------------------------- + # __init__() + # + # Given the key, iv initializes the state of the cipher. + # The number of rounds used can be set. By default 8 rounds + # are used. Accepts a list of either 16 or 32 bytes as key. + # Accepts a list of 8 bytes as IV. + #--------------------------------------------------------------- + def __init__(self, key, iv, rounds = 8, verbose = 0): + self.state = [0] * 16 + self.x = [0] * 16 + self.rounds = rounds + self.verbose = verbose + self.set_key_iv(key, iv) + + + #--------------------------------------------------------------- + # set_key_iv() + # + # Set key and iv. Basically reinitialize the cipher. + # This also resets the block counter. + #--------------------------------------------------------------- + def set_key_iv(self, key, iv): + keyword0 = self._b2w(key[0:4]) + keyword1 = self._b2w(key[4:8]) + keyword2 = self._b2w(key[8:12]) + keyword3 = self._b2w(key[12:16]) + + if len(key) == 16: + self.state[0] = TAU[0] + self.state[1] = TAU[1] + self.state[2] = TAU[2] + self.state[3] = TAU[3] + self.state[4] = keyword0 + self.state[5] = keyword1 + self.state[6] = keyword2 + self.state[7] = keyword3 + self.state[8] = keyword0 + self.state[9] = keyword1 + self.state[10] = keyword2 + self.state[11] = keyword3 + + elif len(key) == 32: + keyword4 = self._b2w(key[16:20]) + keyword5 = self._b2w(key[20:24]) + keyword6 = self._b2w(key[24:28]) + keyword7 = self._b2w(key[28:32]) + self.state[0] = SIGMA[0] + self.state[1] = SIGMA[1] + self.state[2] = SIGMA[2] + self.state[3] = SIGMA[3] + self.state[4] = keyword0 + self.state[5] = keyword1 + self.state[6] = keyword2 + self.state[7] = keyword3 + self.state[8] = keyword4 + self.state[9] = keyword5 + self.state[10] = keyword6 + self.state[11] = keyword7 + else: + print("Key length of %d bits, is not supported." % (len(key) * 8)) + + # Common state init for both key lengths. + self.block_counter = [0, 0] + self.state[12] = self.block_counter[0] + self.state[13] = self.block_counter[1] + self.state[14] = self._b2w(iv[0:4]) + self.state[15] = self._b2w(iv[4:8]) + + if self.verbose: + print("State after init:") + self._print_state() + + + #--------------------------------------------------------------- + # next() + # + # Encyp/decrypt the next block. This also updates the + # internal state and increases the block counter. + #--------------------------------------------------------------- + def next(self, data_in): + # Copy the current internal state to the temporary state x. + self.x = self.state[:] + + if self.verbose: + print("State before round processing.") + self._print_state() + + if self.verbose: + print("X before round processing:") + self._print_x() + + # Update the internal state by performing + # (rounds / 2) double rounds. + for i in range(int(self.rounds / 2)): + if (self.verbose > 1): + print("Doubleround 0x%02x:" % i) + self._doubleround() + if (self.verbose > 1): + print("") + + if self.verbose: + print("X after round processing:") + self._print_x() + + # Update the internal state by adding the elements + # of the temporary state to the internal state. + self.state = [((self.state[i] + self.x[i]) & 0xffffffff) for i in range(16)] + + if self.verbose: + print("State after round processing.") + self._print_state() + + bytestate = [] + for i in self.state: + bytestate += self._w2b(i) + + # Create the data out words. + data_out = [data_in[i] ^ bytestate[i] for i in range(64)] + + # Update the block counter. + self._inc_counter() + + return data_out + + + #--------------------------------------------------------------- + # _doubleround() + # + # Perform the two complete rounds that comprises the + # double round. + #--------------------------------------------------------------- + def _doubleround(self): + if (self.verbose > 0): + print("Start of double round processing.") + + self._quarterround(0, 4, 8, 12) + if (self.verbose > 1): + print("X after QR 0") + self._print_x() + self._quarterround(1, 5, 9, 13) + if (self.verbose > 1): + print("X after QR 1") + self._print_x() + self._quarterround(2, 6, 10, 14) + if (self.verbose > 1): + print("X after QR 2") + self._print_x() + self._quarterround(3, 7, 11, 15) + if (self.verbose > 1): + print("X after QR 3") + self._print_x() + + self._quarterround(0, 5, 10, 15) + if (self.verbose > 1): + print("X after QR 4") + self._print_x() + self._quarterround(1, 6, 11, 12) + if (self.verbose > 1): + print("X after QR 5") + self._print_x() + self._quarterround(2, 7, 8, 13) + if (self.verbose > 1): + print("X after QR 6") + self._print_x() + self._quarterround(3, 4, 9, 14) + if (self.verbose > 1): + print("X after QR 7") + self._print_x() + + if (self.verbose > 0): + print("End of double round processing.") + + + #--------------------------------------------------------------- + # _quarterround() + # + # Updates four elements in the state vector x given by + # their indices. + #--------------------------------------------------------------- + def _quarterround(self, ai, bi, ci, di): + # Extract four elemenst from x using the qi tuple. + a, b, c, d = self.x[ai], self.x[bi], self.x[ci], self.x[di] + + if (self.verbose > 1): + print("Indata to quarterround:") + print("X state indices:", ai, bi, ci, di) + print("a = 0x%08x, b = 0x%08x, c = 0x%08x, d = 0x%08x" %\ + (a, b, c, d)) + print("") + + a0 = (a + b) & 0xffffffff + d0 = d ^ a0 + d1 = ((d0 << 16) + (d0 >> 16)) & 0xffffffff + c0 = (c + d1) & 0xffffffff + b0 = b ^ c0 + b1 = ((b0 << 12) + (b0 >> 20)) & 0xffffffff + a1 = (a0 + b1) & 0xffffffff + d2 = d1 ^ a1 + d3 = ((d2 << 8) + (d2 >> 24)) & 0xffffffff + c1 = (c0 + d3) & 0xffffffff + b2 = b1 ^ c1 + b3 = ((b2 << 7) + (b2 >> 25)) & 0xffffffff + + if (self.verbose > 2): + print("Intermediate values:") + print("a0 = 0x%08x, a1 = 0x%08x" % (a0, a1)) + print("b0 = 0x%08x, b1 = 0x%08x, b2 = 0x%08x, b3 = 0x%08x" %\ + (b0, b1, b2, b3)) + print("c0 = 0x%08x, c1 = 0x%08x" % (c0, c1)) + print("d0 = 0x%08x, d1 = 0x%08x, d2 = 0x%08x, d3 = 0x%08x" %\ + (d0, d1, d2, d3)) + print("") + + a_prim = a1 + b_prim = b3 + c_prim = c1 + d_prim = d3 + + if (self.verbose > 1): + print("Outdata from quarterround:") + print("a_prim = 0x%08x, b_prim = 0x%08x, c_prim = 0x%08x, d_prim = 0x%08x" %\ + (a_prim, b_prim, c_prim, d_prim)) + print("") + + # Update the four elemenst in x using the qi tuple. + self.x[ai], self.x[bi] = a_prim, b_prim + self.x[ci], self.x[di] = c_prim, d_prim + + + #--------------------------------------------------------------- + # _inc_counter() + # + # Increase the 64 bit block counter. + #--------------------------------------------------------------- + def _inc_counter(self): + self.block_counter[0] += 1 & 0xffffffff + if not (self.block_counter[0] % 0xffffffff): + self.block_counter[1] += 1 & 0xffffffff + + + #--------------------------------------------------------------- + # _b2w() + # + # Given a list of four bytes returns the little endian + # 32 bit word representation of the bytes. + #--------------------------------------------------------------- + def _b2w(self, bytes): + return (bytes[0] + (bytes[1] << 8) + + (bytes[2] << 16) + (bytes[3] << 24)) & 0xffffffff + + + #--------------------------------------------------------------- + # _w2b() + # + # Given a 32-bit word returns a list of set of four bytes + # that is the little endian byte representation of the word. + #--------------------------------------------------------------- + def _w2b(self, word): + return [(word & 0x000000ff), ((word & 0x0000ff00) >> 8), + ((word & 0x00ff0000) >> 16), ((word & 0xff000000) >> 24)] + + + #--------------------------------------------------------------- + # _print_state() + # + # Print the internal state. + #--------------------------------------------------------------- + def _print_state(self): + print(" 0: 0x%08x, 1: 0x%08x, 2: 0x%08x, 3: 0x%08x" %\ + (self.state[0], self.state[1], self.state[2], self.state[3])) + print(" 4: 0x%08x, 5: 0x%08x, 6: 0x%08x, 7: 0x%08x" %\ + (self.state[4], self.state[5], self.state[6], self.state[7])) + print(" 8: 0x%08x, 9: 0x%08x, 10: 0x%08x, 11: 0x%08x" %\ + (self.state[8], self.state[9], self.state[10], self.state[11])) + print("12: 0x%08x, 13: 0x%08x, 14: 0x%08x, 15: 0x%08x" %\ + (self.state[12], self.state[13], self.state[14], self.state[15])) + print("") + + + #--------------------------------------------------------------- + # _print_x() + # + # Print the temporary state X. + #--------------------------------------------------------------- + def _print_x(self): + print(" 0: 0x%08x, 1: 0x%08x, 2: 0x%08x, 3: 0x%08x" %\ + (self.x[0], self.x[1], self.x[2], self.x[3])) + print(" 4: 0x%08x, 5: 0x%08x, 6: 0x%08x, 7: 0x%08x" %\ + (self.x[4], self.x[5], self.x[6], self.x[7])) + print(" 8: 0x%08x, 9: 0x%08x, 10: 0x%08x, 11: 0x%08x" %\ + (self.x[8], self.x[9], self.x[10], self.x[11])) + print("12: 0x%08x, 13: 0x%08x, 14: 0x%08x, 15: 0x%08x" %\ + (self.x[12], self.x[13], self.x[14], self.x[15])) + print("") + + +#------------------------------------------------------------------- +# print_block() +# +# Print a given block (list) of bytes ordered in +# rows of eight bytes. +#------------------------------------------------------------------- +def print_block(block): + for i in range(0, len(block), 8): + print("0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x" %\ + (block[i], block[i+1], block[i+2], block[i+3], + block[i+4], block[i+5], block[i+6], block[i+7])) + + +#------------------------------------------------------------------- +# check_block() +# +# Compare the result block with the expected block and print +# if the result for the given test case was correct or not. +#------------------------------------------------------------------- +def check_block(result, expected, test_case): + if result == expected: + print("SUCCESS: %s was correct." % test_case) + else: + print("ERROR: %s was not correct." % test_case) + print("Expected:") + print_block(expected) + print("") + print("Result:") + print_block(result) + print("") + + +#------------------------------------------------------------------- +# main() +# +# If executed tests the ChaCha class using known test vectors. +#------------------------------------------------------------------- +def main(): + print("Testing the ChaCha Python model.") + print("--------------------------------") + print + + # Testing with TC1-128-8. + # All zero inputs. IV all zero. 128 bit key, 8 rounds. + print("TC1-128-8: All zero inputs. 128 bit key, 8 rounds.") + key1 = [0x00] * 16 + iv1 = [0x00] * 8 + expected1 = [0xe2, 0x8a, 0x5f, 0xa4, 0xa6, 0x7f, 0x8c, 0x5d, + 0xef, 0xed, 0x3e, 0x6f, 0xb7, 0x30, 0x34, 0x86, + 0xaa, 0x84, 0x27, 0xd3, 0x14, 0x19, 0xa7, 0x29, + 0x57, 0x2d, 0x77, 0x79, 0x53, 0x49, 0x11, 0x20, + 0xb6, 0x4a, 0xb8, 0xe7, 0x2b, 0x8d, 0xeb, 0x85, + 0xcd, 0x6a, 0xea, 0x7c, 0xb6, 0x08, 0x9a, 0x10, + 0x18, 0x24, 0xbe, 0xeb, 0x08, 0x81, 0x4a, 0x42, + 0x8a, 0xab, 0x1f, 0xa2, 0xc8, 0x16, 0x08, 0x1b] + block1 = [0x00] * 64 + cipher1 = ChaCha(key1, iv1, verbose=0) + result1 = cipher1.next(block1) + check_block(result1, expected1, "TC1-128-8") + print + + + # Testing with TC1-128-12. + # All zero inputs. IV all zero. 128 bit key, 12 rounds. + print("TC1-128-12: All zero inputs. 128 bit key, 12 rounds.") + key1 = [0x00] * 16 + iv1 = [0x00] * 8 + expected1 = [0xe1, 0x04, 0x7b, 0xa9, 0x47, 0x6b, 0xf8, 0xff, + 0x31, 0x2c, 0x01, 0xb4, 0x34, 0x5a, 0x7d, 0x8c, + 0xa5, 0x79, 0x2b, 0x0a, 0xd4, 0x67, 0x31, 0x3f, + 0x1d, 0xc4, 0x12, 0xb5, 0xfd, 0xce, 0x32, 0x41, + 0x0d, 0xea, 0x8b, 0x68, 0xbd, 0x77, 0x4c, 0x36, + 0xa9, 0x20, 0xf0, 0x92, 0xa0, 0x4d, 0x3f, 0x95, + 0x27, 0x4f, 0xbe, 0xff, 0x97, 0xbc, 0x84, 0x91, + 0xfc, 0xef, 0x37, 0xf8, 0x59, 0x70, 0xb4, 0x50] + block1 = [0x00] * 64 + cipher1 = ChaCha(key1, iv1, rounds = 12, verbose=0) + result1 = cipher1.next(block1) + check_block(result1, expected1, "TC1-128-12") + print + + + # Testing with TC1-128-20. + # All zero inputs. IV all zero. 128 bit key, 20 rounds. + print("TC1-128-20: All zero inputs. 128 bit key, 20 rounds.") + key1 = [0x00] * 16 + iv1 = [0x00] * 8 + expected1 = [0x89, 0x67, 0x09, 0x52, 0x60, 0x83, 0x64, 0xfd, + 0x00, 0xb2, 0xf9, 0x09, 0x36, 0xf0, 0x31, 0xc8, + 0xe7, 0x56, 0xe1, 0x5d, 0xba, 0x04, 0xb8, 0x49, + 0x3d, 0x00, 0x42, 0x92, 0x59, 0xb2, 0x0f, 0x46, + 0xcc, 0x04, 0xf1, 0x11, 0x24, 0x6b, 0x6c, 0x2c, + 0xe0, 0x66, 0xbe, 0x3b, 0xfb, 0x32, 0xd9, 0xaa, + 0x0f, 0xdd, 0xfb, 0xc1, 0x21, 0x23, 0xd4, 0xb9, + 0xe4, 0x4f, 0x34, 0xdc, 0xa0, 0x5a, 0x10, 0x3f] + block1 = [0x00] * 64 + cipher1 = ChaCha(key1, iv1, rounds = 20, verbose=0) + result1 = cipher1.next(block1) + check_block(result1, expected1, "TC1-128-20") + print + + + # Testing with TC1-256-8. + # All zero inputs. IV all zero. 256 bit key, 8 rounds. + print("TC1-256-8: All zero inputs. 256 bit key, 8 rounds.") + key1 = [0x00] * 32 + iv1 = [0x00] * 8 + expected1 = [0x3e, 0x00, 0xef, 0x2f, 0x89, 0x5f, 0x40, 0xd6, + 0x7f, 0x5b, 0xb8, 0xe8, 0x1f, 0x09, 0xa5, 0xa1, + 0x2c, 0x84, 0x0e, 0xc3, 0xce, 0x9a, 0x7f, 0x3b, + 0x18, 0x1b, 0xe1, 0x88, 0xef, 0x71, 0x1a, 0x1e, + 0x98, 0x4c, 0xe1, 0x72, 0xb9, 0x21, 0x6f, 0x41, + 0x9f, 0x44, 0x53, 0x67, 0x45, 0x6d, 0x56, 0x19, + 0x31, 0x4a, 0x42, 0xa3, 0xda, 0x86, 0xb0, 0x01, + 0x38, 0x7b, 0xfd, 0xb8, 0x0e, 0x0c, 0xfe, 0x42] + block1 = [0x00] * 64 + cipher1 = ChaCha(key1, iv1, verbose=0) + result1 = cipher1.next(block1) + check_block(result1, expected1, "TC1-256-8") + print + + + # Testing with TC1-256-12. + # All zero inputs. IV all zero. 256 bit key, 12 rounds. + print("TC1-256-12: All zero inputs. 256 bit key, 12 rounds.") + key1 = [0x00] * 32 + iv1 = [0x00] * 8 + expected1 = [0x9b, 0xf4, 0x9a, 0x6a, 0x07, 0x55, 0xf9, 0x53, + 0x81, 0x1f, 0xce, 0x12, 0x5f, 0x26, 0x83, 0xd5, + 0x04, 0x29, 0xc3, 0xbb, 0x49, 0xe0, 0x74, 0x14, + 0x7e, 0x00, 0x89, 0xa5, 0x2e, 0xae, 0x15, 0x5f, + 0x05, 0x64, 0xf8, 0x79, 0xd2, 0x7a, 0xe3, 0xc0, + 0x2c, 0xe8, 0x28, 0x34, 0xac, 0xfa, 0x8c, 0x79, + 0x3a, 0x62, 0x9f, 0x2c, 0xa0, 0xde, 0x69, 0x19, + 0x61, 0x0b, 0xe8, 0x2f, 0x41, 0x13, 0x26, 0xbe] + block1 = [0x00] * 64 + cipher1 = ChaCha(key1, iv1, rounds = 12, verbose=0) + result1 = cipher1.next(block1) + check_block(result1, expected1, "TC1-256-12") + print + + + # Testing with TC1-256-20. + # All zero inputs. IV all zero. 256 bit key, 20 rounds. + print("TC1-256-20: All zero inputs. 256 bit key, 20 rounds.") + key1 = [0x00] * 32 + iv1 = [0x00] * 8 + expected1 = [0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90, + 0x40, 0x5d, 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28, + 0xbd, 0xd2, 0x19, 0xb8, 0xa0, 0x8d, 0xed, 0x1a, + 0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77, 0x0d, 0xc7, + 0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d, + 0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37, + 0x6a, 0x43, 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c, + 0xc3, 0x87, 0xb6, 0x69, 0xb2, 0xee, 0x65, 0x86] + block1 = [0x00] * 64 + cipher1 = ChaCha(key1, iv1, rounds = 20, verbose=0) + result1 = cipher1.next(block1) + check_block(result1, expected1, "TC1-256-20") + print + + + # Testing with TC2-128-8. + # Single bit set in key. IV all zero. 128 bit key. + print("TC2-128-8: One bit in key set. IV all zeros. 128 bit key, 8 rounds.") + key2 = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] + iv2 = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] + expected2 = [0x03, 0xa7, 0x66, 0x98, 0x88, 0x60, 0x5a, 0x07, + 0x65, 0xe8, 0x35, 0x74, 0x75, 0xe5, 0x86, 0x73, + 0xf9, 0x4f, 0xc8, 0x16, 0x1d, 0xa7, 0x6c, 0x2a, + 0x3a, 0xa2, 0xf3, 0xca, 0xf9, 0xfe, 0x54, 0x49, + 0xe0, 0xfc, 0xf3, 0x8e, 0xb8, 0x82, 0x65, 0x6a, + 0xf8, 0x3d, 0x43, 0x0d, 0x41, 0x09, 0x27, 0xd5, + 0x5c, 0x97, 0x2a, 0xc4, 0xc9, 0x2a, 0xb9, 0xda, + 0x37, 0x13, 0xe1, 0x9f, 0x76, 0x1e, 0xaa, 0x14] + block2 = [0x00] * 64 + cipher2 = ChaCha(key2, iv2, verbose=0) + result2 = cipher2.next(block2) + check_block(result2, expected2, "TC2-128-8") + print + + + # Testing with TC2-256-8. + # Single bit set in key. IV all zero. 256 bit key. + print("TC2-256-8: One bit in key set. IV all zeros. 256 bit key, 8 rounds.") + key2 = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] + iv2 = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] + expected2 = [0xcf, 0x5e, 0xe9, 0xa0, 0x49, 0x4a, 0xa9, 0x61, + 0x3e, 0x05, 0xd5, 0xed, 0x72, 0x5b, 0x80, 0x4b, + 0x12, 0xf4, 0xa4, 0x65, 0xee, 0x63, 0x5a, 0xcc, + 0x3a, 0x31, 0x1d, 0xe8, 0x74, 0x04, 0x89, 0xea, + 0x28, 0x9d, 0x04, 0xf4, 0x3c, 0x75, 0x18, 0xdb, + 0x56, 0xeb, 0x44, 0x33, 0xe4, 0x98, 0xa1, 0x23, + 0x8c, 0xd8, 0x46, 0x4d, 0x37, 0x63, 0xdd, 0xbb, + 0x92, 0x22, 0xee, 0x3b, 0xd8, 0xfa, 0xe3, 0xc8] + block2 = [0x00] * 64 + cipher2 = ChaCha(key2, iv2, verbose=0) + result2 = cipher2.next(block2) + check_block(result2, expected2, "TC2-256-8") + print + + + # Testing with TC3-128-8. + # All zero key. Single bit in IV set. 128 bit key. + print("TC3-128-8: All zero key. Single bit in IV set. 128 bit key, 8 rounds.") + key3 = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] + iv3 = [0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] + + expected3 = [0x25, 0xf5, 0xbe, 0xc6, 0x68, 0x39, 0x16, 0xff, + 0x44, 0xbc, 0xcd, 0x12, 0xd1, 0x02, 0xe6, 0x92, + 0x17, 0x66, 0x63, 0xf4, 0xca, 0xc5, 0x3e, 0x71, + 0x95, 0x09, 0xca, 0x74, 0xb6, 0xb2, 0xee, 0xc8, + 0x5d, 0xa4, 0x23, 0x6f, 0xb2, 0x99, 0x02, 0x01, + 0x2a, 0xdc, 0x8f, 0x0d, 0x86, 0xc8, 0x18, 0x7d, + 0x25, 0xcd, 0x1c, 0x48, 0x69, 0x66, 0x93, 0x0d, + 0x02, 0x04, 0xc4, 0xee, 0x88, 0xa6, 0xab, 0x35] + block3 = [0x00] * 64 + cipher3 = ChaCha(key3, iv3, verbose=0) + result3 = cipher3.next(block3) + check_block(result3, expected3, "TC3-128-8") + print + + + # Testing with TC4-128-8. + # All bits in key IV are set. 128 bit key, 8 rounds. + print("TC4-128-8: All bits in key IV are set. 128 bit key, 8 rounds.") + key4 = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff] + iv4 = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff] + expected4 = [0x22, 0x04, 0xd5, 0xb8, 0x1c, 0xe6, 0x62, 0x19, + 0x3e, 0x00, 0x96, 0x60, 0x34, 0xf9, 0x13, 0x02, + 0xf1, 0x4a, 0x3f, 0xb0, 0x47, 0xf5, 0x8b, 0x6e, + 0x6e, 0xf0, 0xd7, 0x21, 0x13, 0x23, 0x04, 0x16, + 0x3e, 0x0f, 0xb6, 0x40, 0xd7, 0x6f, 0xf9, 0xc3, + 0xb9, 0xcd, 0x99, 0x99, 0x6e, 0x6e, 0x38, 0xfa, + 0xd1, 0x3f, 0x0e, 0x31, 0xc8, 0x22, 0x44, 0xd3, + 0x3a, 0xbb, 0xc1, 0xb1, 0x1e, 0x8b, 0xf1, 0x2d] + block4 = [0x00] * 64 + cipher4 = ChaCha(key4, iv4, verbose=0) + result4 = cipher4.next(block4) + check_block(result4, expected4, "TC4-128-8") + print + + + # Testing with TC5-128-8 + print("TC5-128-8: Even bits set. 128 bit key, 8 rounds.") + key5 = [0x55] * 16 + iv5 = [0x55] * 8 + expected5 = [0xf0, 0xa2, 0x3b, 0xc3, 0x62, 0x70, 0xe1, 0x8e, + 0xd0, 0x69, 0x1d, 0xc3, 0x84, 0x37, 0x4b, 0x9b, + 0x2c, 0x5c, 0xb6, 0x01, 0x10, 0xa0, 0x3f, 0x56, + 0xfa, 0x48, 0xa9, 0xfb, 0xba, 0xd9, 0x61, 0xaa, + 0x6b, 0xab, 0x4d, 0x89, 0x2e, 0x96, 0x26, 0x1b, + 0x6f, 0x1a, 0x09, 0x19, 0x51, 0x4a, 0xe5, 0x6f, + 0x86, 0xe0, 0x66, 0xe1, 0x7c, 0x71, 0xa4, 0x17, + 0x6a, 0xc6, 0x84, 0xaf, 0x1c, 0x93, 0x19, 0x96] + block5 = [0x00] * 64 + cipher5 = ChaCha(key5, iv5, verbose=0) + result5 = cipher5.next(block5) + check_block(result5, expected5, "TC5-128-8") + print + + + # Testing with TC6-128-8 + print("TC6-128-8: Odd bits set. 128 bit key, 8 rounds.") + key6 = [0xaa] * 16 + iv6 = [0xaa] * 8 + expected6 = [0x31, 0x2d, 0x95, 0xc0, 0xbc, 0x38, 0xef, 0xf4, + 0x94, 0x2d, 0xb2, 0xd5, 0x0b, 0xdc, 0x50, 0x0a, + 0x30, 0x64, 0x1e, 0xf7, 0x13, 0x2d, 0xb1, 0xa8, + 0xae, 0x83, 0x8b, 0x3b, 0xea, 0x3a, 0x7a, 0xb0, + 0x38, 0x15, 0xd7, 0xa4, 0xcc, 0x09, 0xdb, 0xf5, + 0x88, 0x2a, 0x34, 0x33, 0xd7, 0x43, 0xac, 0xed, + 0x48, 0x13, 0x6e, 0xba, 0xb7, 0x32, 0x99, 0x50, + 0x68, 0x55, 0xc0, 0xf5, 0x43, 0x7a, 0x36, 0xc6] + block6 = [0x00] * 64 + cipher6 = ChaCha(key6, iv6, verbose=0) + result6 = cipher6.next(block6) + check_block(result6, expected6, "TC6-128-8") + print + + + # Testing with TC7-128-8 + print("TC7-128-8: Key and IV are increasing, decreasing patterns. 128 bit key, 8 rounds.") + key7 = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff] + iv7 = [0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x59, 0x68, 0x77] + expected7 = [0xa7, 0xa6, 0xc8, 0x1b, 0xd8, 0xac, 0x10, 0x6e, + 0x8f, 0x3a, 0x46, 0xa1, 0xbc, 0x8e, 0xc7, 0x02, + 0xe9, 0x5d, 0x18, 0xc7, 0xe0, 0xf4, 0x24, 0x51, + 0x9a, 0xea, 0xfb, 0x54, 0x47, 0x1d, 0x83, 0xa2, + 0xbf, 0x88, 0x88, 0x61, 0x58, 0x6b, 0x73, 0xd2, + 0x28, 0xea, 0xaf, 0x82, 0xf9, 0x66, 0x5a, 0x5a, + 0x15, 0x5e, 0x86, 0x7f, 0x93, 0x73, 0x1b, 0xfb, + 0xe2, 0x4f, 0xab, 0x49, 0x55, 0x90, 0xb2, 0x31] + block7 = [0x00] * 64 + cipher7 = ChaCha(key7, iv7, verbose=2) + result7 = cipher7.next(block7) + check_block(result7, expected7, "TC7-128-8") + print + + + # Testing with TC8-128-8 + print("TC8-128-8: Random inputs. 128 bit key, 8 rounds.") + key8 = [0xc4, 0x6e, 0xc1, 0xb1, 0x8c, 0xe8, 0xa8, 0x78, + 0x72, 0x5a, 0x37, 0xe7, 0x80, 0xdf, 0xb7, 0x35] + iv8 = [0x1a, 0xda, 0x31, 0xd5, 0xcf, 0x68, 0x82, 0x21] + expected8 = [0x6a, 0x87, 0x01, 0x08, 0x85, 0x9f, 0x67, 0x91, + 0x18, 0xf3, 0xe2, 0x05, 0xe2, 0xa5, 0x6a, 0x68, + 0x26, 0xef, 0x5a, 0x60, 0xa4, 0x10, 0x2a, 0xc8, + 0xd4, 0x77, 0x00, 0x59, 0xfc, 0xb7, 0xc7, 0xba, + 0xe0, 0x2f, 0x5c, 0xe0, 0x04, 0xa6, 0xbf, 0xbb, + 0xea, 0x53, 0x01, 0x4d, 0xd8, 0x21, 0x07, 0xc0, + 0xaa, 0x1c, 0x7c, 0xe1, 0x1b, 0x7d, 0x78, 0xf2, + 0xd5, 0x0b, 0xd3, 0x60, 0x2b, 0xbd, 0x25, 0x94] + block8 = [0x00] * 64 + cipher8 = ChaCha(key8, iv8, verbose=0) + result8 = cipher8.next(block8) + check_block(result8, expected8, "TC8-128-8") + print + + +#------------------------------------------------------------------- +# __name__ +# Python thingy which allows the file to be run standalone as +# well as parsed from within a Python interpreter. +#------------------------------------------------------------------- +if __name__=="__main__": + # Run the main function. + sys.exit(main()) + +#======================================================================= +# EOF chacha.py +#======================================================================= -- cgit v1.2.3